
Abstract
Currently, the volume fraction of a glass fibre/matrix based composite material is being assessed only by destructive
techniques. Instead of changing or destroying the structure, a new non-destructive approach based on vibration technique
is proposed in this research. Further, the main objective of this paper is on the determination of fibre/matrix volume
fractions using vibration analysis. A complete experimental protocol has been developed to record the vibration signals
produced from experimental plates with different volume fractions and thicknesses. The recorded vibration signals were
analyzed both in time and frequency domains.  Subsequently, statistical parameter features from each thickness was
extracted and associated to the volume fraction levels. Artificial Neural Network (ANN) models were then developed to
classify the level of volume fraction. The classification performance of the developed network models were in the range
of 80-98 percent.  From the results, it has been observed that the network model with frequency band based features has
yielded a better classification performance. This proves that the method implemented can be used as the alternatives to
the ASTM D2584−11 for determination of volume fraction of a glass fibre/matrix composite plate using vibration analysis.
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1. Introduction

Normally all composite materials will react well with
the surroundings. Many researches have analyzed the
performances of different composite materials in order
to prove their advantages over conventional materials.
It has been reported that materials with lower volume
fraction are widely used for fabricating different types
of structures1. The mechanical properties of composites
are derived from the properties such as deformation of
layer structure between fiber and resin, the mixture and
the fibre volume fraction2. The mechanical properties
of a material are influential in designing the composite
structure3. Therefore, many researchers focused on the 

study related to the mechanical properties and to contrib-
ute more towards the composite field. The strength and
the mechanical behavior of materials depend upon the
bonding between fibre and matrix and this will directly
leads to the impact performance of the materials. Various
investigations over the effect of Glass Fiber Reinforced
Polymer (GFRP) composition on the impact behavior
were studied with contradictory results4. The method
currently employed for determining the volume fraction
of composite materials are through acid digestion, opti-
cal microscopy-based method and ignition loss method.
The primary disadvantage of destructive testing is that an
actual section of the composite material must be destroyed
in order to determine the volume fraction. This will defi-
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nitely waste the materials by changing or destroying their 
usefulness. Further, this method is not environmentally 
friendly as it involves a burning process, acidic solution 
and many more. In order to safely determine the volume 
fraction, a simple non-destructive approach is proposed 
in this research work. The main focus in this paper is to 
develop the fundamental understanding on how the non-
destructive method can be used to determine the volume 
fraction of the composite materials and to show that even 
by using a simple laboratory test, the volume fraction of 
glass fibre can be determined. Non-Destructive Testing 
(NDT) is a clean analysis technique which is widely 
used in industry or even in science field to investigate 
the properties of a material, system or component with-
out involving any damage. In other words, after the test 
or experiment is done, the tested part can still be used5. 
NDT used in this research work is the based on analyz-
ing the vibration pattern produced in different composite 
materials. Hence, in this work we present experimental 
results containing to the vibration pattern of glass fibre/
matrix plate composite under free vibration condition. 
Vibration analysis on the effect of fibre matrix composi-
tion on the impact performance of GFRP was extensively 
studied by numerous researchers that lead to different 
results6-10. However, free vibration analysis of laminated 
composite plates and shells based on artificial intelligent 
has not received ample attention.

In this study, a simple experimental arrangement is 
developed based on a simply supporting boundary con-
dition to record the distribution of vibration signals of 
glass fibre composite plates with different volume frac-
tion. Data capturing protocol is proposed to record the 
vibration motion by subjecting the experimental plate 
to an external impact excitation. The vibration signals 
recorded at various node points are then analyzed both 
in time and frequency domain. The results obtained are 
compared. Frequency bands are analyzed and the sta-
tistical features are extracted as features. The extracted 
features are then validated through Analysis of Variance 
(ANOVA). The validated extracted features are then asso-
ciated to the respective plate’s composite volume fraction. 
Subsequently, a network model is trained with Levenberg 
Marquardt (LM) method.

This paper is separated into three subsections; proto-
col, feature extraction and artificial neural networks for 
classification. 

