
AADYA: National Journal of Management & Technology, Vol.7, March 2017, ISSN 2319-264X

207

SOA APPROACHES ANALYSIS AND INTEGRATION WITH WCF
SERVICES

Komal Shringare1

Abstract—The technologies to implement SOA will certainly go forward to address emerging

needs, but its concepts will remain the same. To address those needs and concerns that SOA is

potentially being stretched beyond its limits, a significant and coordinated research program is

needed. IT Organizations across many industries have adopted or in the process of adopting

towards a service-oriented IT architecture (SOA) with WCF Services. WCF Services is a

platform for building, configuring and deploying network-distributed services. WCF service is

one the most demanding service oriented technology; it has basic fundamental characteristics

which is interoperability to support cross platform. WCF provides a common platform for all

.NET communication.

This report outlines the various implementation approaches of SOA and performance analysis of

respective approaches like Contract First WCF Services with XML Sterilization and Data

Contract Sterilization and RESTful WCF Service.

Keywords— SOA,Contract-First WCF Service, XML Serialization, Data Contract Serialization,
RESTful WCF Service, Performance Analysis, GUI

I. INTRODUCTION

The Service-Oriented Architecture (SOA) designing and implementation based on a net of

software services. Services encompass associated, loosely coupled units of functionality that

have no calls to each other embedded in them.

This report presents an overview of the current approaches of the SOA Implementations,

performance analysis and focuses specifically on integration of SOA with emerging GUI to

make it more portable and device independent as per current market sentiments.

A. WHAT IS ARCHITECTURE?

Software architecture is a description of a software system in terms of its major components,

their relationships, and the information that passes among them. A fundamental purpose of

software architecture is to help manage the complexity of software systems and the

1 Asst.Professor, YMT College of Management, Kharghar, Email: komal.loke@gmail.com, Mob: 9969406446

mailto:komal.loke@gmail.com,

AADYA: National Journal of Management & Technology, Vol.7, March 2017, ISSN 2319-264X

208

modifications that systems inevitably undergo in response to external changes in the business,

organizational and technical environments.

B. WHAT IS SOA?

SOA is concerned with the independent construction of business-aligned services that can be

combined into meaningful, higher-level business processes and solutions within the context of

the enterprise. Anybody can create a service; that is not the challenge of SOA. The real value of

SOA comes when reusable services are combined to create agile, flexible, business processes.

Unfortunately, that does not just happen by itself. Achieving it might be easier to manage if a

single organization is creating all of the services, but that is not the case at most large

organizations. So, part of the architecture of SOA is responsible for creating the environment

necessary to create and use compassable services across the enterprise.

The important parts of SOA are:

 Services - Modular units of business functionality

 Integration - Connection to and exposure of existing applications and/or data as services

 Existing systems - Existing legacy systems, commercial off-the-shelf (COTS)

applications, and data that the enterprise wants to leverage

 Semantics - The underlying meaning of information that is exchanged in processes

 Transformation - The conversion of information from one format or semantic to another

 Communications - The ability of services to communicate with each other

II. LITERATURE REVIEW

For the purpose of this research, adopted the definition for WCF services put forth by the

World Wide Web Consortium (W3C), which states that WCF services are software component

to support cross platform so that interaction can easily carried out over the network with defined

interface. The message exchange must be in specific format like in the form of Web Services

Description Language (WSDL). WCF Service mainly interacts with other systems using SOAP

messages as prescribed/defined in WSDL. Typically the message exchange happen using HTTP

or HTTPS protocols in XML from in conjunction with serialization as per standards. A service

registry based on the Universal Description Discovery & Integration (UDDI) standard can be

employed to publish and discover Web services. Web services enable the SOA concept to be

applied in a Web based environment.

AADYA: National Journal of Management & Technology, Vol.7, March 2017, ISSN 2319-264X

209

METHODOLOGY

The project work employs a multiple case research strategy to explore how organizations are

approaching the use of a service-oriented architecture across multiple platforms and integrating

it with web application so that it can be use by multiple devices as per current technology

trends. This approach was chosen because the SOA is a contemporary event that can be

observed in a real-life context and for which substantial scientific theory has not yet been

established. The project work is to addresses the factors that influence the integration of an

SOA as well as how and why these factors play a role.

III.PROBLEM STATEMENT

Generally, the SOA service comprises applications that serve client (or consumer)

applications. This means that service demands might not always be met within the required

time constraints, if the capacity management is reactive instead of proactive; thus, there is a

danger that the infrastructure will act as a bottleneck.

