Open Access Open Access  Restricted Access Subscription Access

Foetal Programming in a Diabetic Pregnancy: Long-Term Implications for the Offspring


Affiliations
1 Epidemiology Research Unit, CSI Holdsworth Memorial Hospital, Mysuru 570 021, India
2 Diabetes Unit, King Edward Memorial Hospital and Research Centre, Pune 411 011, India
 

Maternal diabetes predisposes the growing foetus to non-communicable disease risk later in life. Studies show an increased risk of adiposity/obesity, type-2 diabetes and higher blood pressure in offspring of diabetic mothers. Altered metabolic and neuroendocrine functions, and epigenetic modification of genes involved in these functions are some of the mechanisms proposed for the offspring disease risk. Though optimal management of diabetes during pregnancy prevents its immediate complications, there is limited evidence on the influence of glycaemic control on longterm effects in the offspring. Future focus should be on prevention of pregnancy diabetes through appropriate maternal and child health policies in vulnerable populations.

Keywords

Gestational Diabetes, Non-Communicable Disease, Offspring, Pregnancy.
User
Notifications
Font Size

  • http://www.who.int/mediacentre/factsheets/fs355/en/ (accessed 5 September 2016).
  • Ferrara, A., Increasing prevalence of gestational diabetes mellitus. Diabetes Care (Suppl.), 2007, 30, S141–S146.
  • Wu, G., Bazer, F. W., Cudd, T. A., Meininger, C. J. and Spencer, T. E., Maternal nutrition and foetal development. J. Nutr., 2004, 134, 2169–2172.
  • D’Ercole, A. J., Mechanisms of in utero overgrowth. Acta Paediatr. (Suppl.), 1999, 428, 31–36.
  • American Diabetic Association. Gestational diabetes mellitus. Diabetes Care, 2003, 26, S103–S105.
  • Di Cianni, G., Miccoli, R., Volpe, L., Lencioni, C. and Del Prato, S., Intermediate metabolism in normal pregnancy and in gestational diabetes. Diabetes Metab. Res. Rev., 2003, 19, 259–270.
  • Pedersen, J., Weight and length at birth of infants of diabetic mothers. Acta Endocrinol (Copenhagen), 1954, 16, 330–342.
  • Freinkel, N., Of pregnancy and progeny. Diabetes, 1980, 29, 1023–1035.
  • Hanson, M. A. and Gluckman, P. D., Early developmental conditioning of later health and disease: physiology or pathophysiology? Physiol. Rev., 2014, 94, 1027–1076.
  • Barker, D. J. P., Mothers, Babies and Health in Later Life, Churchill Livingstone, Edinburgh, UK, 1998, 2nd edn.
  • McCance, D. R. et al., Birth weight and non-insulin dependent diabetes: thrifty genotype, thrifty phenotype, or thrifty phenotype, or surviving small baby genotype? BMJ, 1994, 308, 942–945.
  • Rich-Edwards, J. et al., Birthweight and the risk for type 2 diabetes mellitus in adult women. Ann. Intern. Med., 1999, 130, 278–284.
  • Dabelea, D. and Pettitt, D. J., Intrauterine diabetic environment confers risks for type-2 diabetes mellitus and obesity in the offspring. In addition to genetic susceptibility. J. Pediatr. Endocrinol., 2001, 14, 1085–1091.
  • Pettitt, D. J., Bennett, P. H., Knowler, W. C., Baird, H. R. and Aleck, K. A., Gestational diabetes mellitus and impaired glucose tolerance during pregnancy: long-term effects on obesity and glucose tolerance in the offspring. Diabetes (Suppl.), 1985, 34, 119–122.
  • Dabelea, D., Knowler, W. C. and Pettitt, D. J., Effect of diabetes in pregnancy on offspring: follow-up research in the Pima Indians. J. Matern. Fetal Med., 2000, 9, 83–88.
