Open Access Open Access  Restricted Access Subscription Access
Open Access Open Access Open Access  Restricted Access Restricted Access Subscription Access

Ab initio Calculations of Structural and Electronic Properties of Pt3 and Cu3 clusters adsorbed on ZnO(000 ̅1)


Affiliations
1 Ecole Normale Supérieure de Ouargla, 30000 Ouargla, Algeria., India
2 Ecole Normale Supérieure de Ouargla, 30000 Ouargla, Algeria ., India
3 Larbi Tebessi University, Tebessa, Laboratoire de Physique Appliquée et Théorique, Route de Constantine 12002 Tebessa, Algeria., India
4 Laboratoire de Développement des Energies Nouvelles et Renouvelables dans les Zones Arides et Sahariennes, Faculté des Mathématiques et des Sciences de la Matière, Université Kasdi Merbah Ouargla, Ouargla 30000, AlgérieTebessi University, Tebessa, Laboratoire de Physique Appliquée et Théorique,, India
     

   Subscribe/Renew Journal


This search paper is focus on the investigation of the most stability structures of Pt3 and Cu3 clusters adsorbed on ZnO (000 ̅1) surfaces in the Wurtzite stable structure. The results are obtained by using the Density Function Theory (DFT). All the calculations are performed using the Gradient Generalized Approximation to describe the exchange correlation term in SIESTA code. From this work we found new structures of Pt3 and Cu3 clusters with lowest energy. Also we have calculated the binding energy, relaxation interlayer for each cluster, bond lengths, vertical ionization potential PIv and the density of states DOS. Through the results we found that the Pt3 cluster is more stable than Cu3 cluster and confirmed by the DOS, in the other hand the ZnO-O surface is more stable than ZnO-Zn surface. The computed electron structure and DOS illustrate that the Pt3/ZnO and Cu3/ZnO clusters adsorbed on ZnO-O surfaces display metallic characteristics.

Keywords

Ab initio calculations, Pt3 and Cu3 clusters, ZnO surfaces, Stability structure, electronic properties, catalysis.
Subscription Login to verify subscription
User
Notifications
Font Size


