
STUDY OF EXISTING RISK MANAGEMENT MODELS AND
PRIOR RESEARCH CONTRIBUTION

*
Prof.: Dept. of Computer Science

Dr. Ambedkar Institute of Technology, Bangalore, India

Dr. L. Manjunath Rao

**
Research Scholar, Research and Development Centre,

Bharathiar University, Coimbatore, India

Salma Firdose

ABSTRACT

Different software projects development methodologies exist in current era, however, selecting the

methodology that most closely fits a computer code depends on many factors. One necessary issue is the

extents of how much risky the project is. Another issue is that the degree to that every methodology

supports risk management. Indeed, the literature is wealthy in such studies that aim at scrutiny the

presently out there computer code development method models from totally different views. In

distinction, very little effort has been spent in purpose of scrutiny the out there method models in terms

of its support to risk management. During the discussion, we tend to investigate the state of risk and risk

management within the most well-liked computer code development method models (i.e. waterfall, v-

model, progressive development, spiral, and agile development). This trend in such studies is

anticipated to serve in many aspects. Technically, it helps project managers adopt the methodology that

most accurately fits their projects. From another facet, it'll build the simplest way for additional studies

that aim at up the computer code development method.

Keywords - component; Software Engineering, Risk Management

associated with them. These risks in the

software project is identified and managed by

software risk management which is a part of

SPM.. The recent study unconcealed that solely

tierce of software package developments are

often thought-about thriving [1]. This means

that software package projects’ failure rate

remains intolerably high, that might be

attributed to the magnified quality of software

package development projects besides the

absence or the poorly-applied risk management

method. so as to attain project success, the

researchers believe that the most effective

contribution to manage risks in software

I. INTRODUCTION

Risk management in software engineering is

related to the various future harms that could be

possible on the software due to some minor or

non-no t i ceab le mis takes in so f tware

development project or process. “Software

projects have a high probability of failure so

effective software development means dealing

with risks adequately (www.thedacs.com).” Risk

management is the most important issue

involved in the software project development.

This issue is generally managed by Software

Project Management (SPM). During the life

cycle of software projects, various risks are

Adarsh Journal of Information Technology - Vol. 4, Issue 1 Apr. 2016 - ISSN No. 2320–0340 10

package projects is to pick the foremost

appropriate methodology that most closely fits

the meant project, and to think about it

throughout the event method as a mean to

manage risks. A software package development

me thodo logy o r a so f tware package

development method model is an approach to

the software Development Life Cycle (SDLC)

that describes the sequence of steps to be

followed whereas developing software package

projects [2]. Several software package

development methodologies exist, they disagree

from one another in terms of your time to

unharnessed, quality, and risk management. in

spite of the followed methodology, the

fundamental lifecycle activities are enclosed

altogether lifecycle models, however in all

probability in several orders. These models

could be consecutive (i.e. waterfall) or unvaried

(i.e. evolutionary). they could be specification-

driven (i.e. waterfall), code-driven (i.e.

evolutionary), or risk-driven (i.e. spiral).

Moreover, they could be typical (i.e.

conventional waterfall) or agile (i.e. scrum).

Indeed, there's no ideal model that matches all

the software package development projects; for

sure circumstances every model has its benefits

and drawbacks. Deciding upon the methodology

to follow depends on the event setting, the kind

of the project underdevelopment, the event

team, and also the potential risks. Thus, it falls

on behalf of the developer to pick the

methodology (or any tailored combination) that

most closely fits the project circumstances [3].

Because the potential risks in any software

package project greatly influence the choice of

the foremost applicable software package

development methodology, risk management is

presently thought-about the foremost goal of any

elite methodologies. Hence, any software

package development methodology is best

enforced if it's thought-about as a mean to

manage risks. Totally different software package

development methodologies support risk

management naturally in variant levels. Within

the following sections we have a tendency to

investigate the state of risk management within

the most typical software package development

methodologies. The analysis methodology

followed was a scientific literature review that

failed to chiefly aim at examination the

prevailing software package development

methodologies, rather to conduct this

comparative study between these models with

reference to their i l lustration of risk

management. The prime objective of this

investigation is to discuss a body of proof that's

risk management is a common part of software

package development methodologies along with

the risk-driven ones [4].

II. RISK MODEL STUDY

In this section we review the leading software

development methodologies (i.e. waterfall, V-

model, incremental, spiral, and agile) and

investigate the state of risk management in each

of these models. For each one, we highlight the

sources of risks it came to resolve, and uncover

the risky areas hindering its implementation.