Conversely, infrastructure resources can remain idle should the service demand be below

that which is provisioned by capacity planning. This represents a waste of money on unused

infrastructure. Furthermore, capacity planning and modeling, when performed properly, can

itself be a very costly and time-consuming exercise and would need to be performed regularly

in order to track changing SOA-service workloads over time. Therefore, a more efficient and

cost-effective solution is needed for designing and implementing SOA services.

A. STATEMENTS OF PROBLEM

 Integrating homogeneous components routine, relatively smooth

 Performance gain

B. OBJECTIVE

The objective is to create WCF service in Contract First approach (DataContarct Serializer

and XML Serializer) and in Restful framework based on Service Oriented Architecture (SOA).

C. SCOPE

There are various ways where SOA can be implemented in both technologies and

methodologies. However, we are limiting this edition to .Net and Contract First Approach and

Restful.

AADYA: National Journal of Management & Technology, Vol.7, March 2017, ISSN 2319-264X

210

 IV. PROPOSED SOLUTION

For performance analysis, different type of approaches has been chosen to design WCF

service. It includes Code First Approach, Contract First Approach and Restful Service. For

performance check Data Contract Serialization and XML contract Serialization has been chosen.

With Data Contract Serialization there is significance performance gain. To verify this it is

really required to do performance comparison analysis. As a part of research work WCF

Services has to be created to perform the performance analysis in XMLSerilizer and

DataContarctSerilizer. Then and there needs to do performance comparison analysis to verify

performance gain.

V. CONTRACT FIRST WCF SERVICE

This is especially true when it comes to designing Services using SOA. Careful attention

should be paid toward the formal interface used for communication. This interface dictates the

usability and interoperability of your system. Consequently, designing this interface, which is

also known as the contract, during early phases of the lifecycle is significant. We are now going

to design and develop contracts first for Windows Communication Foundation (WCF)-based

services. With WS contracts, two major methodologies one is Code First development and other

is Contract First development. The focus is mainly on the latter.

A. CONTRACT-FIRST DEVELOPMENT

A contract of a function defines the expectations and commitments of that function. Users of

the function only need to know about the contract to use it.Typically,services interact with their

clients by exchanging SOAP messages. Modeling these message contracts is the second step of

contract-first development. That depends on which SOAP messaging format we prefer to

use:RPC/Encoded,RPC/Literal,Document/Literal,Document/Literal/Wrapped

The focus is only on Document/Literal/Wrapped because it's Web Services Interoperability

Organization (WS-I)-compliant. Defining a message contract has two aspects. First, we should

define the structure of the SOAP body. For that we use XSD to do this and also we can use data

contracts that we defined earlier. The other aspect of the message contract is defining the

structure of soap headers. Headers for the messages are defined in WSDL.

AADYA: National Journal of Management & Technology, Vol.7, March 2017, ISSN 2319-264X

211

Fig 1: Contract-First Development Flow

B. DATA TRANSFER OBJECTS PATTERN

Data Transfer Objects (DTOs) gained popularity in the Java programming language. The

simplest way to understand what they are is to think of them as reusable complex data types that

typically represent business entities. DTOs are often confused with Domain Objects, but there

are key differences between the two. DTOs do not contain any business logic whatsoever, nor do

they contain any logic to perform Create, Retrieve, Update or Delete (CRUD) operations. Their

purpose is to be used as convenience containers to carry information to and from consumers.

They are specifically optimized for the transfer of data, but must not map directly to objects

either in the domain model or database schema. They are typically comprised of primitive data

types (e.g. string, double, etc.), but may contain any combination of primitive data types and

complex types (i.e. other DTOs).

C. SERVICE MESSAGING PATTERN

The pattern of using Service Messages as a means of communication between service

consumer and service provider is a best practice when designing services. There are some very

good reasons to use this message-based style of communications:

 Promotes easier extensibility

 Allows greater control over the message itself (e.g. the ability to add custom headers

and/or security policies on message headers and/or bodies).

Service Messages are containers that wrap one or more DTOs, and they specify the

information that must be passed to or from service operations. Most operations will implement

the Request/Response Message Exchange Pattern and will have one inbound Request Message

AADYA: National Journal of Management & Technology, Vol.7, March 2017, ISSN 2319-264X

212

and one outbound Response Message, as illustrated in figure

Fig 2: Message Exchange Pattern

D. SERVICE CONTRACT

The Service Contract defines the operations that a service will provide, the Service messages

used in each operation, and the Message Exchange Patterns (e.g. Request/Response) used by

each operation. This is the entity that clearly communicates to all potential consumers the

purpose and rules for usage of the service.

