
Abstract
Objective: The objective of the work is the implementation of trusted system in network security. The problem has been
identified as minimizing the time and space complexity while adding the vertices and edges in the implementation of
zero knowledge protocol using Graph Isomorphism, the identification of the classes of the graph and the distribution of
the isomorphic graphs as the private keys in public key cryptosystems for authentication. Methods: Guillou-Quisquarter
algorithm is used as basic zero knowledge protocol. An adjacency matrix is generated by reordering the vertices and
communicated for authentication. Constructed the isomorphic graph using the nauty algorithm and classify this to each
set of users. Nauty algorithm is used to check for the isomorphism of graphs which uses the canonical method using
partitions and search tree. Implemented the partition algorithm and generated the search tree. Three graphs are generated
as sample data. We have used the toy example of Bank Loan to implement the new method. Findings: The improvised
algorithm minimizes the time and space complexity. We have increased the vertices and proved that the time complex-
ity won’t increase with the increase in the number of vertices. We have identified the classes of graph for each set of
users for authentication. This graph is given as the key in public key cryptosystems for the implementation of trusted
system. Isomorphic graph is generated as the key for each set of users to implement the multilevel security. Thus the
authentication and the multilevel security aspects have been handled by the use of class of isomorphic graphs and Guillou
Quisquarter protocol. Application: We have identified the area of application in the implementation of I/O automata, finite
state machines and timed machines for authenticating against the set of resources.

Web Service Authentication and Multilevel Security
M. Thiyagarajan1*, Chaitanya Raveendra2 and V. Thiagarasu3

1Nehru Group of Institution, Nehru Gardens, Thirumalayampalayam, Coimbatore - 641 105, Tamil Nadu, India;
m_thiyagarajan@yahoo.com

2Department of Computer Science, Karpagam University, Nehru Group of Institutions, 451-D, Kuniamuthur,
Coimabtore - 641 008, Tamil Nadu, India; chaitanya2575@gmail.com

3Computer Science, Gobi Arts and Science College, Gobichettipalayam - 638 453, Tamil Nadu, India;
chaitanya2575@gmail.com

Keywords: Bank Loan, Graph Isomorphism, Nauty Algorithm, Partition Algorithm, Zero-Knowledge Protocol

1.  Introduction

William Stallings1 in Cryptography and Network Security
states that Security is a concern of organizations with
assets that are controlled by computer systems. By access-
ing or altering data, an attacker can steal tangible assets or
lead organization to take actions it would not otherwise
take. By merely examining data, an attacker can gain a
competitive a competitive advantage, without the owner
of the data being any the wiser. System Security can be
implemented in three different aspects based on different
type of threats and its implementation strategies. Intruders
attacking the system have been protected using intruder

detection system and password management system.
Software threats from different software like virus, worms
can be handled with the help of Antivirus programs. The
third and final level of security can be handled using fire-
wall and trusted system. Firewall acts as a barrier and will
accept the traffic if it has the authorized data. Trusted
system implements the authentication of the file a user
handles. It is mainly handled using access control using
access matrix or an access control list.

A significant security problem for networked system
is the trespass or unwanted access by users and software.
Users trespass can be termed for unauthorized log on
to the machine, or the unauthorized privilege access of

*Author for correspondence

Indian Journal of Science and Technology, Vol 8(15), IPL049, July 2015
ISSN (Print) : 0974-6846

ISSN (Online) : 0974-5645

Web Service Authentication and Multilevel Security

Indian Journal of Science and Technology2 Vol 8 (15) | July 2015 | www.indjst.org

an authorized user. All these attacks relate to network
security as the communication is possible through net-
work. Many types of intruders can be handled using
Audit records, Statistical Anomaly detection, Rule
based Intrusion detection, Base Rate fallacy, Distributed
Intrusion detection, honeypots and password protec-
tion. Firewall can be implemented using packet-filtering
router, Stateful Inspection Firewalls, circuit level gateway
and bastion host.

The most efficient way to handle the intruders and the
malicious software is the implementation of the trusted
system technology. Trusted system deals with the pro-
tection of data or resources based on the basis of the
permission of the user. This when implemented in the
network can be called as trusted network security. Thus
when applied in the web, we are having a set of users and
the set of data that can be accessed by the users. In our
paper, we implemented a trusted system which has a set
of users having access to a particular set of resources.
We have used zero knowledge using an extended graph
isomorphism algorithm to implement the security.