Waterfall Model:- It was first introduced but not

named by Royce in 1970. It abstracts the

essential software development activities (i.e.

requirements, analysis, design, coding, testing,

and operation) in a sequential manner. Waterfall

development was proposed to avoid the risks

introduced by the code and fix technique by

Adarsh Journal of Information Technology - Vol. 4, Issue 1 Apr. 2016 - ISSN No. 2320–0340 11

inserting the requirements and analysis stages

before the coding stage. This ensures that user

requirements are clearly defined in advance,

thus, reduces the time and effort wasted on

several iterations of code and fix. In the original

waterfall model, any error occurs at any stage

propagates into the subsequent stages until it is

lately discovered in the testing phase. To avoid

this risk, Royce [5] suggested that at the

beginning of each stage a review to the previous

stage should be conducted to ensure that the

previous stage was properly done. Later, he

modified his original waterfall model by adding

localized iterations that provide feedback to the

previous phases. However, even with these

localized iterations, problems are still being

discovered in the testing phase, these problems

are usually due to problems in the design stage

or in the requirements stage. Thus, to recover

from these errors, complex iterations to the

design stage and to the requirements stage were

added. These iterations consume a lot of time,

efforts, and other resources. In order to avoid the

risks of the operational constraints, Royce [5]

suggested a preliminary design phase to be

inserted between the requirements phase and

analysis phase in order to impose constraints on

the analysts. This is properly accomplished by

the iterative loop between the preliminary

design and the analysis stages until a

satisfactory preliminary design is reached.

s Major Sources of Risk in the Waterfall

Model:- From the above discussion, we

can conclude that risks in the waterfall

model are unavoidable, even in the

Royce’s modified waterfall model; this is

due to the nature of the model itself. The

major sources of risk in the waterfall

model are listed below:

s The

major risk factor threatens the waterfall

projects is the continuous requirements

change during the development process.

The waterfall model cannot accommodate

with these changes due to its strict

structure. The waterfall model requires

that all requirements be clearly defined in

advance in the requirements stage in order

to guarantee that no change could appear

later on during the development process.

Clearly, this is an idealistic situation, since

it is difficult for the real projects to

identify all requirements previously. Thus,

i t i s even imposs ib l e t o gua rd

requirements from being changed.

Actually, continuous requirements change

is not a problem to be solved, neither it is

restricted exclusively to the waterfall

model. Rather, it is the unstable nature of

the software projects besides the highly

strict nature of the waterfall model what

made its consequences significant in the

waterfall model mainly.

s No overlapping between stages:- Another

source of risk in the waterfall model is that

it requires each stage to be completed

entirely before proceeding into the

subsequent phase. In other words, it does

not allow overlapping between stages.

Obviously, this will waste time, cost and

other resources, since the stages in the

waterfall model are relatively long. Hence,

most team members who are responsible

for specific stages will spend most of their

time waiting for other stages to complete

so that they can start doing their work.

Continuous requirements change:-

Adarsh Journal of Information Technology - Vol. 4, Issue 1 Apr. 2016 - ISSN No. 2320–0340 12

s

assurance during the different phases of

the development process is another source

of risk. Validating the product is restricted

to a single testing phase lately in the

development process. Hence, the testing

phase in the waterfall model is the highest

risky phase, since it is the last stage

wherein the system is put as a subject for

testing. Thus, all problems, bugs, and risks

are discovered too late when the

recovering from these problems requires

large rework which consumes time, cost,

and effort.

s Relatively long stages:- Another source

of risk in this model resides in the

relatively long stages, which makes it

difficult to estimate, time, cost, and other

resources required to complete each stage

successfully. Additionally, in the waterfall

model, there is no working product until

late in the development process when the

product is almost complete and any

change is impossible. To make things

worse; imagine if the product failed to

meet users’ expectations.

Incremental development: Incremental

development is a variant of the waterfall model

which consists of a series of waterfall lifecycles

wherein the software development project is

broken down into smaller segments called

increments. The proposal of the incremental

development was to accommodate with risks

inherent from implementing the overall software

project over a single lifecycle in the pure

waterfall model. First of all, since the project is

broken down into smaller segments, the

development effort is distributed among several

Poor quality assurance:- Lack of quality increments. Thus, risks are spread over multiple

iterations rather than single iteration as in the

pure waterfall development. Clearly, it would be

easier to manage those risks in the former case.