2.  Protocol  
Using LMS SCADAS Mobile as Data Acquisition system 
(DAQ), the vibration at various node points is recorded. 
The LMS system has a signal analyzer which can be used 
to perform time and frequency domain analysis. LMS 
system was used to model test based on hammering 
method. Hence, the corresponding frequency response 
can be obtained and analyzed. The LMS SCADAS Mobile 
workstation along with the impact hammer and acceler-
ometer sensor is shown in Figure 1.

Figure 1.  LMS SCADAS mobile workstation.

2.1 � Sensors and Force Transducer
In most of the vibration monitoring application, acceler-
ometers are the most preferred motion sensors. They can 
be used to measure signals of low to very high frequen-
cies and are available in a variety of general purpose and 
application-specific designs. The piezoelectric accelerom-
eter is reliable, versatile, unmatched for frequency and 
amplitude range and popular for machinery monitoring. 
The piezoelectric accelerometer (model: 3055B1T) with 
an input sensitivity of 10 mV/g (g=9.82 m/s²) is used in 
this experimental work. The impact hammer used in this 
research work is from Dytran 5800B2-50LbF range, 100 
mV/LbF).

2.2 � Pre-Experimental Setup
Numerous conventional manufacturing techniques used 
to fabricate the composite material; wet layup, pre-preg 
layup, compression moulding, resin infusion, filament 
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winding and etc. In this work, 12 laminated glass fibre 
composite plates with different volume fractions and 
thicknesses were manufactured using a compression 
moulding machine as shown in Figure 2. This technique 
is normally used in industries since it holds good for 
small production runs and also it gives out a very good 
compressed plates as compared to other techniques. The 
mass of the 12 composite plates are tabulated in Table 1.

The experimental samples are then cut into dimen-
sions of 25.4 x 25.4 mm² respectively. The classification 
process was conducted by considering 5 mm, 3 mm and 
2 mm in thickness. 

The fabricated composite plates are then segmented 
so as to form three concentric squares. The innermaze 
concentric square cell is labelled as I1, I2, I3, I4, middle and 
outer are labelled as m1, m2, m3, m4 and o1, o2, o3, o4 respec-
tively. The three concentric square cells are segmented so 
as to make I1m1= m1o1= I2m2= m2o2= I3m3= m3o3= I4m4= 
m4o4. The centre of the concentric cell is marked as C. The 
segmented concentric square along with the node points 
are shown in Figure 3a and Figure 3b shows the experi-
mental plate with cell division.

Figure 2.  Experimental plates with thickness: (a) 5 mm; 
(b) 3 mm; (c) 2 mm.

Thickness (mm) Volume Fraction 
(%) Mass (g)

5.5 35.0 590

5.7 40.0 660

5.5 45.0 631

5.8 50.0 746

3.0 31.5 326

3.0 38.2 370

3.0 42.0 374

3.0 57.6 307

2.0 28.3 219

2.0 37.0 237

2.2 48.2 270

2.8 26.7 285

Table 1.  List of thickness, volume fraction and mass 
of glass-fibre composite plates

Figure 3.  Pre-experimental setup protocol: (a) plate 
alignment lay out; (b) the experimental plate with cell 
division.

A simple supporting structure is intended to support 
the experimental plates in free-free boundary condition. 
According to the literature survey, various research-
ers5,11 used different types of supporting structure for free 
boundary condition such as elastically supporting the 
entire surface, plate suspended using a string and sup-
ported with sponge at the corners of a plate or along the 
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edges. A small modification to the above test setup may 
lead to a totally different result; appropriate actions are to 
be offered to design a more accurate test setup. After con-
sidering the advantages and disadvantages of the various 
experimental setup models, some improvements made 
in designing the framework that is by using sponges sup-
ported by a nail with diameter 2 mm glued to the plate and 
the entire arrangement was placed on a rubber mattress. 
Many researchers used the sponges in the experimental 
setup as it involves in recording the vibration signal. The 
sponges have further minimized the effect of plate bounce 
and supposed the noise saved in the recorded vibration 

sounds. The glued nails helped to reduce the contact area 
between the plate and the supporting structure shown in 
Figure 4. The diameter of the nail sharp point should be 
as minimal as possible.

2.3 � Data Acquisition System
The first input channel of the LMS system is connected 
to the impact hammer. Three accelerometers are then 
connected to the remaining three input channel. The 
impact hammer is used to generate an impulse force 
by striking the hammer at the centre point of the plate. 
This impact then produces vibrations throughout the 

Figure 4.  Glass-fibre plate pivoted by cushioned nails.

