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Abstract
We have analyzed a model of Lotka-Volterra type interacting between immune cell-tumour cell-normal cells, where control 
policy is applied in terms of targeted chemotherapy. We determined conditions for the local stability of all the equilibrium 
points and global stability condition for the tumour free equilibrium point, including the feasibility of the solution. Further, 
we have discussed the possibility of Hopf bifurcation at each equilibrium point. Numerical simulation was carried out to 
observe the qualitative behaviour of the system as the control parameter is varied.
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1.  Introduction
Cancer, a dreaded disease for the last several decades, is 
characterized by uncontrolled and chaotic or unregulated 
growth of harmful cells. It is one of the major diseases that 
attack people belonging to all ethnicities throughout the 
world. Although cancer is often misconceived as a disease 
that comes with ageing it can occur in case of people of all 
ages including babies and children. Of course, statistically, 
it is found that the majority of the patients belong to the 
age group of over 55 years. From the scientific research 
carried out until now, it has been realized that Cancer is a 
disease in which abnormal cells increase overwhelmingly 
by the process of uncontrolled division and invade other 
tissues of the human body. Cancer can attack almost any 
part of the human body. Cancer is one of the leading 
causes of death worldwide. Despite its high death rates, 
nowadays, a large number of cancer patients can be cured 
with the help different types of treatment methods like 
surgery, radiotherapy, chemotherapy or immunotherapy, 
especially if the disease is detected in its early stage.

The goal of cancer treatment is to cure, control or 
palliation. Factors, which determine the treatment 
method to be undertaken from those mentioned above, 
are generally tumour type, location, size and the extent 
of the tumour. Other important factors which should be 
considered in determining the treatment plans are the 
patient’s physiological status (eg., presence of co-morbid 
illnesses), psychological status and personal desires (eg., 
active treatment versus palliation of symptoms1. 

Each treatment type mentioned above has its 
advantages and disadvantages. Surgery is generally used 
for treating solid tumours that are contained in certain 
body organs like lung, liver etc. Before carrying out the 
surgery, it is seen whether the patient will be able to 
tolerate the surgery and anaesthesia, which is applied 
before the surgery. The main disadvantage of this method 
of treatment is that if the tumour is located in such parts 
where some of the tumour cells cannot be removed, 
then the left out tumour cells can cause recurrence of 
the disease. In such cases, surgery is generally followed 
with Radiotherapy so that the left out tumours can be 
eradicated2. 
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Radiotherapy is a type of treatment, which uses high 
doses of radiation that can kill tumour cells. However, 
the main disadvantage of this mode of treatment is that 
radiation not only kills tumour cells but also damage the 
surrounding tissues depending on how close those are to 
the tumour3 – 5.

Chemotherapy is a mode of treatment in which 
different drugs are used to kill tumour cells. Either the 
main idea of chemotherapy is to eliminate or to reduce 
the number of malignant cells which are present in the 
primary and metastatic tumour or to stop or slow the 
tumour cells which grow and divide quickly. The main 
disadvantage of Chemotherapy is that apart from killing 
the tumour cells, it generally kills the healthy cells also 
and induces side effects, like hair loss, sore mouth, nausea, 
etc6 – 10.

Immunotherapy is another mode of treatment in 
which effort is concentrated on boosting up the body’s 
immune system to fight tumour cells. Immunotherapy too 
can cause side effects. Certain types of immunotherapy 
rev up the immune system, which can make feel flu like 
symptoms, such as chills, fever, fatigue, muscle aches and 
so on11 – 15.

In comparison, targeted therapy focuses on the inner 
working of the cancer cells – the programming that sets 
them apart from normal cells. The main idea of targeted 
therapy is based on ‘precision medicine’. It is a mode of 
treatment in which changes in cancer cells, which help 
them, divide, grow and spread is targeted. Either small-
molecular drugs or monoclonal antibodies are generally 
used in this mode of therapy. Those drugs are used for 
the reason because those are tiny enough to penetrate 
the cells for targeting the inside mechanism which helps 
the cells to divide, grow and spread16 – 19. Monoclonal 
antibodies are also known as therapeutic antibodies, 
which are nothing but proteins that can be produced 
in the lab. These proteins are designed and produced in 
such a way so that they can be attached to specific targets 
within the cancer cells. Some monoclonal antibodies 
work in a way so that the cancer cells can be identified by 
the immune system to get those destroyed. Other types 
of monoclonal antibodies function in a way either to stop 
cancer cells from growing or causing them to self-destroy. 
Certain monoclonal antibodies can also stop signals that 
help form blood vessels for the spread of cancer, can 
deliver substances to cancer cells, which can kill them 
or can starve cancer cells of the hormones it needs to 