The major risk factor threatens the waterfall

development is that it requires all requirements

be clearly defined in advance, since its structure

does not allow requirements to be changed

during the development process. The

incremental development reduces this risk by

grouping requirements, then implementing each

group in an increment repeatedly until the

system is complete and all requirements are met.

Despite the fact that most requirements have to

be known in advance, building requirements

incrementally allows new requirements to be

added later on in subsequent increments. The

incremental development a lso a l lows

requirements to be changed; these changes are

reflected in the subsequent increments.

Changing requirements comes after a feedback

from the customer about the already developed

increments which can be considered as

prototypes for the subsequent increments. The

other risk of the waterfall reduced by the

incremental development is the time, cost, and

other resources wasted from prohibiting

overlapping. The incremental development

allows many mini increments to overlap, thus

most team members can work in parallel. Errors

in the previous increments could be fixed during

the development of the current increment.

Obviously, this saves time, cost, and other

resources. Thus, the initial deadlines are more

likely to be met. Unlike the waterfall model, the

incremental development allows initial releases

with core functionality to be delivered to the

customer early. Indeed, these releases are

working non-completed systems delivered early

Adarsh Journal of Information Technology - Vol. 4, Issue 1 Apr. 2016 - ISSN No. 2320–0340 13

to the customers in order to help them build a

realistic impression about the system

underdevelopment, and to enable them to give

their feedback early so that the cost of any

change would be as less as possible. Another

issue related to the user acceptance of the

system; the system would be more acceptable if

it is introduced to the end users gradually bit by

bit instead of introducing differently new system

at once as in the waterfall model [6]. Still, the

incremental development suffers from different

sources of risks that are illustrated below:

s Delayed requirements implementation:-

One major risk of the incremental model

resides in that developers tend to postpone

requirements, so that they are included

later on in subsequent increments.

Obviously, this risk factor should be

avoided, since the delayed requirements

might be core ones upon which the user

acceptance of the whole system depends.

Thus, it is recommended that all identified

requirements be addressed in the initial

increments of the system, and the later

increments should be left for any newly

identified requirements or any change in

the previously defined ones.

s Propagation of bugs through increments:-

Another source of risk is that letting any

undiscovered bug in one increment to

propagate through subsequent increments.

It is easier to repair from bugs in the

earlier increments of the development,

while it might be much more difficult or

even impossible after the system enlarges.

This might be due to poor testing and

maintenance process conducted at the end

of each increment.

s

resources required for each increment:-

The inadequate estimation of time, cost,

and other resources required for each

increment also affects the project

underdevelopment. The underestimation

of time required for each increment delays

the implementation of the subsequent

increments. This delay results in an unmet

project deadlines. This inadequate

estimation might cause time contention

wherein either extra burden is put on the

shoulders of developers, or some

requirements be ignored.

s Time and cost overrun:- Time and cost

overrun is a critical factor too. This deadly

interrupts the development process.

Despite the fact that any interrupt at any

point in the incremental development

process results in a working system,

mostly this system would be an

uncompleted system wherein some

functionalities are not implemented yet.

V-Model: As discussed before, one of the major

risk factors threaten the waterfall model is the

poor verification and validation methods, which

are restricted to a single testing phase conducted

lately in the development process. Another

variant of the waterfall model that came out to

deal with this risk is the V-model. The V-model

is a testing-focused software development

process. It gives equal importance to both

development and testing. Its symmetrical shape

allows the testing process to start early at the

development process, and to be aligned with its

different phases. This could be achieved by

designing test plans and test cases during each

development phase prior to the actual testing;

Underestimation of time and other

Adarsh Journal of Information Technology - Vol. 4, Issue 1 Apr. 2016 - ISSN No. 2320–0340 14

this allows requirements and designs to be

verified easily during the corresponding testing

phases. Moreover, test planning conducted at

each stage helps at early identification of

project’s specific risks and reducing them

through an improved process management.

Another enhanced version of the V-model is the

V+ model; it adds user involvement, risk, and

opportunities to the z-axis of the V-model.

Although the V-model is a highly structured,

well disciplined process model, today’s

developers think of it as a too rigid process

model due to the inflexibility it exhibits against

the current evolutionary nature of software

projects [7].

