Open Access Open Access  Restricted Access Subscription Access
Open Access Open Access Open Access  Restricted Access Restricted Access Subscription Access

Structure Characterization, Spectroscopic investigation and Nonlinear Optical Study using Density Functional Theory of (E)-1-(4-Chlorophenyl)-3-(4-methylphenyl) prop-2-en-1-one


Affiliations
1 Department of Physics, Hirasugar Institute of Technology, Nidasoshi - 591236, Karnataka, India., India
2 K. L. E. Institute of Technology, Opposite Airport, Gokul, Hubballi - 580030, Karnataka, India., India
3 B.L.D.E.A’S, S. B. Arts and K. C. P. Science College Vijayapur - 586103, Karnataka, India., India
     

   Subscribe/Renew Journal


The structural confirmation of the (E)-1-(4-Chlorophenyl)-3-(4-methylphenyl)prop-2-en-1-one compound is done by experimental techniques. Experimental techniques FTIR, proton NMR, UV-Visible, performed for the compound. The experimentally obtained results are compared with theoretically (density functional theory) obtained results. The decomposition and melting point of the compound is obtained by TGA and DTA. Density functional theory is performed for the (E)-1-(4-Chlorophenyl)-3-(4-methylphenyl)prop-2-en-1-one compound B3LYP/6-311G++(d,p) basis set. Time dependent density functional theory calculated for three different methods B3LYP, Hartree-Fock and CAMB3LYP also employed for the MLCC at 6-311G++(d,p) basis set. The MLCC compound is having the total dipole moment 4.45 D. The static (ω=0.0) mean polarizability 17.40 x10-24 esu, anisotropic polarizability 23.37 x10-24esu, first hyperpolarizability 11.84 x10-30 esu, second hyperpolarizability 11.88x10-36 esu. Dynamic mean polarizability (ω=0.0569, ω= 0.04282) 17.84 x 10-24esu, 17.65x10-24esu. Dynamic anisotropic polarizability (ω=0.0569, ω= 0.04282) 24.26 x 10-24esu, 23.86 x10-24esu. Dynamic first hyperpolarizability (ω=0.0569, ω= 0.04282) 18.60 x 10-30 esu, 15.06 x10-30 esu. Dynamic second hyperpolarizability (ω=0.0569, ω= 0.04282) 35.37x10-36 esu, 20.0x10-36 esu.

Keywords

DFT Study, Nonlinear optical study, FTIR, 1H NMR, Chalcone
Subscription Login to verify subscription
User
Notifications
Font Size