  • Nelson, R. G., Morgenstern, H. and Bennett, P. H., Intrauterine diabetes exposure and the risk of renal disease in diabetic Pima Indians. Diabetes, 1998, 47, 1489–1493.
  • Dabelea, D. et al., Intrauterine exposure to diabetes conveys risks for type-2 diabetes and obesity: a study of discordant sibships. Diabetes, 2000, 49, 2208–2211.
  • Silverman, B. L., Rizzo, T., Cho, N. H. and Metzger, B. E., Longterm prospective evaluation of offspring of diabetic mothers. Diabetes (Suppl.), 1991, 40, 121–125.
  • Silverman, B. L., Metzger, B. E., Cho, N. H. and Loeb, C. A., Impaired glucose tolerance in adolescent offspring of diabetic mothers: relationships to foetal hyperinsulinism. Diabetes Care, 1995, 18, 611–617.
  • Vohr, B. R., McGarvey, S. T. and Tucker, R., Effects of maternal gestational diabetes on offspring adiposity at 4–7 years of age. Diabetes Care, 1999, 22, 1284–1291.
  • Clausen, T. D., Mathiesen, E. R., Hansen, T., Pedersen, O., Jensen, D. M., Lauenborg, J. and Damm, P., High prevalence of type-2 diabetes and pre-diabetes in adult offspring of women with gestational diabetes mellitus or type-1 diabetes: the role of intrauterine hyperglycaemia. Diabetes Care, 2008, 31, 340–346.
  • Clausen, T. D. et al., Overweight and the metabolic syndrome in adult offspring of women with diet-treated gestational diabetes mellitus or type-1 diabetes. J. Clin. Endocrinol. Metab., 2009, 94, 2464–2470.
  • Philipps, L. H., Santhakumaran, S., Gale, C., Prior, E., Logan, K. M., Hyde, M. J. and Modi, N., The diabetic pregnancy and offspring BMI in childhood: a systematic review and meta-analysis. Diabetologia, 2011, 54, 1957–1966.
  • Aceti, A. et al., The diabetic pregnancy and offspring blood pressure in childhood: a systematic review and meta-analysis. Diabetologia, 2012, 55, 3114–3127.
  • Boney, C. M., Verma, A., Tucker, R. and Vohr, B. R., Metabolic syndrome in childhood: association with birth weight, maternal obesity, and gestational diabetes. Pediatrics, 2005, 115, e290–e296.
  • Camprubi Robles, M., Campoy, C., Garcia Fernandez, L., Lopez-Pedrosa, J. M., Rueda, R. and Martin, M. J., Maternal diabetes and cognitive performance in the offspring: a systematic review and meta-analysis. PLOS ONE, 2015, 10, doi:10.1371/journal.pone.0142583.
  • Van Lieshout, R. J. and Voruganti, L. P., Diabetes mellitus during pregnancy and increased risk of schizophrenia in offspring: a review of the evidence and putative mechanisms. J. Psychiatry Neurosci., 2008, 33, 395–404.
  • Farmer, G. et al., The influence of maternal glucose metabolism on foetal growth, development and morbidity in 917 singleton pregnancies in non-diabetic women. Diabetologia, 1988, 31, 134–141.
  • Kulkarni, S. R. et al., Maternal lipids are as important as glucose for foetal growth: findings from the Pune maternal nutrition study. Diabetes Care, 2013, 36, 2706–2713.
  • Pettitt, D. J., Bennett, P. H., Saad, M. F., Charles, M. A., Nelson, R. G. and Knowler, W. C., Abnormal glucose tolerance during pregnancy in Pima Indian women. Long-term effects on offspring. Diabetes (Suppl.), 1991, 40, 126–130.
  • HAPO Study Cooperative Research Group, Metzger, B. E. et al., Hyperglycaemia and adverse pregnancy outcomes. N. Engl. J. Med., 2008, 358, 1991–2002.