Spiral Development: The spiral model was

proposed by Boehm [8] in 1988 as a risk-driven

software development process model, wherein

the whole development process is guided by the

involved risks. It aims at identifying and

evaluating software project risks, and helps in

reducing these risks and controlling project cost

in a favour of a better controlled software

project. Indeed, the explicit risk management in

spiral distinguishes it among other process

models which employ some kinds of risk

management as subtasks; without this level of

the explicit representation as in spiral [9]. In

spiral, this feature guarantees that most risks are

recognized early and much earlier than it is in

other process models. Spiral development

supports risk management in software projects

in several ways summarized in the following:

s The initial risk analysis that acts as a look-

ahead step and aims at:

s Identifying most risks threaten the project.

s Classifying risks into user interface risks

and development risks

s Evaluate these risks to decide upon the

risks to handle through each cycle.

Moreover this classification helps

developers in implementing r isk

resolution techniques such as prototyping

and benchmarking.

The evolutionary prototyping spirals that aim at

resolving performance and user interface related

risks. These spirals help in reducing major risks

before proceeding into the development process.

s The risk analysis stage at each cycle that

precedes each phase of the waterfall

phases in purpose of:

s Resolving program development and

interface control risks inherent from the

start of the project.

s Evaluating and resolving the new risks

that might arise after changing any of the

objectives, alternatives, or constraints at

the beginning of the cycle.

s The iterative feature of the spiral which

allows the development process to go

back to the first quadrant at any point in

progress which allows:

s Objectives, alternatives and constraints to

change as more attractive alternatives

exist.

s New technology to be incorporated easily

during the development process.

The review conducted at the end of each cycle

with main stakeholders as a decision point to

avoid the lack of commitment risks during the

next cycle. Time and cost overrun risks are best

managed using spiral development due to the

Adarsh Journal of Information Technology - Vol. 4, Issue 1 Apr. 2016 - ISSN No. 2320–0340 15

risk analysis stage conducted at each cycle. In

this stage, the cost and time required for each

cycle are analyzed in advance to give a clear

picture about the critical state of the project.

This helps the project manager and the

developers get more control over these risks.

Risks related to the increased complexity of the

project are also managed using spiral. This is

achieved by the partitioning activity conducted

at the planning phase. Decomposing the project

into portions to be developed in parallel spirals

obviously reduces time contention related risks,

since more work could be achieved during the

same interval. Despite its risk driven nature,

spiral has its own sources of risks which are

summarized in the following:

s All

the activities related to identifying,

analyzing, and resolving risks rely on the

experience of developers and their

abilities in identifying and managing risks

[7]. If these abilities are unavailable,

major risks might remain hidden for

several lifecycles and discovered late

when it matured into real problems. At

that time, the cost of rework to recover

from these risks becomes very high.

s Detailed Risk Management Process:-

Cost and schedule risks might increase

using spiral due to its iterative feature,

especially for low risk projects wherein

risk assessment is not required to be at this

level of granularity.

Agile Development: Agile is a term first

introduced in 2001 to refer to a group of

l i g h t w e i g h t s o f t w a r e d e v e l o p m e n t

methodologies evolved in the mid-1990s

High reliance on the human factor:-

including Scrum (1995), Crystal Clear, Extreme

Programming (1996), Adaptive Software

Development, Feature Driven Development, and

Dynamic Systems Development Method

(DSDM) (1995) [10]. In contrast to the

heavyweight methodologies (i.e. waterfall), the

lightweight methodologies deemphasize a

formal process step; they proceed in the

development process without waiting for formal

requirements and design specifications. The

main point that the agile focuses on is the close,

Informal communication between the different

system stakeholders including the developers

and the customer representative. Indeed, in

agile, this communication is the source of

planning, requirements, identifying risks,

feedback, and changes. Building upon the

literature, we can say that there are two

contrasting views regarding risk management in

the agile context. The first claims that agile is an

inherent risk driven approach and implicitly

supports risk management by nature. The

proponents believe that there is no need to

enhance risk management in these projects. In

contrast, the second [11] believes that the risk

management state in agile does not differ

significantly from other traditional models and

that risk management should be enhanced in

agile to compensate for the lack of risk

management in the agile projects. The advocates

to the second view believe in that in some

situations the inherent risk management driven

nature of the agile is insufficient [12]. As

mentioned before, the major risk factor threatens

today’s software projects is the continuous

changes it faces in requirements and the

su r round ing env i ronmen t . The ag i l e

development addresses this risk. The agile is an

adaptive approach; it exhibits a flexible response

Adarsh Journal of Information Technology - Vol. 4, Issue 1 Apr. 2016 - ISSN No. 2320–0340 16

to change, this is due to the incremental,

iterative approach it adapts, wherein each

increment is very short and the developers are in

a continuous interaction with the customer.