Figure 5.  Typical nodal measurement position: (a) I1I2I3; (b) I2I3I4; (c) I1m1o1; (d) I2m2o2.
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plate’s surface. The vibration level at various node points 
are then recorded by placing accelerometers at the node 
points. Initially, the impact affect in the inner square is 
studied by placing the accelerometers at the node points 
I1, I2 and I3. An impulse pulse is produced by striking the 
impact hammer at point C and the vibration signals were 
measures at I1, I2 and I3. Five such trials were formed. A 
similar procedure was followed and the vibration signals 
at the corners of the inner square namely, I1I2I3, I2I3I4, I3I4I1 
and I4I1I2 produced due to the impulse signal at C were 
recorded. Further, the above procedure is also repeated 
for the middle and outer squares and the vibration effect 
at m1m2m3, m2m3m4, m3m4m1, m4m1m2, o1o2o3, o2o3o4, 

o3o4o1 and o4o1o2 were recorded. Similarly, the vibration 
signal due to the impact at C was also measured at I1m1o1, 
I2m2o2, I3m3o3 and I4m4o4 by placing the accelerometer at 
the appropriate node points. Typical model measurement 
positions are shown in Figure 5 and Figure 6.

The impulse force and vibration level at the various 
node points are recorded for 10 seconds at a sampling fre-
quency 1024 Hz. All the recorded signals were saved in 
default DAQ file format ‘.xdf ’, which were then exported 
as Microsoft ‘.wav’ file format for further analysis through 
MATLAB. 

2.4  Data Preprocessing 
The recorded vibration signal contains change in energy 
level information for a period of 10 seconds. Since the 
recording period is fixed (10 second) and the time instant 
of hammer strike is a variable parameter, the time at which 
the peak value occurred in the recorded signal is consid-
ered as the reference point for further analysis. From the 
recorded signal, the time at which the peak value occur 
(tp) is first determined and then the signals recorded from 

(tp-1 sec) to (tp-5 sec) are extracted and used in the further 
feature extraction process. A typical signal extraction in 
the above process is shown in Figure 7. By considering the 
signal from 1 s to 5 s, the final length of the clipped signal 
is 6144 Hz at a sampling frequency of 1024 Hz samples 
per second.  

2.5  Feature Extraction
2.5.1  �Time Domain Statistical Features 

Extraction
All time domain-features do not require complex pre-
processing, for example, it does not require the laborious 
task of filtering, Fourier transformation, framing, win-
dowing and much more complex analysis. Time domain 
only takes a small power to process; however, it directly 
deploys the algorithms only at the constrained nodes12. 
Consequently, in this work the features are extracted 
using time domain approach based statistical features.The 
definition of all the extracted time features is presented in 
this section.

Figure 6.  Typical nodal measurement position on experimental plate: (a) I1I2I3; (b) I1m1o1.

Figure 7.  Typical clipped vibration signal. 
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2.5.1.1 � Mean (μ)
The mean μ is defined as the average value of 
the vibration signal. The mean value of the sig-
nal can be computed by using Equation 1. 

∑
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N
1ì

				    (1)

2.5.1.2  Standard Deviation (σ) 
It is similar to the average deviation, except the averaging 
is done with power instead of amplitude of the signal and 
is computed using Equation 2. 
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2.5.1.3  Variance (σ²) 
The variance is the square root of the standard deviation 
from the signal and can be computed using Equation 3. 
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2.5.1.4  Simple Square Integral (Si) 
Integral square can be defining as the total energy of the 
signal and can be computed using Equation 4.
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2.5.1.5  Root Mean Square (Erms) 
The root mean square is a statistical measure features that 
represent the input power of the vibration signal and is 
calculated using Equation 5.
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2.5.1.6  Kurtosis (k)
Kurtosis (k) is the distribution level of peakedness, define

as a normalized form of the fourth central moment of a 
distribution and can be computed using Equation 6.
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2.5.1.7  Mean Power (μp)
Mean power can be defined as the total energy level 
throughout the vibration signal and can be calculated 
using Equation 7.
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2.5.1.8  Skewness (sw)
Skewness is the distribution level of asymmetry or to be 
more exact, the lack of symmetry. The signal is symmetric 
if it has a stable ratio from left to right of the middle point 
and can be computed using Equation 8.
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2.5.1.9  Average Absolute Value (AA)
Average Absolute value is defined as the mean magnitude 
of the signal and can be calculated using Equation 9.