E. SERVICE IMPLEMENTATION

The Service Implementation fulfills the Service Contract. This component should be viewed

as nothing more than a gateway into the business logic layer, and does not expose the underlying

details of how it achieves the goals of its service operations. There should not be any actual

business logic embedded in the Service Implementation; instead, the Service Implementation

invokes methods on business components and in many cases other service implementations.

Following this pattern provides a clear separation of concerns, and each layer serves a distinct

purpose.

The Service Implementation serves as both an Aggregator (i.e. service composition) and a

Façade. It decides, directs and composes the business components or services that need to be

called to achieve the goals of the service operation, while hiding the complexity of this from all

of its consumers. Composition at the services layer is only for short lived processes (i.e. less

than 15 seconds) that do not require human intervention. Figure below illustrates a simple

service composition at the service layer.

AADYA: National Journal of Management & Technology, Vol.7, March 2017, ISSN 2319-264X

213

Fig 3: Service Compositions

If a service composition becomes more complex (i.e. longer in duration, requires some level of

human intervention, etc.), then it should be encapsulated within a true orchestration layer such as

IBM Business Process Manager.

In addition to three primary contract types -- data, message and interface contracts -- a service

contract also has a policy, bindings and endpoints. Figure below summarizes which

WSDL/schema constructs are used to represent different artifacts in Web service contracts.

Fig 4: WSDL/Schema Constructs

AADYA: National Journal of Management & Technology, Vol.7, March 2017, ISSN 2319-264X

214

Fig 5: Contract-First Approach

E. SERIALIZATION

Serialization has been a key part of .Net since version 1. It is basically the process of

converting an object instance into a portable and transferable format. The objects can be

serialized into all sorts of formats. Serializing to Xml is most often used for its interoperability.

Serializing to binary is useful when you want to send the object from one .Net application to

another. .Net even supports the interfaces and base classes to build your own serializes. There

are libraries out there to serialize to comma delimited strings, JSON, etc.

Deserialization is basically the reverse of serialization. It’s the process of taking some data

(Xml, binary, etc) and converting it back into an object.

AADYA: National Journal of Management & Technology, Vol.7, March 2017, ISSN 2319-264X

215

XMLSERIALIZER VS. DATACONTRACTSERIALIZER

XMLSERIALIZER DATACONTRACTSERIALIZER

1.Web service uses XMLSerializer attribute. 1.WCF uses DataContractSerializer attribute.
 2. XMLSerializer does not provide better
performance when compare with
DataContractSerializer becauseXMLSerializer
does not indicate which fields or properties of
the type are serialized into XML.

2. A practical benefit of the design of the
DataContractSerializer is better performance
over XmlSerializer. This is because
DataContractSerializer explicitly shows the
fields or properties are serialized into XML.

3. XMLSerializer cannot translate the Hash
Table into XML.

3. The DataContractSerializer can translate the
Hash Table into XML.

4. XmlSerializer cannot serialize private
members.

4. DataContractSerializer serializes private
members.

5. Only the public members are serialized not
the private members. Suppose we do not
need any of the member to be serialized we
can use [XmlIgnore] attribute

5. We can serialize a type that marked with
[Serializable] attribute with
DataContractSerializer. It serializes all the
members (private, public) even they are marked
with [XmlIgnore].

Table 1: XmlSerializer vs. DataContractSerializer

The WCF Service can be designed using both ways of Sterilization techniques but with

DataContractSerilization there is significance performance gain. As a part of research work

comparative study has been carried out to present the report. The comparison has detailed out in

next section.

VI. RESTFUL WCF SERVICE

Windows Communication Foundation (WCF) is an SDK for developing and deploying

services on Windows. WCF provides a runtime environment for your services, enabling you to

expose CLR types as services, and to consume other services as CLR types.

A. WHAT IS REST?

Based on the Roy Fielding theory "Representational State Transfer (REST), attempts to codify

the architectural style and design constraints that make the Web what it is. REST emphasizes

things like separation of concerns and layers, statelessness, and caching, which are common in

many distributed architectures because of the benefits they provide.

Actually only the difference is how clients access our service. Normally, a WCF service will

AADYA: National Journal of Management & Technology, Vol.7, March 2017, ISSN 2319-264X

216

use SOAP, but if you build a REST service, clients will be accessing your service with a

different architectural style (calls, serialization like JSON, etc.). REST uses some common

HTTP methods to insert/delete/update/retrieve (CRUD operations) information which is below:

 GET - Requests a specific representation of a resource

 PUT - Creates or updates a resource with the supplied representation

 DELETE - Deletes the specified resource

 POST - Submits data to be processed by the identified resource

B. WHY AND WHERE TO USE REST?

During research, the attempt made to build a sample service which can be accessed by

heterogeneous language/platform/system. It can be used by iPhone, Android, Windows Mobile,

.NET web application, JAVA or PHP. Using web service, it was bit complex for me to expose it

to everyone using uniform system. Then I decided to use REST, which was easily espoused over

cloud. Below are some points which will help you to understand why to use the RESTful

services.