Thus, any change in requirements will be

discovered early as soon as the software first

releases are produced, then the project can adapt

to these changes quickly. Due to the close

frequent interaction with the customer,

requirements are collected during each

increment directly from the customer rather than

from formal documents that represent them as in

other traditional development methods. This

would eliminate any ambiguity in understanding

requirements, and ensure stakeholders’

commitments to the requirements they provide.

Agile development best fits software projects

which lack structured planning, due to its

adaptive planning feature which requires

minimal planning activities be conducted

formally. Using agile development, the risk of

delivering software that contains bugs will be

reduced due to its reliance on automated test

cases [13]. Thus, the software is tested at each

release, and retested again if a bug was

discovered to make sure that it has been

eliminated. In spite of the assertions it makes

regarding managing risks, the agile development

lacks for any detailed suggestions for managing

these risks. Thus, many sources of risks will be

left unhandled. The following are the major

sources of risk in the agile development:

s The

inherent risk management in agile

development is not sufficient for large,

complex software systems, since the

resulting increments would be relatively

large. This would increase the time span

Very large software system:-

between increments, and thus require a

higher cost to deal with changes and bugs

if discovered.

s It is not

suitable for large teams, since managing

the communication between their

members would be much more difficult.

s High reliance on human factor:- It relies

entirely on the experience of the

development team and their abilities to

communicate successfully with customers.

If the project misses these conditions, then

the failure is an inevitable issue.

s I n a p p r o p r i a t e c u s t o m e r

representative:- The unavailability of an

appropriate customer representative is

another risk factor. Actually, this factor

influences the development process as

much as team members’ factor.

s Distributed development environment:-

This approach is not suitable for

developing software projects in distributed

environment, since it requires a close face

to face interaction communication

between the development team. Else,

other communication methods such as

video conferencing should be held at daily

basis.

s Scope creep:- Another important risk

factor is the scope creep, this usually

happens due to the minimal planning

conducted in this methodology which

causes developers to become distracted

from the project main objectives. As a

result, the project will enlarge, become

more complex, and finally the project will

overrun.

Large development team:-

Adarsh Journal of Information Technology - Vol. 4, Issue 1 Apr. 2016 - ISSN No. 2320–0340 17

III. PRIOR RESEARCH WORK

Mofleh and Zahary [14] presented a framework

that tries to improve software product risk

management by applying some sequential

processes during operational life cycle of the

product. The framework is called SPRMQ (a

framework for Software Product Risk

Management based on Quality attributes and

operational life cycle) which attempts to manage

software product risk.

Sarigiannidis et al. [15] investigated a wide

range of relevant literature, proposes a new

conceptual framework for managing risk in

software development projects, intro-duces new

conceptual factors, brings out their interrelation,

and suggests new prospects and managerial

implications for both practitioners and

academics

Kipyegen et al. [16] developed a framework that

guides in the adoption of the existing formal risk

management techniques in two areas;

Inst i tut ions of learning and software

development industry.

Elzamly et al. [17] proposed the new framework

software risk management methodology for

successful software project. There are five main

phases such as identification risk, risk analysis

and evaluation, risk treatment, risk controlling,

risk communication and documentation for

software development life cycle. Indeed, our

approach focuses on identifying software risk

factors, and risk management techniques and on

how to manage software risk factors with

statistical and mining techniques.

Conforti et al. [18] presented an innovative

framework for process-related risk management

and describes a working implementation

realized by extending the YAWL system. The

framework covers three aspects of risk

management: risk monitoring, risk prevention,

and risk mitigation.

Bannerman et al. [19] introduced variations in

the risk and project management challenges they

face. Findings also suggest that formal project

management is neither necessary nor sufficient

for project success.

Roy [20] provided a brief introduction to the

concepts of risk management for software

development projects, and then an overview of a

new risk management framework.

Keshlaf et al. [21] demonstrated number of

software risk management approaches and

identify weaknesses such as the treatment of

culture issues, geographical location, and

process and product perspectives.

IV. CONCLUSION

In this paper we have reviewed the leading

software development process models and

investigated the state of risk management in

each of these models. As a result, we found that

some software development methodologies

inherently involve risk management. For each

methodology, this requires certain circumstances

to exist. This indicates that risks are inevitable

in most software development methodologies,

and that all software development

methodologies, including the risk-driven ones,

require that risk management be enhanced in it.