Eric ayah2 described on the common problems faced
by the traditional system as impersonation. Impersonation
can be stated as the act of imitating ones actions, like
listening to ones communication, collects information
so that he can use the information gained to access the
system. There are several solutions available to cover this
problem. Secret key cryptosystems involves the use of
secret key for the exchange of data. Another approach is
the public key cryptosystems where the data is send using
the public key and he must generate the output using the
private key. But, both the protocols described above suffer
MITM (Man in the Middle Attack).

An alternative to the MITM attack and the traditional
password management is the use of zero knowledge pro-
tocols. ZKP is an interactive protocol where a prover can
prove his worth using some mathematical methods such
as quadratic residues, graph-3 Color ability, prime fac-
toring, Hamiltonian Cycles for large graphs, and graph
Isomorphism. In the paper titled Trusted System, we
have implemented the zero Knowledge along with Graph
Isomorphism3.

2.  Basic Concepts and Results
This section covers the definitions which are used in
the current paper. Here in this paper we implemented
the trusted system for the authentication process using

network protocol. Whole transaction or communication
has been carried by the continuous exchange of data.
The data transferred is highly sensitive like credit
card password, bank account details etc. which when
reached an unauthorized person is a greatest flaw in the
communication. Loss once incurred cannot be roll back.

2.1  Definitions
2.1.1  Multilevel Security
The multilevel security is defined as a subject at high level
may not convey information to a subject to a lower or a
non comparable level unless that flow accurately reflects
the will of an authorized user. A multilevel secure system
must enforce simple security property and star property.
These two rules, if properly enforced, provide multilevel
security. It implies that security is provided to multiple
categories or multiple levels of data.

2.1.2  Access Matrix
A general model of access control as exercised by a file or
database management system is that of an access matrix.
The basic elements of the model are subject, object and
access right. One axis of the matrix consists of user or any
application or any processes. The other axis represents the
file, portion of a file, programs or a data.

2.1.3  Graph Isomorphism
Two graphs which contain the same number of graph
vertices connected in the same way are said to be isomor-
phic. Formally, two graphs G and H with graph vertices
Vn = {1, 2, …, n} are said to be isomorphic if there is a
permutation P of Vn such that {u, v} is in the set of graph
edges E(G) iff {p(u), p(v)} is in the set of graph edges E(H).
Canonical labeling is a practically effective technique used
for determining graph isomorphism4.

A graph G is a set of nodes or vertices V, connected by
a set of edges E. The sets of vertices and edges are finites.
A graph with n vertices will have: V = {1, 2, 3,..., n} and E
a 2-element subsets of V. Let u and v be two vertices of a

Figure 1.  Isomorphic Graphs.

M. Thiyagarajan, Chaitanya Raveendra and V. Thiagarasu

Indian Journal of Science and Technology 3Vol 8 (15) | July 2015 | www.indjst.org

graph. If (u,v) ε E, then u and v are said to be adjacent or
neighbors. A graph is represented by its adjacency matrix.
For instance, a graph with n vertices, is represented by
a n×n matrix, where the entry is “1” if there is an edge
linking the vertex i to the vertex j, and is “0” otherwise.
For undirected graphs, the adjacency matrix is symmetric
around the diagonal. Example is shown below14.

2.1.4  Zero Knowledge
ZKP is an interactive protocol where a prover can prove
the veracity of a statement to a verifier without disclosing
any other information, which could allow an eavesdrop-
per or the verifier to impersonate him. During a ZKP
interaction, the prover will try for example to convince
the verifier that he/she knows the secret password to open
a door without actually giving the password to the verifier.
The verifier throughout the interactions will ask questions
in the aim of verifying that the prover really knows the
secret password. If the answer to a question is wrong, the
communication is immediately terminated, or the access
to the network is denied.

2.1.5  Miyazaki Constructions
In his paper “The complexity of McKay’s canonical
labeling algorithm,” Miyazaki constructed regular graphs
based on the Cai-Furer-Innerman construction, which he
proved to be very complex for nauty, therefore for canoni-
cal labeling algorithms in general. Miyazaki constructed
a family of colored graphs which force nauty to run in
exponential time. Miyazaki’s construction demonstrates
that the coloring significantly affects the behavior of the
algorithm, and can turn out to be the difference between
polynomial and exponential runtime. Figure 2 shows an
example of miyazaki constructions15.