  • J. Yao, B. Zhang, C. Ge, S. Peng, J. Fang, J. Agric. Food Chem. 63 (2015) 1521-1531. https://doi.org/10.1021/jf505075n
  • O.S. Moustafa, R.A. Ahmad, Phosphorus, Sulfur, and Silicon and Relat. Elem. 178 (2003) 475-484.
  • https://doi.org/10.1080/10426500307933
  • M. Shkir, S. Muhammad, S. AlFaify, A. Irfan, P.S. Patil, M. Arora, H. Algarni,Z. Jingping, RSC Adv. 5 (2015) 87320-87332.DOI: 10.1039/C5RA13494C
  • S.D. Smith, Lasers, nonlinear optics and optical computers, Nature 316 (1985) 319–324. https://doi.org/10.1038/316319a0
  • Y. Goto, A. Hayashi, Y. Kimura, M. Nakayama, Second harmonic generation and crystal growth of substituted thienyl chalcone, J. Cryst. Growth 108 (1991) 688–698. https://doi.org/10.1016/00220248(91)90249-5
  • W.T. Harrison, H. Yathirajan, B. Sarojini, B. Narayana, H.Anilkumar, Do C—H⋯O and C—H⋯π interactions help to stabilize a non-centrosymmetric structure for racemic 2, 3dibromo-1, 3-diphenylpropan-1-one? Acta Crystallogr. Sect. C: Cryst. Struct. Commun. 61 (2005) 728–730. DOI: 10.1107/S0108270105036942
  • G. Zhang, T. Kinoshita, K. Sasaki, Y. Goto, M. Nakayama, Crystal growth of 4-Br-4′- methoxychalcone and its characterization, J.Cryst. Growth 100 (1990) 411–416. https://doi.org/10.1016/00220248(90)90239-H
  • B. Gu, W. Ji, P. Patil, S. Dharmaprakash, Ultrafast optical nonlinearities and figures of merit in acceptor-substituted 3, 4, 5trimethoxy chalcone derivatives: Structure - property relationships, J. Appl. Phys. 103 (2008) (103511-103511-103516).https://doi.org/10.1063/1.2924419
  • A.J. Kiran, H. Lee, H. Ravindra, S. Dharmaprakash, K. Kim, H.Lim, F. Rotermund, Designing novel chalcone single crystals with ultrafast nonlinear optical responses and large multi-photon absorption coefficients, Curr. Appl. Phys. 10 (2010) 1290–1296. DOI:10.1016/j.cap.2010.03.006
  • E.D. D'silva, G.K. Podagatlapalli, S.V. Rao, D.N. Rao, S.M. Dharmaprakash, New, high efficiency nonlinear optical chalcone Co-crystal and structure–property relationship, Cryst. Growth Des.
  • (2011) 5362–5369. dx.doi.org/10.1021/cg2009539 11. P. S. Patil, V. Bhumannavar, M. Bannur, H.N. Kulkarni, G. Bhagavannarayana, Second Harmonic Generation in Some Donoracceptor Substituted Chalcone Derivatives, 2013. DOI: 10.4236/jcpt.2013.33018
  • R. Nithya, N. Santhanamoorthi, P. Kolandaivel, K. Senthilkumar, Structural and spectral properties of 4-bromo-1-naphthyl chalcones: a quantum chemical study, J. Phys. Chem. A 115 (2011) 6594–6602. DOI:10.1021/jp1098393
  • M. Shigeru, M. Makoto, A. Hironaka, O. Susumu, Inhibition of gastric H+, K+- ATPase by the anti-ulcer agent, sofalcone, Biochem. Pharmacol. 42 (1991) 1447–1451. https://doi.org/10.1016/0006-2952(91)90458-H
  • R.J. Anto, K. Sukumaran, G. Kuttan, M. Rao, V. Subbaraju, R. Kuttan, Anticancer and antioxidant activity of synthetic chalcones and related compounds, Cancer Lett. 97 (1995) 33–37. doi: 10.1016/0304-3835(95)03945-s
  • S. Ducki, R. Forrest, J.A. Hadfield, A. Kendall, N.J. Lawrence, A.T. McGown, D. Rennison, Potent antimitotic and cell growth inhibitory properties of substituted chalcones, Bioorg. Med. Chem.
  • Lett. 8 (1998) 1051–1056. DOI:10.1016/S0960-894X(98)00162-0
  • F. Herencia, M.L. Ferrandiz, A. Ubeda, J. Domínguez, J.E.Charris, G.M. Lobo, M.J. Alcaraz, Synthesis and antiinflammatory activity of chalcone derivatives, Bioorg. Med. Chem. Lett. 8 (1998) 1169–1174. DOI: 10.1016/s0960894x(98)00179-6
  • M. Liu, P. Wilairat, M.-L. Go, Antimalarial alkoxylated and hydroxylated chalones: structure-activity relationship analysis, J. Med. Chem. 44 (2001) 4443–4452. DOI: 10.1021/jm0101747
  • S.N. Lopez, M.V. Castelli, S.A. Zacchino, J.N. Domınguez, G. ́ Lobo, J. Charris-Charris,J.C. Cortés, J.C. Ribas, C. Devia, A.M.Rodrıguez, In vitro antifung ́ al evaluation and structure–activity relationships of a new series of chalcone derivatives and synthetic analogues, with inhibitory properties against polymers of the fungal cell wall, Bioorg. Med. Chem. 9 (2001) (1999–2013). DOI:10.1016/S0968-0896(01)00116-X