grow. Thus, though targeted therapy with monoclonal 
antibodies has many advantages, it has some drawbacks 
like those that cancer cells can become resistant to these 
antibodies20, 21 – 24. For this reason, it may work best when 
used with other targeted therapies or with other cancer 
treatments, such as chemotherapy and radiation.

Till date, many authors have proposed many tumour cell 
growth models and has suggested various control policies 
that include treatment such as immunotherapy11, 14, 25 –  27, 
chemotherapy16, 28 – 32, radiotherapy4, 5 and use of tumour 
cell targeting viruses etc.2, 33. In 2003, de Pillis et al.,30 
constructed a mathematical model relating tumour growth 
and immune system iteration. In 2005, in1, the authors 
developed a mathematical framework, which can be used 
to study the principles underlying the emergence and 
prevention of cancer cells treated with targeted small-
molecule drugs. In this work, the authors considered 
a stochastic dynamical system, which was based on 
measurable parameters, such as the rate at which resistant 
mutants are generated and the turnover rate of tumour 
cells. In 2006, in33, the authors presented a model of 
tumour therapy using oncolytic viruses that target tumour 
cells. In 2009, the authors’ of25 investigated the global 
dynamics to show under what conditions tumour clearance 
can be achieved. In 2006, in the paper34 the authors 
developed a mathematical model, which considered four 
subpopulations of the haematopoietic system: progenitors, 
stem cells, differentiated cells and terminally differentiated 
cells. In 2012, the authors’ of14 proposed a model related 
to immunotherapy using transforming growth factor 
β (TGF-β). In 2017, in the paper16 the authors proposed 
a model reflecting the effect of targeted chemotherapy 
with monoclonal antibodies. In 2003, de Pillis et al.,30 

constructed a mathematical model relating to tumour 
growth and immune system interaction. In this present 
paper, we propose a tumour model considering the immune 
cell, tumour cell and normal cell interaction with treatment 
in the form of targeted chemotherapy of the monoclonal 
antibody type. Our model is based on the following model 
proposed by de Pillis et al., in30, which is:
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The subsequent part of this paper is structured as 
follows: In Section 2, model formulation is described 
mentioning the implication of the various terms and 
the parameters. In Section 3, we checked the positive 
invariance and boundedness of the solution of the 
model. Existence of the equilibrium points and their 
determination is done in Section 4. In Section 5, we 
checked the local stability of the equilibrium points. In 
Section 6, we investigated the possibility of the existence 
of Hopf bifurcation in the model by using Hurwitz 
criteria. The occurrence of Hopf bifurcation physically 
implies the existence of isolated periodic solutions. 
In Section 7, we constructed a Lyapunov Function to 
check the global stability of the locally stable tumour 
free equilibrium point within some parameter range. 
Numerical simulation is carried out in Section 8 and in 
Section 9, we drew our conclusions. 

2.  Model Formulation
We consider the tumour growth model suggested by de 
Pillis et al.,30. The model describes the interplay between 
immune cells, tumour cells and normal cells and is 
represented by a system of nonlinear ordinary differential 
equations. In contrast to30, the Lotka-Volterra model is 
used to describe the interaction between immune cells, 
tumour cells, normal cells and drug administration. We 
assume that immune and tumour cells compete with each 
other in predator-prey fashion rule and tumour and 
normal cells compete for available resources. In addition, 
we amended the model by replacing Michaelis-Menten 
form IT