2.2  Proposition
2.2.1  Nauty Algorithm
The most widely used of canonical labeling programs
is nauty by Brendan McKay. Canonical labeling is a

practically effective technique used for determining
graph isomorphism. Most canonical labeling programs
such as nauty (no auto morphisms yes), use a backtrack-
ing algorithm that goes through the search tree in the aim
of finding a canonical label, while building the auto mor-
phism group of the graph. There are three main strands to
the nauty algorithm:

Using, iteratively, degree information; 1)	
Building a search tree examining choices not 2)	
determined by degree information; and
Using graph auto morphisms, as they are found, to 3)	
prune the search tree.

Nauty algorithm has been regarded as the fastest
isomorphism testing algorithm. Other algorithms that
offering a better performance are bliss of TommiJuntilla
and PetteriKashi, saucy of Martin Kutz and Pascal
Schweitzer, sinauto and conautoof Jose Luis LopezPresa,
Traces of AldofoPiperno. The main reason behind
the impressive performance that nauty has been
offering are:

The reduction of the graph isomorphism problem to 1)	
the problem of finding a canonical label for each of the
graph being compared,
The use of auto morphisms found while searching for 2)	
a certificate to prune the search tree, and
The use of invariants.3)	

In order to find the canonical label of a graph, nauty starts
with the initial partition based on the degrees of the ver-
tices and generates a search tree. The initial partition or
root of the search tree is considered to be at level 0. Since
the canonical label is generated from the smallest of the
auto morphs, nauty performs comparison on all possible
leaf partitions of the search tree. Algorithm determines
the target cell which is most likely to contain the greatest
number of vertices. Once such cell is selected, nauty pro-
cess to individualization of each vertex of the cell in order
to refine the partition. This is done until a leaf partition is
reached. When a leaf partition is reached, its correspond-
ing canonical label is computed and stored as a potential
canonical label for the graph. The nauty program then
backtracks to the parent of such partition at an upper
level in the tree.

From this ancestor, another leaf partition is generated.
The canonical label associated with the new leaf partition Figure 2.  Miyazaki Graphs.

Web Service Authentication and Multilevel Security

Indian Journal of Science and Technology4 Vol 8 (15) | July 2015 | www.indjst.org

is computed and compared with the previous one. If the
value is the same, an auto morphism is discovered and
saved. On the other hand, if this new value is greater than
the previous, it is automatically discarded. If conversely
the new value is better, it will substitute the old label
as the new potential certificate. Subsequently, the auto
morphism found is used to prune the search tree. The
process is repeated until a canonical label is obtained for
the graph.

2.2.2  Partition Algorithm
A partition Π=V1, Vm, divides the vertices of a graph into
non-empty subsets of V which are called cells. In order to
process to the refinement, algorithm starts with an initial
partition, where the vertices in each cell have the same
degree. It then selects the first cell with more than one
element namely the target cell, and computes a sequence
av based on the adjacencies of the vertices in the target cell
with the nodes in all the cells of the initial partition. Then,
it uses the calculated sequence to split the target cell into a
number of subsets, so that the vertices in each subset have
the same value for av. The following describes the parti-
tion for the algorithm.

Function partitionAlg()
{
String π[] = {V1,.. … , Vm};

For each(Vi in π[])
{

If (Vi has more than one vertices)
{

av = (d(v, V1), …, d(v, Vm));
}

If (getSubset(Vi) == av)
{

Return value
} }}

2.2.3  Search Tree
McKay’s algorithm starts by forming the equitable
refinement of the unit partition, thereby extracting all
of the initial degree information. Having reached an
equitable partition, we need to introduce artificial dis-
tinctions between vertices. However, we must be careful
to examine all relevant choices. We systematically
explore the space of equitable ordered partitions using
a search tree. The next definition describes the way we
make these artificial distinctions, forming children in

the search tree. Let π be an equitable ordered partition of
[n] with a nontrivial part Vi, and let u ∈ Vi. The splitting
of π by u, denoted by π ⊥ u, is the equitable re-finement
R (π') of the ordered partition π' = (V1, V2, . . . , {u},
Vi \ {u}, Vi+1, . . . , Vr). (Note that π ⊥ u is strictly finer
than π.). Example of a search tree generation is shown if
Figure 316.