  • J.-H. Wu, X.-H. Wang, Y.-H. Yi, K.-H. Lee, Anti-AIDS agents 54. A potent anti-HIV chalcone and flavonoids from genus Desmos, Bioorg. Med. Chem. Lett. 13 (2003) 1813–1815. DOI: 10.1016/s0960-894x(03)00197-5
  • L. Mathiesen, K.E. Malterud, R.B. Sund, Antioxidant activity of fruit exudates and C-methylated dihydrochalcones from Myrica gale, Planta Med. 61 (1995) 515–518. DOI: 10.1055/s-2006959360.
  • B. Ramesh , S. V. Kulkarni, B. Someswara Rao. Synthesis and Anti-Inflammatory Activity of 2-Acetyl Thiophene. Asian J. Research Chem. 3(2): April- June 2010; Page 332-334.
  • T. Alwin*, T F Abbs Fen Reji. Synthesis and antioxidant, antibacterial studies on 2-(2-arylaminothiazol-5-oyl)benzofurans. Asian J. Research Chem. 2017; 10(6): 798-802. doi: 10.5958/0974-4150.2017.00133.X
  • K. Prasada Rao, K. Santha Kumari, S. Mohan. Synthesis, Characterization and Antimicrobial activity of Some Flavones. Asian J. Research Chem. 6(2): February 2013; Page 163-165.
  • VA Navale, SS Mokle, Archana Y Vibhute, KG Karamunge, SV Khansole, SB Junne, YB Vibhute. Microwave-Assisted Synthesis and Antibacterial Activity of Some New Flavones and 1, 5Benzothiazepines. Asian J. Research Chem. 2(4):Oct.-Dec. 2009 page 472-475.
  • S. M. Hipparagi, M. D. Bhanushali, S. A. Patil, N. S. Desai. Synthesis and Anti-infective Studies of Some Novel Pyrazoline Derivatives. Asian J. Research Chem. 5(10): October, 2012; Page 1251-1254.
  • P.S. Patil, S. Dharmaprakash, K. Ramakrishna, H.-K. Fun, R.S.S.Kumar, D.N. Rao, Second harmonic generation and crystal growth of new chalcone derivatives, J. Cryst. Growth 303 (2007) 520– 524. DOI: 10.1016/j.jcrysgro.2006.12.068
  • J. Chen, X.Wang, Q. Ren, P. Patil, T. Li, H. Yang, J. Zhang, G. Li, L. Zhu, Investigation of third-order nonlinear optical properties of NNDC-doped PMMA thin films by Zscan technique, Appl. Phys.
  • A 105 (2011) 723–731. DOI 10.1007/s00339-011-6628-1
  • S. Guidara, H. Feki, Y. Abid, Vibrational spectral studies and nonlinear optical propertiesof L-leucine L-leucinium picrate: a density functional theory approach, Spectrochim. Acta A Mol. Biomol.
  • Spectrosc. 115 (2013) 437–444. DOI: 10.1016/j.saa.2013.06.080
  • N. Elleuch, W. Amamou, A.B. Ahmed, Y. Abid, H. Feki, Vibrational spectroscopic study, charge transfer interaction and nonlinear optical properties of Lasparaginium picrate: a density functional theoretical approach, Spectrochim. Acta A Mol. Biomol. Spectrosc. 128 (2014) 781–789. DOI: 10.1016/j.saa.2014.02.159
  • B.G. Johnson, P.M. Gill, J.A. Pople, The performance of a family of density functional methods, J. Chem. Phys. 98 (1993) 5612– 5626. https://doi.org/10.1063/1.464906
  • S. Elleuch, H. Feki, Y. Abid, HF,MP2 and DFT calculations and spectroscopic study of the vibrational and conformational properties of N-diethylendiamine, Spectrochim. Acta A Mol. Biomol. Spectrosc. 68 (2007) 942–947.DOI: 10.1016/j.saa.2007.01.007.
  • Neeti Singh, Ishaat M Khan, Afaq Ahmad. Spectrophotometric and Spectroscopic Studies of Charge Transfer Complexes of mNitroaniline as an Electron Donor with Picric Acid as an Electron Acceptor in Different Polar Solvents. Asian J. Research Chem.2(4):Oct.-Dec. 2009 page 476-484.
  • Afaq Ahmad, Abdulsatar Abduljabbar Rzokee. Preparation and spectroscopic studies of charge-transfer complexes of 2, 2bipyridine and hydroxy benzo pyridine as electron donors with chloranilic acid, 3, 5 di nitro benzoic acid and p-nitro phenol as electron acceptors in methanol. Asian J. Research Chem. 6(8): August 2013; Page 772-793.
  • Noorussaba, Afaq Ahmad. Synthesis, Infrared spectroscopic and Thermal studies of [0.7(Cu2CdI4):0.3(AgIx:CuI(1-x))] of fast-ion conductor (x = 0.2, 0.4, 0.6 and 0.8 mol. wt. %). Asian J. Research Chem 8(2): February 2015; Page 131-140. doi: 10.5958/09744150.2015.00024.3