+T

ρ
α

of the function in the immune system 

equation with the Lotka-Volterra form c1IT. The reason 
for doing so is that the rate of change of tumour specific 
effector cells is difficult to measure experimentally. 
Therefore, the response function should be an increasing 
function of the number of tumour cells. Therefore, we 
assume that the larger the tumour, the greater the response 
of the immune system, and so, is not bounded above by 
some constant. Moreover, we apply control policy in term 
of targeted chemotherapy, which follows the logistic 
growth law with per capita decay rate after being injected. 
However, application of drug kills all types of cells but 
with different kill rates and it kills the normal cells, which 
grow and divide quickly to induce the side effects. To 
avoid these side effects we apply targeted chemotherapy, 

which can be attached to specific targets on the tumour 
cells, the attachment between drugs and tumour cells 
consume drugs, which are represented in the last equation 
by the term-kappa k TV, where, k denotes the combination 
rate of chemotherapy drug with tumour cells. Also, we 
introduce a parameter η to describe the effectiveness of 
the targeted chemotherapy.

Thus, based on de Pillis model, we construct the 
following mathematical model of immune-tumour–
normal cells with targeted chemotherapy: 

( )

( )

( )
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where I(t) represents the number of immune cells,  T(t) 
represents the number of tumour cells, N(t) represents the 
number of normal cells and V(t) represents the amount of 
drug administered respectively at time t. The unit of cells 
is normalised by taking the carrying capacity of normal 
cells equal to one. 

The source of the immune cells is considered to be 
outside of the system, so it is reasonable to assume a 
constant influx rate s. Furthermore, in the absence of any 
tumour, the cells die off at a per capita rate d1, resulting in 
a long term population size of cells. As the tumour 

cells and normal cells cannot grow without bound, hence, 
we select tumour cells as well as the normal cells to follow 
a logistic growth law, with parameters r1 and r2 representing 
the per capita growth rates and  representing the reciprocal 
carrying capacities of tumour cells. We consider drug 
administration in the form of targeted chemotherapy 
follows the logistic rule with drug administration rate α, 
maximum drug-carrying capacity 1

β
and d2 is the per 

capita decay rate after being injected.
The interaction between tumour cells and normal cells 

can result in the death of both cells, which are represented 
by -c3 TN in the second equation and -c4 NT in the third 
equation, where c3 and c4 denote the decay rate of tumour 
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cells due to normal cells and the decay rate of normal 
cells due to tumour cells. The interaction between tumour 
cells and immune cells, which are represented by c1IT and 
-c2IT, where, c1 and c2 denoted the growth rate of immune 
cell in the presence of tumour cells and the decay rate of 
tumour cells due to immune cells. Chemotherapy kills 
immune cells, tumour cells and normal cells, which is 
represented by -a1(1-η)VI,-a2VT, - a3(1-η)VN, where a1, 
a2, a3 are decay rate of immune cells, tumour cells and 
normal cells due to chemotherapy, η is the effectiveness of 
the targeted chemotherapy.

For numerical verification of our findings following 
parameter values are considered, which are taken from 
earlier cited works, which are mentioned in the table 
under the head ‘source’. 

3. � Positive Invariance of 
Solutions

To have biological meaning, all values of four state 
variables must be non-negative. In this section, we will 
discuss the positive invariance of the solutions of the 
model. 

Integrating the corresponding equations of the 
proposed model in the interval (0,t) we get,
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Implying N(t)≥0, T(t)≥0, I(t)≥0, V(t)≥0 for t≥0, 

provided that N(0)≥0, T(0)≥0, I(0)≥0 and V(0)≥0.
Thus, our proposed model is positively invariant 

which means that for given positive initial values, the 
solution always remain positive and this is essential from 
the biological point of view.

Table 1.  Parameter values considered for the model

Parameters Meaning Values Source

S The constant number of immune cells already present in the body 0.05 30

d1 The natural death rate of immune cells 0.2 30
r1 The intrinsic tumour growth rate 0.4 30
r2 The growth rate of normal cell 0.35 30

1⁄ b1 The tumour population carrying capacity 1⁄1.5 30
β Maximum drug-carrying capacity 0.7 30
d2 The natural decay rate of drug 0.05 30
a1 Immune cell kill rate due to drug 0.2 30
a2 Tumour cell kill rate due to drug 0.5 30
a3 Normal cell kill rate due to drug 0.25 30
c1 The growth rate of immune cells due to tumour cells 0.2 30
c2 The decay rate of tumour cells due to immune cells 0.3 30
c3 The decay rate of tumour cells due to normal cells 0.2 30
c4 The decay rate of normal cells due to tumour cells 0.25 30
η  Effectiveness of the targeted chemotherapy 0.01 16
k Fractional tumour cells killed by chemotherapy 0.01 16