  • Pettitt, D. J., McKenna, S., McLaughlin, C., Patterson, C. C., Hadden, D. R. and McCance, D. R., Maternal glucose at 28 weeks of gestation is not associated with obesity in 2-year-old offspring: the Belfast hyperglycaemia and adverse pregnancy outcome (HAPO) family study. Diabetes Care, 2010, 33, 1219–1223.
  • Catalano, P. M. and Hauguel-De Mouzon, S., Is it time to revisit the Pedersen hypothesis in the face of the obesity epidemic? Am. J. Obstet. Gynecol., 2011, 204, 479–487.
  • Catalano, P. M., Presley, L., Minium, J. and Hauguel-de Mouzon, S., Fetuses of obese mothers develop insulin resistance in utero. Diabetes Care, 2009, 32, 1076–1080.
  • Gaillard, R., Maternal obesity during pregnancy and cardiovascular development and disease in the offspring. Eur. J. Epidemiol., 2015, 30, 1141–1152.
  • International Diabetes Federation, Diabetes Atlas, 2015, 7th edn. http://www.diabetesatlas.org (accessed 30 August 2016).
  • Yajnik, C. S., Early life origins of insulin resistance and type-2 diabetes in India and other Asian countries. J. Nutr., 2004, 134, 205–210.
  • Yajnik, C. S. et al., Vitamin B12 and folate concentrations during pregnancy and insulin resistance in the offspring: the Pune maternal nutrition study. Diabetologia, 2008, 51, 29–38.
  • Krishnaveni, G. V. et al., Maternal vitamin D status during pregnancy and body composition and cardiovascular risk markers in Indian children: the Mysore Parthenon Study. Am. J. Clin. Nutr., 2011, 93, 628–635.
  • Krishnaveni, G. V., Veena, S. R., Karat, S. C., Yajnik, C. S. and Fall, C. H., Association between maternal folate concentrations during pregnancy and insulin resistance in Indian children. Diabetologia, 2014, 57, 110–121.
  • Seshiah, V., Balaji, V., Balaji, M. S., Paneerselvam, A., Arthi, T., Thamizharasi, M. and Datta, M., Prevalence of gestational diabetes mellitus in South India (Tamil Nadu) – a community based study. J. Assoc. Physicians India, 2008, 56, 329–333.
  • Krishnaveni, G. V. et al., Low plasma vitamin b12 in pregnancy is associated with gestational ‘diabesity’ and later diabetes. Diabetologia, 2009, 52, 2350–2358.
  • Fall, C. H. D., Stein, C. E., Kumaran, K., Cox, V., Osmond, C., Barker, D. J. and Hales, C. N., Size at birth, maternal weight, and non-insulin-dependent diabetes (NIDDM) in South Indian adults. Diabet. Med., 1998, 15, 220–227.
  • Krishnaveni, G. V., Veena, S. R., Hill, J. C., Karat, S. C. and Fall, C. H., Cohort profile: Mysore Parthenon birth cohort. Int. J. Epidemiol., 2015, 44, 28–36.
  • Krishnaveni, G. V. et al., Anthropometry, glucose tolerance, and insulin concentrations in Indian children: relationships to maternal glucose and insulin concentrations during pregnancy. Diabetes Care, 2005, 28, 2919–2925.
  • Krishnaveni, G. V., Veena, S. R., Hill, J. C., Kehoe, S., Karat, S. C. and Fall, C. H., Intra-uterine exposure to maternal diabetes is associated with higher adiposity and insulin resistance and clustering of cardiovascular risk markers in Indian children. Diabetes Care, 2010, 33, 402–404.
  • Krishnaveni, G. V. et al., Exposure to maternal gestational diabetes is associated with higher cardiovascular responses to stress in adolescent Indians. J. Clin. Endocrinol. Metab., 2015, 100, 986–993.
  • Yajnik, C. S., Nutrient-mediated teratogenesis and fuel-mediated teratogenesis: two pathways of intrauterine programming of diabetes. Int. J. Gynaecol. Obstet. (Suppl.), 2009, 104, S27–S31.