  • B. JiniKumari, T. F. Abbs Fen Reji. Spectroscopic Investigation, HOMO-LUMO and Mulliken analysis of 2-[2-(Butylamino-4phenylaminothiazol)-5-oyl]benzothiazole by DFT study. Asian J. Research Chem. 2017; 10(6):819-826. doi: 10.5958/09744150.2017.00137.7
  • Bushra Khan, Umbreen Ashraf, Anam Tariq, Mamoona, Rehmana. synthesis and Characterization of Ter-Butyl Chloride and Its Derivatives (Ter-Butyl Zinc Chloride and Ter-Butyl Lead Chloride) By Using TLC, FTIR, UV/VIS and GC/MS Techniques. Asian J. Research Chem. 3(4): Oct. - Dec. 2010; Page 1011-1014.
  • R. R. Pawar, S. B. Nahire. Measurement, Correlation and DFT study for Solubility of Glutaric acid in Water + Ethanol binary solvents at T = (293.15 to 313.15) K. Asian J. Research Chem.2020; 13(3):169-174. doi: 10.5958/0974-4150.2020.00033.4
  • Ram Kumar, Poonam Tandon, P.S.Patil, An Investigation of nonlinear optical properties, electronic behaviour and structureNLO relation of 1,3-Bis(3,4-dimethoxyphenyl)prop-2-en-1-one : A theoretical and computational study, Asian J. Research Chem.2017; 10(2):101-105.DOI: 10.5958/0974-4150.2017.00015.3
  • N. Sudharsana, S. Muthunatesan, G.J. Priya, V. Krishnakumar, R. Nagalakshmi, Experimental and theoretical studies of 2, 5dichloroanilinium picrate, Spectrochim. Acta A Mol. Biomol.Spectrosc. 121 (2014) 53–62. 10.1016/j.saa.2013.10.047
  • A.Reshak,W. Khan, The density functional study of electronic structure, electronic charge density, linear and nonlinear optical properties of single crystal alpha-LiAlTe 2, J. Alloys Compd. 592 (2014) 92–99. https://doi.org/10.1016/j.jallcom.2013.12.251
  • M. Shkir, H. Abbas, Physico chemical properties of L-asparagine L-tartaric acid single crystals: a new nonlinear optical material, Spectrochim. Acta A Mol. Biomol. Spectrosc. 118 (2014) 172– 176. DOI: 10.1016/j.saa.2013.08.086
  • Kumar, V. Deval, P. Tandon, A. Gupta, E.D. D'silva, Experimental and theoretical (FT-IR, FT-Raman, UV–vis, NMR) spectroscopic analysis and first order hyperpolarizability studies of non-linear optical material:(2E)-3-[4-(methylsulfanyl) phenyl]-1- (4-nitrophenyl) prop-2-en-1-one using density functional theory, Spectrochim. Acta A Mol. Biomol. Spectrosc. 130 (2014) 41–53. DOI: 10.1016/j.saa.2014.03.072
  • M. Shkir, H. Abbas, S. Kumar, G. Bhagavannarayana, S. AlFaify, Experimental and theoretical studies on bis (glycine) lithium nitrate (BGLiN): a physico-chemical approach. J. Phys. Chem.Solids 75 (2014) 959–965. DOI:10.1016/j.jpcs.2014.04.013
  • H. Abbas, M. Shkir, S. AlFaify, Density functional study of spectroscopy (IR), electronic structure, linear and nonlinear optical properties of L-proline lithium chloride and L-proline lithium bromide monohydrate: for laser applications, Arab. J.Chem. http://dx.doi.org/10.1016/j.arabjc.2015.02.011.
  • M. Shkir, S. Muhammad, S. AlFaify, Experimental and density functional theory (DFT): a dual approach to study the various important properties of monohydrated L-proline cadmium chloride for nonlinear optical applications, Spectrochim. Acta A Mol. Biomol. Spectrosc. 143 (2015) 128–135. DOI:10.1016/j.saa.2015.02.023
  • Hoong-Kun Fun, P. S. Patil, S. M. Dharmaprakash and Suchad Chantrapromma Acta Crystallographica Section E (2008). E64, o1464. doi:10.1107/S160053680801324X
  • J. Tauc, The Optical Properties of Solids, Academic Press, NewYork, 1966.
  • C.S. Nair Lakshmi, S. Balachandran, Dhas D.Arul, Anuf A. Ronaldo, Joe I. Hubert. "DFT Analysis on Spectral and NLO properties of (2E)-3-[4-(dimethylamino) phenyl]-1-(naphthalen-2-yl) prop-2-en-1-one; a D-π-A Chalcone Derivative and its Docking studies as a potent Hepatoprotective agent", Chemical Data
  • Collections, 2019. 10.1016/j.cdc.2019.100205
  • H.A. Kurtz, J.J.P. Stewart, K.M. Dieter, Calculation of the nonlinear optical properties of molecules, J. Comput. Chem. 11 (1990) 82–87. https://doi.org/10.1002/jcc.540110110
  • G. Maroulis, Hyperpolarizability of H2O, J. Chem. Phys. 94 (1991) 1182–1190. https://doi.org/10.1063/1.460025 .