Anusmita Das, Ranu Paul, Kaushik Dehingia and Hemanta Kumar Sarmah

Asian Journal of Pharmaceutical Research and Health Care 134Vol 12 (3) | 2020 | www.informaticsjournals.org/index.php/ajprhc

4. � Existence of Equilibrium 
Points

To obtain the fixed points of the system, we get:

•	 E1(N1= 1, T1 = 0, I1 = s/d1, V1 = 0), which is a tumour 
as well as the drug-free equilibrium point. This equi-
librium point means that system is in a healthy stage.

•	 ( )( )
( )( )

3 2 2
2 2 2 2 2

2 1 1 2

a -d 1- -ds
E N =1- ,T =0,I = ,V =

r d +a -d 1-

α η ααβ
αβ αβ α η αβ

 
  
 

, 

which is a tumour-free but not drug-free equilibrium 
point. This equilibrium point means that after drug 
administration, the growth of the tumour can be 
stopped.

•	
4 3

3 3 3
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r d -
T
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c
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 
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which is

 

a drug-free equilibrium point. 

Here, 
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Thus, for the existence of T3 discriminant must be 
positive. This equilibrium point means that tumour 
persists when no drug is administered.
•	 The fourth co-existing equilibrium point is given by:
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Here, T4 is determined by the equation,
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 For the existence of T4, the discriminate must be 
positive. This equilibrium is the endemic equilibrium 
point, where, normal cells, tumour cells and immune cells 
are present after drug administration.

Since N = 0 biologically means the death of the patient, 
so we discard the equilibrium points having N = 0.

5. � Local Stability Analysis of the 
Equilibrium Points

To investigate the local stability of the biologically feasible 
equilibrium points, we will determine the eigenvalues 
of the Jacobian matrix at the corresponding equilibrium 
point.

•	 The Jacobian matrix of the system at the equilibrium 
points E1 is:

1

2 4 3

1 2 3
1
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1 1 1
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 
 
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The eigenvalues are: λ11 = -r2, λ12 =r1- c2 s ⁄d1-c3,λ13 = 
 - d1 <0 and λ14 = α-d2 > 0.

We observe that the eigenvalue λ14 is positive (from 
the condition that the drug administration rate can’t be 
less than or equal to the drug decay rate) which shows 
that the equilibrium point E1 is an unstable saddle point.

•	 The Jacobian matrix of the system at equilibrium 
points E2 is:
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E2 is stable if all the eigenvalues are less than zero. 
So, for the stability of E2 we must have λ21<0 and λ22<0 
as the other two eigenvalues are already negative as drug 
administration rate can’t be negative and  0 < η < 1.

 λ21< 0 gives,  
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So, the equilibrium point E2 is stable if condition (3) 
and (4) are satisfied together.

•	 The Jacobian matrix of the system at equilibrium 
points E3 is:
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We observe that the eigenvalue λ34 = α - d2- kT3 is 
always positive for the values in (Table 1). Therefore, the 
equilibrium point is an unstable point.

•	 The Jacobian matrix of the system at E4 becomes:
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where, A=r2 - 2r2 N4 -c4 T4 - a3(1-η) V4, 
B=r1 -2r1 b1 T4 - c2 I4 - c3 N4 - a2 V4, 
C=-d1 + c1 T4 -a1 (1-η) V4,
D= α-2α β V4 -d2 
The characteristic equation of JE

4
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= > λ4 – (A+B+C+D) λ3 + (AB+AC+AD+BC+BD+CD+ 
c1c2I4 T4–ka2 T4 V4–c3 c4 N4 T4) λ