 It does not contain SOAP header so less overhead and better performance.

 HTTP operations DELETE, PUT and GET support less duplication, easy

implementation, and testing and increase readability.

 XML is not really required to implement.

C. WCF SOAP & WCF RESTFUL SERVICE

WCF is the Microsoft framework for building applications that communicate over a

network, regardless of the style or protocol. The concept behind WCF was to create a

framework that was extensible and pluggable so that developers could learn one

programming and configuration model and be able to apply those skills to many different

kinds of distributed systems. While it is true that much of WCF is geared toward RPC

(using SOAP), it actually has had the ability to expose and consume REST services since

it was first released as part of the .NET Framework 3.0. What it lacked was a

programming model needed to make using REST with WCF easy. There also were some

pieces of infrastructure that you had to build to make REST work with the .NET

Framework 3.0. Both a programming model and those pieces of infrastructure were

added to WCF in the .NET Framework 3.5 in the System.ServiceModel.Web assembly.

AADYA: National Journal of Management & Technology, Vol.7, March 2017, ISSN 2319-264X

217

And the .NET Framework 3.5 SP1 added a few small improvements as well.

The main difference between SOAP and REST is the fact that while REST is

implemented directly on top of the HTTP protocol, SOAP introduces an abstraction layer

(SOAP messaging), that can be implemented on top of any transport. Standardized

SOAP bindings currently exist for HTTP, SMTP and JMS, but non-standard bindings

have been implemented for other transport solutions. This additional abstraction layer

that provides decoupling between existing transports and SOAP-based implementations

is the root cause of major differences between SOAP and REST Web Services.

VII.SIMULATION RESULTS

The WCF Service can be designed using both ways of Sterilization techniques (XML

Serialization and Data Contract Serialization) but with Data Contract Serialization there

is significance performance gain as mentioned in the previous section. As a part of

research work a simple EmployeeService has been created to perform performance using

XMLSerilizer and DataContarctSerilizer.

Also the comparative study has been carried out for performance analysis of RESTful

WCF Service and WCF WSDL Service carried out during research work and it was

found that RESTful WCF Service returns the smaller size response object than WCF

WSDL Service.

PERFORMANCE ANALYSIS –
XMLSERIALIZER & DATACONTRACTSERIALIZER

As a part of research work a simple EmployeeService has been created to perform

comparative study of performance using

XMLSerilizer and DataContarctSerilizer. This Service just contains one operation

RetrieveEmployeeDetails to retrieve employee details based on provided input

parameters. It has been noticed there is significance performance gain in designing WCF

service in DataContarct Serialization. The performance gain is about 30%. The result can

vary based on data volume and complexity of the operation. In research work medium

complexity service has been chosen to consolidate the result data.

AADYA: National Journal of Management & Technology, Vol.7, March 2017, ISSN 2319-264X

218

VII. CONCLUSION AND FUTURE WORK

It has been clearly observed that by designing/implementing SOA using Contract-First

Approach with Data Contract Sterilization saves time and money if SOA has to

implement using SOAP WCF Service. With the comparative performance analysis it has

been proved. Also with this is approach WS* security concern can achieved properly.

REFERENCES

[1] Arsanjani, A., Ghosh, S., Allam, A., Abdollah, T., Ganapathy, S., & Holley, K. “SOMA: A

Me-thod for Developing Service-Oriented Solutions”. 2008.
[2] Brown, Kyle. & Ellis, Michael. “Best Practices for Web Services Versioning: Keep your

Web Services Current with WSDL and UDDI.”. 2004.
[3] Eric Newcomer, “Understanding Web Services: XML, WSDL, SOAP, and UDDI”.

Addison-Wesley Professional, 2002
[4] Thomas Erl, “Service-Oriented Architecture: Concepts, Technology, And Design”, 2005
[5] Mark Pilgrim, "HTML5: Up and Running". 2010.
[6] Matthew MacDonald, “ASP.Net: The Complete Reference”. 2002.
[7] http://msdn.microsoft.com/
[8] http://www.w3schools.com/

http://msdn.microsoft.com/
http://www.w3schools.com/