3. � Authentication Models based
on Zero Knowledge

The following sections describe the implementation of the
authentication with the using of  Zero Knowledge Pro
tocol, the isomorphism and the Nauty Algorithm. The first
section deals with the first part of Zero Knowledge Pro
tocol. The second section deals with the Implementation
of Graph Isomorphism based on relabeling of vertices.
The final section deals with the graph isomorphism using
Canonical labeling algorithm.

3.1  Guillou-Quisquarter Algorithm
One of the most important, and at the same time very
counter intuitive, primitives for cryptographic protocols
are called zero knowledge proof protocols7–13. Informally,
a zero knowledge proof protocol allows one party, usually
called prover, to convince another party, called verifier,
that prover knows some fact (a secret) without reveal-
ing to the verifier any information about the college. We
have used Guillou-Quisquarter algorithm to implement

Figure 3.  Search Tree Generation.

M. Thiyagarajan, Chaitanya Raveendra and V. Thiagarasu

Indian Journal of Science and Technology 5Vol 8 (15) | July 2015 | www.indjst.org

the zero knowledge protocols. Following describes the
working of the Guillou Quisquarter algorithm.

1.	 Generate a random number r.
2.	 Prover sends X=rv mod n.
3.	 Verifier sends e from 1 to n-1.
4.	 Prover reply with Y=rsa

e mod n
5.	 Verifier then computes,
6.	 JA=f (IA).
7.	 Z=JA

e*YV mod n.
8.	 If Z=X Access Granted
9.	 If Z=0 Access Denied

The authentication process discussed demands the
computation of large primes and their powers. Thus, a
small addition to the zero knowledge interactive protocol
which minimizes the delay in computational process has
been identified. The number theoretical competition can
be minimized through graph isomorphism algorithm and
zero knowledge proofs.

3.2 � Graph Isomorphism based on
Relabeling of Vertices

Two graphs G1 and G2 are said to be isomorphic, if a
one-to-one permutation or mapping exists between the
set of vertices of G1 and the set of vertices of G2, with
the property that if two nodes of G1 are adjacent, so
are their images in G2. The graph isomorphism prob-
lem is therefore the problem of determining whether
two given graphs are isomorphic. Suppose there are
two graphs G1 and G2, such that the graph G2 is gen-
erated by relabeling the vertices of G1 according to a
secret permutation π while preserving the edges. The
pair of graphs G1 and G2 forms the public key pair,
and the permutation π serves as the private key. A third
graph H, which is either obtained from G1 or G2 using
another random permutation, say ρ is sent to the veri-
fier who will in return challenge the prover to provide
the permutation σ which can map H back to either
G1 or G2.

Given G1 and G2 such that G2 = π (G1), the interactions
constituting a round of the graph isomorphism based
ZKP protocol is illustrated as follows:

1.	 Prover chooses randomly selects a ɛ {0, 1}
2.	 Prover chooses a random permutation ρ, and generates

ρ(Ga)

3.	 Prover sends the adjacency matrix of H to the
verifier.

4.	 Verifier sends b ɛ {0, 1} to the prover and challenges
for σ which maps H to Gb.

5.	 If a = b the prover σ = ρ –1 sends to the verifier.
6.	 If a = 0 and b = 1 the prover sends σ = ρ –1 ο π to the

verifier.
7.	 If a =1 and b = 0 the prover sends σ = ρ –1 ο π–1 to the

verifier.
8.	 Verifier checks if σ (H) = Gb and grants access to the

prover accordingly

3.3 � Graph Labeling based on Nauty
Algorithm

In the first approach we develop an adjacency matrix
to represent the graph and compare to check for the
consistency. And that algorithm generates and trans-
ports an adjacency matrix to and fro for the interaction.
As zero knowledge protocol is an interactive protocol,
both the client and the server are communicating using
the adjacency matrix which consumes the space and
time of the system. Thus we reach a new conclusion
to just send a permuted graph and check whether a
user is able to generate the original graph. If he is able
to produce, then granted .otherwise it will check for
another set of iterations. Thus the modified program
for zero knowledge with graph isomorphism can be
re-written as

1.	 Generate 3 public graphs G1, G2 and G3.
2.	 Π determines the permutations of the graphs.
3.	 When an access request came, server will generate a

permuted value of Graph G2 or G3; if client is able to
generate the Graph he is given access.