2-{ABC+ABD+ACD+BCD-k 
a1c2 T4V4(1-η) + c1c2I4T4(A+D) -k a2 T4 V4 (A+C)- c3 c4 N4 
T4 (C+D)-k a 3  c3 N4 T4V4 (1-η)} λ+ {ABCD+ c1c2 AD I4 T4 
-k a1 c2 A T4 V4 (1-η)-k a2 AC T4 V4 - c3c4 CD N4 T4 -k a3c3 C 
(1-η) N4T4V4} =0 
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By Routh-Hurwitz stability criteria, E4 is stable when 
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c1c2 I4T4 -k a2 T4V4 - c3c4N4 T4) < {ABC+ABD+ACD+BCD-k 
a1c2T4V4 (1-η) + c1c2 I4T4 (A+D)-k a2 T4V4 (A+C)- c3c4 
N4T4(C+D)-k a3c3N4T4V4 (1-η)} 

(XY-Z)Z - X2W > 0 [- (A+B+C+D)(AB + AC + 
AD+BC + BD + CD + c1c2 I4 T4 - k a2 T4V4- c3c4 N4T4) + 
{ABC+ABD+ACD+BCD - k a1c2T4V4 (1-η) + c1c2I4T4 

(A+D)- k a2 T4V4(A+C)- c3c4 N4 T4 (C+D)- k a3c3 N4T4V4 (1 
- η)}] {ABC+ABD+ACD+BCD - k a1c2T4V4 (1 - η) + c1c2I4T4 
(A+D)- k a2T4V4 (A+C) - c3c4N4T4 (C+D)- k a3c3 N4 T4V4 (1 
- η)} + (A+B+C+D)2 {ABCD + c1c2 AD I4T4 - k a1 c2 A T4 V4 
(1 - η)- k a2AC T4V4 - c3c4CD N4T4- k a3c3 C (1 - η) N4 T4V4} <0

6. � Possibility of Hopf Bifurcation 
at the Equilibrium Points

Mathematically, Hopf bifurcation occurs when a system has a 
pair of purely imaginary conjugate eigenvalues of the Jacobian 
matrix at an equilibrium point when the corresponding 
parameter value is changed. Physically occurrence of Hopf 
Bifurcation means the existence of a limit cycle, which is an 
isolated periodic solution of a non-linear system. Therefore, 
we are interested to study whether such a parameter value 
exists in our considered nonlinear system.
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 �In this section, we check for the possibility of Hopf 
bifurcation arising from the equilibrium point E

1
. We 

evaluate the characteristic equation of the Jacobian 
matrix JE

1 
of the system which is found to P (λ) = λ4 + 

p1λ
3 + p2λ

2 + p3λ+ p4

where, p1=-(-r2 +r1 - c2 s ⁄ d1- c3- d1 +α- d2)
p2= -(r2+ d1) (r1- c2 s ⁄d1- c3) + r2 d1-(r2+ d1) (α- d2)+ 

(r1- c2s  ⁄ d1- c3)(α- d2)
p3=- {r2(r1- c2 s ⁄d1- c3) d1- (r2+ d1) (r1- c2 s ⁄d1- c3)

(α-d2)+ r2d1(α- d2)}
And p4= r2(r1- c2 s ⁄d1-c3) d1(α- d2)
By Hurwitz criteria if (p1p2-p3) p3- p4 p1

2 =0, then 
Hopf bifurcation may occur at E1

35. Taking parameter 
values from (Table 1), the condition (p1p2-p3) p3- p4 p1

2 
=0, gives three values of the drug administration rate 
α out of which one value is negative and the other two 
are biologically meaningful values of α. Now we check 
for the possibility of Hopf bifurcation corresponding to 
these two biologically meaningful points. It is found that 
corresponding to these two values of α, the eigenvalues of 
the Jacobian matrix are real number and so, there is no 
Hopf bifurcation occurring at the equilibrium point E1. 
The mathematical evidence is provided below.
 �Here, Characteristic equation of the Jacobian 

matrix JE
2

P(λ) = λ4+ q1λ
3+ q2λ

2+ q3 λ+ q4

We apply the Hurwitz criteria, 
(q1q2- q3) q3- q4 q1

2 =0� (5)
Where,
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After solving the Equation (5), we get 12 values of the 
drug administration rate α. One value is negative, eight 
values are imaginary and three values are positive and out 
of these three positive values, two values are less than the 
natural decay rate of the drug. That is there are only one 
biologically meaningful values of α obtained on solving 
the condition 5. So, we check for the possibility of Hopf 
bifurcation corresponding to this biologically meaningful 
point. It is found that corresponding to this value of α, 
the eigenvalues of the Jacobian matrix are a real number 
which confirm that there is no Hopf bifurcation occurring 
at the equilibrium point JE