Abstract Views: 70

PDF Views: 0




  • Structure Characterization, Spectroscopic investigation and Nonlinear Optical Study using Density Functional Theory of (E)-1-(4-Chlorophenyl)-3-(4-methylphenyl) prop-2-en-1-one

Abstract Views: 70  |  PDF Views: 0

Authors

Virupakshi M. Bhumannavar
Department of Physics, Hirasugar Institute of Technology, Nidasoshi - 591236, Karnataka, India., India
Virupakshi M. Bhumannavar
K. L. E. Institute of Technology, Opposite Airport, Gokul, Hubballi - 580030, Karnataka, India., India
Parutagouda Shankaragouda Patil
B.L.D.E.A’S, S. B. Arts and K. C. P. Science College Vijayapur - 586103, Karnataka, India., India
Neelamma B. Gummagol
K. L. E. Institute of Technology, Opposite Airport, Gokul, Hubballi - 580030, Karnataka, India., India

Abstract


The structural confirmation of the (E)-1-(4-Chlorophenyl)-3-(4-methylphenyl)prop-2-en-1-one compound is done by experimental techniques. Experimental techniques FTIR, proton NMR, UV-Visible, performed for the compound. The experimentally obtained results are compared with theoretically (density functional theory) obtained results. The decomposition and melting point of the compound is obtained by TGA and DTA. Density functional theory is performed for the (E)-1-(4-Chlorophenyl)-3-(4-methylphenyl)prop-2-en-1-one compound B3LYP/6-311G++(d,p) basis set. Time dependent density functional theory calculated for three different methods B3LYP, Hartree-Fock and CAMB3LYP also employed for the MLCC at 6-311G++(d,p) basis set. The MLCC compound is having the total dipole moment 4.45 D. The static (ω=0.0) mean polarizability 17.40 x10-24 esu, anisotropic polarizability 23.37 x10-24esu, first hyperpolarizability 11.84 x10-30 esu, second hyperpolarizability 11.88x10-36 esu. Dynamic mean polarizability (ω=0.0569, ω= 0.04282) 17.84 x 10-24esu, 17.65x10-24esu. Dynamic anisotropic polarizability (ω=0.0569, ω= 0.04282) 24.26 x 10-24esu, 23.86 x10-24esu. Dynamic first hyperpolarizability (ω=0.0569, ω= 0.04282) 18.60 x 10-30 esu, 15.06 x10-30 esu. Dynamic second hyperpolarizability (ω=0.0569, ω= 0.04282) 35.37x10-36 esu, 20.0x10-36 esu.

Keywords


DFT Study, Nonlinear optical study, FTIR, 1H NMR, Chalcone

References