 ∑
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Where: xi= ith  of the vibration signal
N = total number of elements in the signal
xμ= mean value of the signal
xσ= the standard deviation of the signal.

2.5.2  Frequency Domain Feature Extraction 
All frequency domain features require preprocessing and 
Fast Fourier Transformation (FFT). Therefore, in this 
work, two approaches are proposed for frequency domain 
analysis that is by extracting the frequency information 

μ
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from FFT and by dividing the FFT into numbers of band.  
Both the results are then compared. 

2.5.3  Computing the FFT 
From time domain signal, the frequency information is 
extracted by computing the Discrete Fourier Transform 
(DFT) based Fourier transform algorithm to reduce the 
computation time. The Fourier Transform produces a 
complex number output signal which can be displayed 
with two signals, either with real and imaginary part 
or with magnitude and frequency. In signal processing, 
mostly the magnitude of the Fourier Transform is framed-
up, as it contains most of the information from the time 
domain signal. Figure 8 shows the sample graph of the 
magnitude extracted after performing Fourier Transform.

Further, the statistical based features are then 
extracted from the whole FFT signal. The extracted fre-
quency domain features can be represented as:  

2.5.3.1  Entrophy (S)
Entrophy can be defined as average measure of data con-
tained in the signal and can be calculated using Equation 
10.
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2.5.3.2  Mean Frequency (μf)
The mean is defined as the average value of the Fourier 
Transform signal and can be calculated using Equation 
11.
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2.5.3.3  Mean Power (μpf)
Power can be defined as the total energy level throughout 
the Fourier Transform signal and can be calculated using 
Equation 12.
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2.5.3.4  Standard Deviation (σf)
The σf  is similar with average deviation, except the aver-
age is done with power instead of amplitude of the Fourier 
Transform and is computed using Equation 13.
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2.5.3.5  Variance (σf
2)

The variance is the square root of the standard deviation 
from the Fourier Transform signal and can be computed 
using Equation 14. 
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2.5.3.6  Total Power (tp)
Total power can be define as the total amount of the 
energy stored in the Fourier Transform signal. The total 
power can be calculated using Equation 15.
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Figure 8.  Typical magnitude plot of the FFT.
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2.5.3.7  Median Frequency (Md)
Median frequency is define as a frequency value at which 
the vibration signal power spectrum is divided into two 
regions with an equal integrated power13 and can be cal-
culated using Equation 16.
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2.5.3.8  Peak Frequency (Pf)
Peak Frequency or sometimes known as dominant fre-
quency is the maximum energy in the power spectrum 
and can be compute using Equation 17.
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2.5.3.9  Power Spectrum Ratio (PSR)
PSR is a ratio between the maximum energy in vibration 
signal power spectrum and the whole energy of vibra-
tion signal power spectrum16. It can be calculated using 
Equation 18.
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2.5.3.10  Spectral Moment (SM) 
Spectral Moment (SM1-SM3) known as the content at 
every frequency in the spectrum is weighted by the kth 
power of the frequency and the result is summed up 

across the entire spectrum. It can be calculated using 
Equation 19.

 ∑
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f

f
f
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				    (19)

Where: Nf= the length of frequency.
xμf= mean value of the vibration signal power spec-

trum.
xf =  fth of the vibration signal power spectrum.

2.5.4  Frequency Bands Feature Extraction
After performing the Fourier Transform the frequency 
range is divided into frequency band. The frequency peak 
(fp) is identified and divided into number of bands. The 
frequency band is considered by choosing the lower band 
frequency at 2 Hz before the peak occurred and the upper 
band frequency at 2 Hz after the occurrence of the peak 
value. The selected frequency bands are shown in Figure 
9.

The set of features are extracted from these respective 
frequency bands. The selected ten different bands along 
with their band frequency range are shown in Table 2. 