2

 �For the Jacobian matrix at E3 one of the eigenvalue λ34 =α- 
d2-k T3 is always positive and the other three eigenvalues 
can be derived from the equation, λ3 + m1λ

2 + m2λ + 
m3

 =0
where, m1=-{(-r2 + c4 T3)+(r1-2 r1b1T3-c2I3-c3N3)+ (c1T3-d1)} 

m2= (r1-2 r1b1T3-c2I3-c3N3)(c1T3- d1)+c1c2I3T3+(-r2+ c4T3)
(c1T3- d1)+ (-r2+ c4T3)(r1-2 r1 b1T3- c2I3 -c3 N3)-c3c4 N3

=-{(-r2+c4 T3){(r1-2 r1b1 T3-c2I3 -c3 N3)(c1T3-d1)+c1 
c2I3T3}-c3 c4 N3 T3 (c1 T3-d1)}

For valid values of T3 i.e. where, T3 is non-negative, we 
get m1m2- m3≠0. Thus, the Hurwitz criteria, m1m2-m3=0 for 
the parameter values taken from the Table 1 is not satisfied as 
drug administration can’t be negative. Hence, there is no Hopf 
bifurcation arising from E3.
 �The fourth co-existing equilibrium point is given by:
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Here, T4 is determined by the Equation,

( )
( )

2
4

1 1 1 1 1 2 4 1 4

2 4 4 3 2 43 2 2 4

1 1 2 1 1

c1 s
T = - -

b r b d +a (1- ) -d -kT -c T

r -c T -a (1- ) -d -kTc a -d -kT
-

r b r r b

αβ
αβ η α αβ

αβ αβ η α α
αβ αβ

 
  
 

   
   

  

=> A2T4 
2+ B2T4 + C2=0

where, A2= (c3c4 αβ+ a2 r2 k- r1r2b1αβ- c2 a3 k (1-η))(c1 

αβ+ a1k (1-η))
B2= (r1r2 αβ- c3 r2αβ+ (c3a3 (1-η)- a2r2) (α- d2))(c1αβ+ a1 

(1-η) k )-(c3c4 αβ+ a2r2k- r1r2b1αβ- c2a3k (1-η))
(d1 αβ+ a1 (1-η)(α- d2))
C2= c2r2s α2 β2-(r1r2 αβ- c3r2 αβ+ (c3a3 (1-η)- a2r2)(α-d2))

(d1αβ+ a1 (1-η)(α- d2))
For the existence of  the discriminate must be positive 

i.e. B2
2 -4 A2C2≥0 which gives the following possible range 

for the drug administration rate α (for the parameter 
values in Table 1):

α ≤−4.35701, 0.0089987 ≤ α ≤ 0.0292904 and α ≥ 
4.44415. 

But all the above ranges are not biologically feasible as the 
first range gives the negative value of drug administration 
rate α, the second range shows that the drug administration 
rate α is lower than the natural decay rate  for the drug and 
finally for the third range the value of N4 becomes negative 
and so discarded. 

Thus, for the parameter values taken from (Table 1), the 
equilibrium point E4 does not exist and hence the possibility 
of Hopf bifurcation at E4 does not arise.

7. � Global Stability Analysis of the 
Tumour-Free Equilibrium Point  
E2

In this section, we show that the tumour free equilibrium 
point E2 is globally asymptotically stable if 1 2

min
2 3

r +r
 N >

r +c

, 

where, Nmin denotes the minimum number of normal 
cells. 

To prove this, we construct a Lyapunov function of 
the form W (N,T) = (N-N2)

2 + (T- T2)
2, which is positive 

definite and continuously differentiable for all positive 
bounded values of N and T. That is W (N2, T2)=0, and W 
(N,T) >0 ∀ (N,T) in an isolated neighbourhood of (N2,T2) 
[N2 and T2 corresponds to the equilibrium point E2]

We have W=2 (N- N2) N +2(T- T2) T 
�=2 (N- N2)(r2N (1-N)-c4 TN- a3 (1-η) VN) +2 (T-T2)
(r1 T (1- b1T)-c2IT-c3 TN- a2VT)
�≤2N (N- N2) (r2 (1-N)-c4T)+2 T (T-T2)(r1(1-b1T)- c3N)
�≤2 N2