An interesting dimension for future research is

to find out a strategy that aims at enhancing risk

management in the different software

development methodologies.

Adarsh Journal of Information Technology - Vol. 4, Issue 1 Apr. 2016 - ISSN No. 2320–0340 18

REFERENCES

[1] The Standish Group, “Report CHAOS”,

Project Smart, 2014

[2] “The Software Development Life Cycle

(SDLC)”,Pilican Engineering, Dcoument

ID-0-2, Version 2.0

[3] Jones and Bartlett “Software Process

Models”,LLC, 2004

[4] H.Hijazi, T.Khdour, A.Alarabeyyat, “ A

Review of Risk Management in Different

Software Development Methodologies”,

International Journal of Computer

Applications (0975 – 8887) Volume 45–

No.7, May 2012

[5] W. Royce, “Managing the development of

large software systems,” IEEE WESCON,

pp. 1-9,, 1970

[6] R. Flask “The System Life Cycle”, Charlie

Abela

[7] “Software Development Life Cycle

(SDLC)”, Tuorial Points

[8] B.W. Boehm, "A spiral model of software

deve lopmen t and enhancemen t . "

Computer 21, no. 5, pp. 61-72, 1988

[9] “NASA Risk Management Handbook”

NASA/SP-2011-3422 Version 1.0, 2011

[10] “An Introduction to Agile Software

Development”,Serena, 2007

[11] Jakub Miler “A Method of Software

Project Risk Identification and Analysis”,

Gdańsk University of Technology, 2005

[12] Schmietendorf, Andreas, André Scholz,

and Claus Rautenstrauch. "Evaluating the

performance engineering process."

Proceedings of the 2nd international

workshop on Software and performance,

ACM, 2000

[13] Wallmüller, E. "Risk management for IT

and software projects." In Business

continuity, pp. 165-178. Springer Berlin

Heidelberg, 2002

[14] M.HALIMA and A.Zahary. "A Framework

For Software Product Risk Management

Based On Quality Attributes And

Operational Life Cycle (SPRMQ)." Risk

1(3), 2010

[15] L. Sarigiannidis and P. D. Chatzoglou.

"Software development project risk

managemen t : A new concep tua l

framework." Journal of Software

Engineering and Applications, Vol.4, No.

05, 293, 2011

[16] N.J.Kipyegen, W.Mwangi, and S.

t.Kimani. "Risk Management Adoption

Framework for Software Projects: A Case

Study for Kenyan Software Project

Managers and Developers." International

Journal of Computer Science Issues

(IJCSI), Vol.9, No. 3, 2012

[17] A. E lzamly and B .Huss in . "AN

Enhancement of Framework Software

Risk Management Methodology for

Successful Software Development"

Journal of Theoretical & Applied

Information Technology, Vol. 62, No.

2,2014

[18] R . Confo r t i , M .L .Rosa , A .H .M.

T.Hofstede, G.Fortino, M.D.Leoni and

M.J. Adams. "A software framework for

Adarsh Journal of Information Technology - Vol. 4, Issue 1 Apr. 2016 - ISSN No. 2320–0340 19

risk-aware business process management."

In Proceedings of the CAiSE'13 Forum at

the 25th International Conference on

A d v a n c e d I n f o r m a t i o n S y s t e m s

Engineering (CAiSE): CEUR Workshop

Proceedings, Vol. 998, pp. 130-137. Sun

SITE Central Europe, 2013.

[19] P.L . Bannerman "Risk and r i sk

management in software projects: A

reassessment." Journal of Systems and

Software, Vol. 81, No. 12, pp.2118-2133,

2008

[20] G.G.Roy"A risk management framework

for software engineering practice." In

Software Engineering Conference, 2004.

Proceedings. 2004 Australian, pp. 60-67,

2004

[21] A. K. Ali, A. Ali, and S.Riddle. "Risk

management for web and distributed

software development projects." In

Internet Monitoring and Protection

(ICIMP), 2010 Fifth International

Conference, pp. 22-28, 2010

[22] Efficient Framework of e-Government for

Mining Knowledge from Massive

Grievance Redressal Data, G Sangeetha,

LM Rao- International Journal of

Advanced Research in Communication

Engineering,2015

[23] ‘Branding Strategy-Delivering the brand

promise in a competitive environment’

GJ-MIT, Mohali, India

Adarsh Journal of Information Technology - Vol. 4, Issue 1 Apr. 2016 - ISSN No. 2320–0340 20