Further, the statistical based features that have been 
applied in the analysis of individual frequency band of 
vibration signal are peak frequency, median frequency 
and power spectrum ratio. The definition for all these 
variables is presented as in the previous section. 

As a summary for feature extraction method, nine 
time domain statistical features are extracted that form 27 Figure 9.  Typical plot of extracted frequency band from 

FFT.

Band No Frequency Range

Band 1 23Hz-27Hz

Band 2 31Hz-35Hz

Band 3 38Hz-42Hz

Band 4 45Hz-49Hz

Band 5 85Hz-89Hz

Band 6 121Hz-125Hz

Band 7 220Hz-224Hz

Band 8 244Hz-248Hz

Band 9 307Hz-311Hz

Band 10 488Hz-492Hz

Table 2.  Frequency band
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Thickness

Features Extracted

Time Domain Frequency Domain Frequency Band

Before After Before After Before After

2 mm 27 23 36 36 90 64

3 mm 27 26 36 27 90 71

5 mm 27 21 36 36 90 80

Table 3.  Features validation for three vibration channel

Band

Removed Extracted Features for 3 Channel (CH)

Thickness

2 mm 3 mm 5 mm

CH 1 CH 2 CH 3 CH 1 CH 2 CH 3 CH 1 CH 2 CH 3

1 PSR

PSR
Md
Pf

Md
Pf

PSR
Md
Pf

PSR
PSR

PSR -

2 - Md
Pf Md

Pf

- - PSR

3 -

PSR

Md - - -

4 - PSR PSR Md
PSR

Md
PSR - - -

5 PSR PSR - PSR - - PSR -

6 - - - - - - PSR - -

7 - - - - - - -
Md
Pf

-

8 - - - - - - PSR -

9 - - - - - - - - PSR

10 Md
Pf

Md
Pf

Md
Pf - - - - - -

Table 4.  Removed extracted features for frequency band
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final features vectors since the features are extracted from 
three accelerometers. Similarly for frequency domain 
based Fourier Transform signal, 12 extracted features that 
form 36 features vectors and 3 features are extracted from 
10 individual frequency bands then forming 90 features 
vectors respectively. All the extracted features from time 
and frequency domain database are formulated for fur-
ther analysis. 

3.  Feature Validation 
A primary issue in modeling the feature is the feature val-
idation process, which concerns the meaning of a feature, 
given by its information content. The extracted features 
are then validated using Analysis of Variance (ANOVA) 
by taking the mean value for each feature. The result for 
the number of features before validation and after valida-
tion is as shown in Table 3.

As can be seen in Table 3, the number of features 
reduced after performing the data validation. The results 
shown in Table 4 summarised the removed frequency 
band features as each band validating different features. 
The extracted features that were removed from the three 
channels for time and frequency domain are tabulated in 
Table 5. 

The validation conducted helps the system to better 
understand the classification process. The information 
from training and testing database were defined based on 
the validated extracted features.

Volume fractions were then associated with the vali-
dated extracted features. Thus a database consists of 

Thickness Domain
Removed Features for 3 Channels

CH 1 CH 2 CH 3

2 mm
Time - μ, sw μ, sw

Frequency - - -

3 mm
Time μ - -

Frequency μpf, tp, Md

5 mm
Time μ, μpf μ, Si, μpf μ

Frequency - - -

Table 5.  Removed extracted features for time and frequency domain

extracted features from time and frequency domain asso-
ciated to the volume fractions has been formulated.

4.  �Artificial Neutral Network

4.1  Artificial Neural Network (ANN)
An Artificial Neural Network is a data transforming 
framework that has been created to mimic the numeri-
cal model for human cognition. ANN is a modelling tool 
based on nonlinear statistical data that model the com-
plicated network within input and output in order to 
find a pattern. Network contains three layers specifically; 
hidden, input and output layer. Basically, neural net-
works are constructed in layers that made up in various 
interconnected ‘nodes’ that have ‘activation function’ in 
it. The ‘input layer’ represent the pattern to the network 
that impart with one or more ‘hidden layers’. This is where 
the real processing is taking part through weighted ‘con-
nections’ system. The output layer will link with hidden 
layer to determine the output of the network which is the 
answer.