4.	 Each iterations check for true or false.

Thus this new algorithm minimizes the time complexity.
The structure of the graphs plays an important role in
strengthening the algorithm. During an interaction of
the zero-knowledge protocol or permutations is sent to
the verifier by the prover. In the case an eavesdropper is
listening to the conversation and is able to intercept, it
would be easy for him to impersonate the prover if and
only if, the graph used is not hard for the isomorphism
problem .A simple invariant that all practical graph iso-
morphism algorithms use when solving the isomorphism,

Web Service Authentication and Multilevel Security

Indian Journal of Science and Technology6 Vol 8 (15) | July 2015 | www.indjst.org

or automorphism problem, is the degree of the vertices
constituting the graphs.

There are so many graphs which are used along with
the canonical algorithm. The graphs are Projective Planes
(PP), Cai-Furer-Immerman construction, Constraint sat-
isfaction problems, Hadamard matrices (Had) , Miyazaki’s
constructions (Mz), Affine and projective geometries,
Random regular graphs (Rnd) , Strongly regular graphs
and Grid graphs. Also, unions of graphs with similar
structures are known to be very complex for the nauty
program. Miyazaki constructed regular graphs based on
the Cai-Furer-Innerman construction, which he proved
to be very complex for nauty, therefore for canonical
labeling algorithms in general. Miyazaki graphs works
best for nauty.

4. � Illustration with an Example:
Bank Loan

Here, in this paper we have implemented the trusted
security in the web service. Trusted system ensures the
security for the users against the set of resources. In this
web scenario, we have a set of customers and resources,
so here we have allocated the resources to n number of
resources using token algorithm. Now we have to imple-
ment the trusted property using the zero knowledge
with the graph isomorphism. We have created two web
services; categorization and authentication. When a user
enters he will grouped in to a particular level which takes
care of the multilevel security. We have categorized the
user based on his criteria, if he is able to generate a graph
and got the access and based on the category the loan will
be sanctioned. If a user belongs to category1 can retrieve
the amount of Rs. 1000/- to the account, but not more
than that. But a user belonging to category2 can retrieve
up to Rs. 5000/-

4.1  Sample Data
We have used three graphs g1, g2 and g3 as public keys.
User is given the secret key to access the money. When
a user log on to the system, he will get the category. The
server will send a permutated graph to the customer, if
the customer is able to construct a graph g2 in all itera-
tions, he will be given access. In the sample program we
have used 6 vertices to implement the graph. Secret keys
are permutations. The secret key of g1 is “152436” and the
secret key of g2 is “135426”

4.2  Screenshots

Figure 4.  Screenshot of Inputs.

Figure 5.  Screenshot of Output.

4.3  Result and Discussions
This system is constructed for two services, one for user
categorization and other for authentication. The system
contains a set of users with a set of resources. For sample
illustration we consider an example of bank loan. Here,
one user category can be able to withdraw $1000 and other
category will be able to withdraw $2500.When a user log
on to the system, he is categorized. We constructed a two
isomeric graph g2 and g3. If logged user can be able to
generate isomeric graph, then according to his category
transaction will occur. The current scenario uses six ver-
tices graph and we executed the system by increasing
number of vertices of a graph at 1000. We can prove that
the execution time can be reduced to nana second at con-
trolled lab conditions. Server generates a random graph

indupriya.s
Sticky Note
Au: please cite the figure 4 intext of the article

indupriya.s
Sticky Note
Au: please cite the figure 5 intext of the article

M. Thiyagarajan, Chaitanya Raveendra and V. Thiagarasu

Indian Journal of Science and Technology 7Vol 8 (15) | July 2015 | www.indjst.org

152436, after the executions, it generate back the original
graph g2, he is given access. If he is not able to gener-
ate, then no transaction is allowed. We can generalize the
problem to m customers to n rights or the combination
of n rights. We can increase the number of vertices, as
the increase of vertex after 400 will make the intruders
difficult to break the data, thus the access will be finished
within the time limit. Graph isomeric using Nauty algo-
rithm is best chance to implement. We can generalize the
services for “m” customers for “n” resources. The follow-
ing table describes the time complexities when number of
vertices is increased.