  • Aerts, L., Holemans, K. and Van Assche, F. A., Maternal diabetes during pregnancy: consequences for the offspring. Diabetes Metab. Rev., 1990, 6, 147–167.
  • Van Assche, F. A. and Aerts, L., Long-term effect of diabetes and pregnancy in the rat. Diabetes (Suppl.), 1985, 34, 116–118.
  • Plagemann, A., Harder, T., Rake, A., Melchior, K., Rittel, F., Rohde, W. and Dörner, G., Hypothalamic insulin and neuropeptide Y in the offspring of gestational diabetic mother rats. NeuroReport., 1998, 9, 4069–4073.
  • Simmons, D. and Brier, B. H., Fetal overnutrition in Polynesian pregnancies and in gestational diabetes may lead to dysregulation of the adipoinsular axis in the offspring. Diabetes Care, 2002, 25, 1539–1544.
  • Szostak-Wegierek, D., Intrauterine nutrition: long-term consequences for vascular health. Int. J. Womens Health, 2014, 6, 647–656.
  • Ruchat, S. M., Hivert, M. F. and Bouchard, L., Epigenetic programming of obesity and diabetes by in utero exposure to gestational diabetes mellitus. Nutr. Rev. (Suppl.), 2013, 71, S88–S94.
  • Hajj, N. E. et al., Metabolic programming of MEST DNA methylation by intrauterine exposure to gestational diabetes mellitus. Diabetes, 2013, 62, 1320–1328.
  • Ge, Z. J., Zhang, C. L., Schatten, H. and Sun, Q. Y., Maternal diabetes mellitus and the origin of non-communicable diseases in offspring: the role of epigenetics. Biol. Reprod., 2014, 90, 139; doi:10.1095/biolreprod.114.118141.
  • Crowther, C. A., Hiller, J. E., Moss, J. R., McPhee, A. J., Jeffries, W. S. and Robinson, J. S., Australian carbohydrate intolerance study in pregnant women (ACHOIS) trial group. Effect of treatment of gestational diabetes mellitus on pregnancy outcomes. N. Engl. J. Med., 2005, 352, 2477–2486.
  • Gerlini, G., Arachi, S. and Gori, M. G., Developmental aspects of the offspring of diabetic mothers. Acta Endocrinol. Copenhagen (Suppl.), 1986, 277, 150–155.
  • Gillman, M. W., Oakey, H., Baghurst, P. A., Volkmer, R. E., Robinson, J. S. and Crowther, C. A., Effect of treatment of gestational diabetes mellitus on obesity in the next generation. Diabetes Care, 2010, 33, 964–968.

Abstract Views: 297

PDF Views: 86




  • Foetal Programming in a Diabetic Pregnancy: Long-Term Implications for the Offspring

Abstract Views: 297  |  PDF Views: 86

Authors

G. V. Krishnaveni
Epidemiology Research Unit, CSI Holdsworth Memorial Hospital, Mysuru 570 021, India
C. S. Yajnik
Diabetes Unit, King Edward Memorial Hospital and Research Centre, Pune 411 011, India

Abstract


Maternal diabetes predisposes the growing foetus to non-communicable disease risk later in life. Studies show an increased risk of adiposity/obesity, type-2 diabetes and higher blood pressure in offspring of diabetic mothers. Altered metabolic and neuroendocrine functions, and epigenetic modification of genes involved in these functions are some of the mechanisms proposed for the offspring disease risk. Though optimal management of diabetes during pregnancy prevents its immediate complications, there is limited evidence on the influence of glycaemic control on longterm effects in the offspring. Future focus should be on prevention of pregnancy diabetes through appropriate maternal and child health policies in vulnerable populations.

Keywords


Gestational Diabetes, Non-Communicable Disease, Offspring, Pregnancy.

References





DOI: https://doi.org/10.18520/cs%2Fv113%2Fi07%2F1321-1326