 (r2 (1-N)- c4T)+2T2 (r1 (1- b1 T)- c3 N) [Since 
N-N2≤N, T2=0]
�≤2(r2(1-N)-c4T)+2 (r1 (1-b1T)-c3N) [Since N, T≤1]
�≤2 (r2(1-Nmin)-c4 Tmin)+2(r1(1-b1 Tmin)-c3 Nmin)
≤ (r1+r2)- (r2 + c3) Nmin - (r1 b1+c4) Tmin

where, Nmin and Tmin denotes the minimum normal 
cell and tumour cell population that can be present in the 
body respectively. It is easy to see that Tmin = 0. 

Hence, W < 0 on imposing the condition 

( ) ( ) 1 2
1 2 2 3 min min

2 3

r +r
r +r - r +c N <0 i.e N > =K

r +c
 (say)

Now when t→∞ and Nmin  >K, T→0 and under this 
limiting condition the equation corresponding to the 
drug administration becomes ( ) 2

dV
= V 1- V -d V

dt
α β  with 

the limiting solution ( ) *2-d
V t =V

α→
αβ

 (say)

Again under the above limiting conditions, the 
equation corresponding to the immune cells becomes   

*
1 1

dI
=s-d I-a (1- )V I

dt 
η

 with the limiting solution 

( ) ( )1 1 2

s
I t

d +a -d (1- )

αβ→
αβ α η

Therefore, imposing the condition 1 2
min

2 3

r +r
 N >

r +c
, the 

tumour-free equilibrium point E2 can be made globally 
asymptotically stable if the conditions for its local stability 
are satisfied which was discussed in Section 5.

8.  Numerical Simulation
Verification of our results has been done through 
numerical simulations viz. time series plots and phase 
diagrams. Considering the parameter values taken from 

..

.
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(Table 1) and the rate of drug administration to be α = 
.054, the trajectory of the system is drawn in the (Figure 
1) for different initial points which show that the solution 
of the system approaches asymptotically to the coexisting 
equilibrium point E4 = (0.86,0.117,0.26,0.075). Thus, if 
the rate of drug administration is α = .062, coexisting 
equilibrium point E4 goes to tumour free equilibrium E2 

as shown in Figure 2(c).

(a)

(b)

(c)

Figure 1.  �Time series of the solution of system (a) 
trajectories of Normal cells as a function of time, 
(b) trajectories of Tumour cells as a function 
of time, (c) trajectories of Immune cells as a 
function of time and (d) trajectories of drug 
administration as a function of time for the 
different initial condition.

(d)

(a)

(b)
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9.  Conclusion
In this paper, we have proposed a new nonlinear 
ordinary differential equation model involving immune-
tumour-normal cells and studied the effect of targeted 
chemotherapy. We find that the equilibrium points of 
the system and derived the conditions for local stability 
at each of the equilibrium points. We also derived 
the condition for global stability of the tumour free 
equilibrium point  by constructing a Lyapunov function. 
Local stability of an equilibrium point would imply that 
the disease would be eliminated only for short time 
(provided certain conditions are satisfied) whereas global 
stability implies that the disease finally dies out, again, of 
course under certain conditions. Using Hurwitz criterion 
and numerical calculation, it has been shown that no 
Hopf bifurcation can arise at each of the biologically 
feasible equilibrium points, which mean that there is 
no isolated periodic solution or limit cycle surrounding 
the equilibrium points, as certain considered parameter 
value change. Some numerical simulations were shown 
in support of the analytical results. In our numerical 
simulation, we found the value of drug administration 
for which the coexisting equilibrium is going for tumour 
free equilibrium. More particularly, it is seen that if the 
value of α = 0.062, the tumour can be eradicated from the 
body. Of course, the study can be made more effective and 
realistic if we can use parameter values after estimating the 
feasible domain of the each of the parameters mentioned 

in Table 1 and then use different drug administration 
schedule depending on those biologically feasible 
parameter values. Moreover, incorporation of time lag in 
the immune cell-tumour cell interaction in the model can 
give better results. We will carry out these studies in our 
future research work.
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