5.  Conclusion
To enhance the ability of the system to defend against
intruders and malicious programs, the best way is to
implement the trusted system technology. This in turn give
rise to different access rights which is being exercised by
users in series and parallel. We addressed a problem and
eliminated the thread anticipated by the server and cli-
ents in transmitting data over web for service we find our
attempts to better results than other protocols employed
and quick implementation to overcome the issues. Thus
created a sample program to illustrate the working and
implemented the same.

In the future, we can increase the number of vertices used
in the algorithm and also making it strong and tough using
the hard graphs. The categorizations and resources can be
generalized to accommodate any problem, thus as a gener-
alized service to any request. We have to give specifications
for all the set of customers and resources thus enforcing the
network security in a distributed environment.

6.  References
1.	 Stallings W. Cryptography and Network Security. 4th

Edition. USA: Pearson Education; 2002.
2.	 Ayeh Eric. An investigation into graph isomorphism based

zero-knowledge proofs (MS Thesis). University of North

Texas; 2009 Dec. Available from: http://nsl.cse.unt.edu/
dantu/cae/attachments/Eric_Ayeh_MS_thesis.pdf

  3.	 Wang H, Sun Z, Nanjing C. Research on zero- knowledge
proof protocol. IJCSI; 2013 Jan; 10(1):194–200.

  4.	 Karpagaselvi S. Soft computing Techniques for web search
Engines [Unpublished PhD Thesis]. Chennai: Anna
University of Technology; 2012 Jun.

  5.	 Bayer S, Jens G. Efficient zero-knowledge argument for
correctness of a shuffle. EUROCRYPT; 2012. p. 263–80.

  6.	 Chaitanya R, Thiyagarajan M. Trusted System. International
Journal of Computing Algorithm. 2015 Mar; 04:1303–06.
ISSN: 2278-2397.

  7.	 Garg S, Jain A, Sahai A. Leakage-resilient zero knowledge.
CRYPTO; 2011. p. 297–15.

  8.	 Gupta A, Stahl D O, Whinstone A B. Managing computing
resources in intranets: an electronic commerce perspective.
Decision Support System; 1998; 24:55–69.

  9.	 Goldreich O, Micali S, Wigderson A. Proofs that
yield nothing but their validity and a methodology of
cryptographic protocol design, J FOCS; 1986. p. 174–87.

10.	 Grzonkowski S, McDaniel Z. Extending web application
with a lightweight zero knowledge proof authentication.
Proceedings of the 5th international conference on Soft
computing as trans disciplinary science and technology
(CSTST ‘08); ACM; 2008 Oct. p. 65–70.

11.	 Lin H, Pass R, Tseng W-LD. Muthuramkrishnan
Venkitasubramaniam: Concurrent Nonmalleable Zero
knowledge proofs. 30th Annual International cryptology
conference, CRYPTO; 2010. p. 429–46.

12.	 Udgata SK, Mubeen A, Sabat SL. Wireless sensor network
security model using Zero Knowledge Protocol. Proceedings
of IEEE Communication (ICC); 2011. p. 1–5.

13.	 Lin W-L. Concurrent Non-malleable Zero knowledge
proofs. 30th Annual International cryptology conference,
CRYPTO; 2010. p. 429–46.

14.	 Eric A. An Investigation into Graph Isomorphism Based
Zero-Knowledge Proofs [MS Thesis]. University Of
North Texas; 2009 Dec. Available from: http://nsl.cse.
unt.edu/dantu/cae/attachments/Eric_Ayeh_MS_thesis.
pdf, Figure.1, Example of isomorphic graphs with their
corresponding adjacency matrices; p. 10.

15.	 Eric A. An Investigation into Graph Isomorphism Based
Zero-Knowledge Proofs [MS Thesis]. University of North
Texas; 2009 Dec. Available from: http://nsl.cse.unt.edu/
dantu/cae/attachments/Eric_Ayeh_MS_thesis.pdf, Figure
2, Example of Miyazaki’s graph; p. 32.

16.	 Eric A. An Investigation into Graph Isomorphism Based
Zero-Knowledge Proofs [MS Thesis]. University of North
Texas; 2009 Dec. Available from: http://nsl.cse.unt.edu/
dantu/cae/attachments/Eric_Ayeh_MS_thesis.pdf, Figure
3, Example of search tree; p. 23.

Table 1.  Time Complexity
No of vertices Time Complexity

5 0.013199 sec
6 0.013171sec
7 0.015724 sec
9 0.017612 sec