There are several types of ANN; feed-forward neural 
network, kohonen self-organizing network, Radial Basis 
Function (RBF), physical neural network and etc. Based 
on the extracted feature vectors, feed-forward neural sys-
tem is developed, modeled and trained. The feed-forward 
neural network is the first and the simplest type of ANN 
devised. The neural network training parameters are sets 
by default in MATLAB software but hidden neuron and 
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Trial

Output Neuron: 4 Total samples: 320

Time Domain Frequency Domain Frequency Band

IN: 23 HN: 12 IN: 36 HN:18 IN:64 HN:35 

1 83.4 97.5 97.5

2 85.0 93.4 95.3

3 87.8 96.6 98.4

4 85.9 95.9 97.2

5 79.1 97.5 96.6

6 90.9 95.9 97.2

7 90.0 96.3 96.6

8 85.9 96.3 97.2

9 82.5 95.3 94.7

10 81.9 98.4 97.2

Mean 85.24 96.31 96.79

*IN=Input Neuron; HN=Hidden Neuron

Table 6.  Classification accuracy for thickness 2 mm

Trial

Output Neuron: 4 Total samples: 320

Time Domain Frequency Domain Frequency Band

IN: 26 HN: 13 IN: 27 HN:14 IN:71 HN:36 

1 81.3 86.6 97.8

2 81.9 89.4 97.8

3 72.9 86.6 99.1

4 74.4 85.3 99.1

5 85.0 87.8 97.8

6 79.7 88.8 98.4

7 88.8 95.9 96.3

8 87.5 83.8 98.1

9 82.5 90.3 98.8

10 75.0 88.1 97.2

Mean 80.90 88.26 98.04

*IN=Input Neuron; HN=Hidden Neuron

Table 7.  Classification accuracy for thickness 3 mm
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Trial

Output Neuron: 4 Total samples: 320

Time Domain Frequency Domain Frequency Band

IN: 21 HN: 11 IN: 36 HN:18 IN:80 HN:40 

1 91.9 76.9 97.8

2 93.8 80.3 96.6

3 93.1 81.6 97.5

4 89.1 80.9 95.3

5 90.3 84.7 95.3

6 78.4 80.9 97.8

7 93.1 80.9 95.0

8 79.4 80.3 97.5

9 77.5 81.9 95.9

10 83.4 82.8 94.4

Mean 87.0 81.12 96.31

*IN=Input Neuron; HN=Hidden Neuron

Table 8.  Classification accuracy for thickness 5 mm

output neurons are optimally chosen based on the fea-
tures while training the network. 

The dataset is randomly divided into two datasets 
namely, training set and testing set. The training set used 
to train the system; in the meantime the testing set is to 
validate the network model. The training set used in this 
work is 70 percent from the samples.

4.2 � Feed Forward Neural Networks
A simple feed-forward neural network is modeled and 
trained using Levenberg Marquardt algorithm. The mod-
elled network consists of an input layer with number of 
input neurons being equal to the number of input fea-
tures in the dataset. The ‘trainlm’ function available in 
MATLAB neural network was used to model the neu-
ral network. The neural networks were trained using 70 
percent (224 samples) of the database and tested with 
remaining 30 percent testing data samples. 

5. � Results 
All the trained neural network models were validated 
with the testing samples. The details about the network 
architecture member namely the number of input neuron, 
hidden neuron and output neurons along with classifica-
tion performance of the network models are shown in 
Tables 6, 7 and 8.  

From Tables 6, 7 and 8, it can be observed that the 
network model developed using the frequency band 
based statistical features has yielded the highest classifica-
tion performance for all the thickness as compared to the 
time and frequency domain based network models. The 
network model developed using frequency band based 
statistical features has the highest classification for all 
the thickness while the network model developed using 
frequency domain features has the lowest classification 
accuracy of 81.12% for 5 mm thickness respectively. 
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6.  Conclusion 
This paper presents the experimental procedure to record 
and analyse the vibration signal propagated through com-
posite plate. Statistical based time and frequency domain 
features were extracted. The features were then validated 
through ANOVA. The validated extracted features were 
then associated to the glass fibre’s volume fraction to form 
final features matrix. A simple feed-forward neural net-
work were developed and trained to classify the volume 
fractions. The training results show that frequency band 
features can be used to classify the volume fraction of 
composite materials with good agreement.
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