  • Goldberger J, Sirbuly DJ, Law M, Yang P. ZnO nanowire transistors. J. Phys. Chem B. 2005; 109(9): 9-14.doi.org/ 10.1021/jp0452599
  • Keis K, Vayssieres L, Lindquist SE, Hagfeldt A. Purpose-Built Anisotropic Metal Oxide Material: 3D Highly Oriented Microrod Array of ZnO. Phys. Chem B. 2001; 105(17):3350-3352. doi.org/10.1021/jp010026s
  • Wan Q, Li QH, Chen YJ, Wang TH, He XL, Li JP, Lin CL. Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors. Appl. Phys. Lett. 2004; 84: 3654-3656. doi:10.1063/1.1738932
  • Kind H, Yan HQ, Messer B, Law M, Yang PD. Nanowire ultraviolet photodetectors and optical switches. Adv. Mater. 2002; 14(2): 158-160. doi.org/10.1002/1521-4095(20020116)
  • Sakthivel S, Neppolian B, Shankar MV, Arabindoo B, Palanichamy M, Murugesan V. Solar photocatalytic degradation of azo dye: comparison of photocatalytic efficiency of ZnO and TiO2. Sol. Energy Mater. Sol. Cells. 2003; 77(1):65-82. doi.org/10.1016/S0927-0248(02)00255-6
  • Varughese G, Crysty VG, Praveen G, Usha KT, Kumar AS. Characterization and Elastic properties of wurtzite ZnO: Ce Nanocrystallites. Asian J. Research Chem. 2015; 8(3):183-189. doi:10.5958/0974-4150.2015.00033.4
  • Arora Ak, jaswal VS,Bala R. Metal/Mixed Metal Oxides and their Applications as Catalyst. Asian J. Research Chem .2018;(6): 893899. dOI:10.5958/0974-4150.2018.00155.4
  • Sangari NU. A Brief Review on the Applications of ZnO and Tio2 in Photocatalysis and their Modification with β-Cyclodextrin. Asian J. Research Chem. 2018;(11):681-690. doi :10.5958/09744150.2018.00121.9.
  • Kokate K.K, Kulkarni S, Bhandarkar S.E. Synthesis, Characterization of PEDOT-Metal Oxides Nanocomposites and use of PEDOT-ZnO nanocomposite as the Photoanode in Dye sensitized solar cells (DSSC). Asian J. Research Chem. 2018; 11(1):91-102.doi:10.5958/0974-4150.2018.00020.2
  • Arora A.K, Metal/ Mixed Metal Oxides and Their Applications as Sensors. Asian J. Research Chem. 2018; 11(2):497-504, doi: 10.5958/0974-4150.2018.00089.5
  • Sehar S, Amiza, Khan I.H. Role of ZnO Nanoparticles for improvement of Antibacterial Activity in Food Packaging. Asian Journal of Pharmaceutical Research. 2021; 11(2): doi: 10.52711/2231-5691.2021.00024
  • Ananthalakshmi R, Xavier Rajarathinam S.R, Sadiq A.M. Antioxidant activity of ZnO Nanoparticles synthesized using Luffa acutangula peel extract. Research J. Pharm and Tech. 2019; 12(4):1596-1572.doi.10.5958/0974 360X.2019.00260.9
  • Devi B, Madhavi B, Raghava Sharma G.V. Multi Component Reactions (MCR): Nano ZnO catalysed efficient synthesis of Novel Thiazolidinones. Asian J. Research Chem.2019; 12(6):317321.doi.10.5958/0974-4150.2019.00058.0
  • Kamal BAF, Mahdi AS, Ahmed AA, Ali DA,. Dawood KM. Adsorption Isotherms, Kinetics and Thermodynamic studies of Vat Brown 16 Dye using ZnO and Nano-ZnO Particles. Research j.
  • Pharm and Tech. 2018; 11( 9):4613-4618.doi.10.5958/0974360X.2018.00735.7
  • Kulkarni S, Asian Journal of Pharmaceutical Research j. Pharm and Tech Lukose RM. Toxic Effect of Nanoparticles of Metals (Pb,Cd, Ag,Mn,Fe and Zn) and Metal Oxides (ZnO, CuO,TiO2 and CeO2) in Human Body. Asian J. Research Chem.2013; 6(12):1179-1182.doi. Not Available
  • Hu J, Guo WP, Shi XR, Li BR, Wang JG. Copper deposition and growth over ZnO nonpolar (1010) and (1120) surfaces: a density functional theory study. J. Phys. Chem. C. 2009; 113():7227-7233. doi.org/10.1021/jp809517f
  • Ney V, Ye S, Kammermeier T, Ney A, Zhou H, Fallert J, Kalt H, Lo FY, Melnikov A, Wieck AD. Structural, magnetic, and optical properties of Co-and Gd-implanted ZnO (0001) substrates. J. Appl. Phys. 2008; 104(8):083904-083910. doi.org/10.1063/1.3000452
  • Lazcano P, Batzill M, Diebold U, Haberle P. Oxygen adsorption on Cu∕ZnO(0001)-Zn. Phys. Rev B. 2008; 77(3):035435-035443. doi.10.1103/PhysRevB.77.035435
  • Phala NS, Klatt G, van Steen E, French SA, Sokol AA, Catlow CRA. The nature of the oxidation states of gold on ZnO. Chem. Chem. Phys. 2005; 7(12) 2440-2445. doi: 10.1039/B501266J.
  • Campbell CT. Ultrathin metal films and particles on oxide surfaces: structural, electronic and chemisorptive properties. Surf.Sci. Rep. 1997; 27(1):1-111.doi. 10.1016/S0167-5729(96)00011-8
  • Yoshihara J, Parker SC, Campbell CT. Island growth kinetics during vapor deposition of Cu onto the Zn-terminated ZnO(0001) surface. Surf. Sci. 1999; 439(1-3) 153-62. doi.org/10.1016/S00396028(99)00752-9
  • Freund HJ. Clusters and islands on oxides: From catalysis via electronics and magnetism to optics. Surf. Sci. 2002; 500(13):271-299.doi. 10.1016/S0039-6028(01)01543-6
  • Haruta M. When Gold Is Not Noble: Catalysis by Nanoparticles. Chem. Rec. 2003; 3(2):75-87. doi.org/10.1002/tcr.10053.
  • Nakajima H, Mori T, Watanabe M. Ultraviolet emission blueshift of ZnO related to Zn. J. Appl. Phys. 2007; 101(12): 126103.doi.org/10.1063/1.1757649
  • Subramanian V, Wolf EE, Kamat PV. Catalysis with TiO2/Gold Nanocomposites. Effect of Metal Particle Size on the Fermi Level Equilibration. J. Am. Chem. Soc. 2004; 126(15): 49434950.doi.org/10.1021/ja0315199
  • Parthasarathi Bera, Vohs J M. Growth and structure of Pd films on ZnO(0001). j. chem.phys. 2006; 125(16):164713, doi.org/10.1063/1.2363186
  • Martins JBL, Longo E, Taft CA. CO2 and NH3 interaction with ZnO surface: An AM1 study. Int. J. Quant. Chem. 1998; 70(2):367-374.doi.org/10.1002/(SICI)1097-461X
  • Dai XQ, Yan HJ, Wang JL, Liu YM, Yang ZX, Xie MH. The Effect of Cu on O Adsorption on a ZnO(0001) Surface: A FirstPrinciples Study. J. Phys. Condens. Matter. 2008; 20(9): 095002.doi.org/10.1088/0953-8984/20/9/095002
  • Persson P, Ojamäe L. Periodic Hartree–Fock study of the adsorption of formic acid on ZnO (1010). Periodic, Chem. Phys.Lett. 2000; 321(3-4): 302-308. doi.org/10.1016/S00092614(00)00347-X
  • Gyorgy E, Santiso J, Figueras A, Giannoudakos A, Kompitsas M, Mihailescu IN, Ducu C. Au cluster growth on ZnO thin films by pulsed laser deposition. Appl. Surf. Sci. 2006; 252(13):44294432.doi.10.1016/j.apsusc.2005.07.148
  • Vanderbilt D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev B. 1990; 41(11); 7892- 7895.doi.org/10.1103/ 41.7892
  • Perdew JP, Burke SM, Ernzerhof H. Generalized Gradient Approximation Made Simple Phys. Rev. Lett. 1996;77(18):38653869.doi.org/10.1103/PhysRevLett.77.3865
  • Sánchez - Portal D, Ordejón P, Artacho E, Soler JM. DensityFunctional Method for Very Large Systems with LCAO Basis Sets. Int. J. Quant. Chem. 1997; 65(5):453-461.doi.org/10.1002/(SICI)1097
  • Bates CH, White WB, Roy R. New High-Pressure Polymorph of Zinc Oxide. Science. 1962; 137(3534):993-996.doi.org/10.1126/science.137.3534.993
  • Tafoughalt MA, Samah M. Density functional investigation of structural and electronic properties of small bimetallic silver–gold clusters. Physica B. 2012;407(12):2014-2024.doi 10.1016/j.physb.2012.01.131
  • Corain B, Schmid G, Toshima N. Metal nanoclusters in catalysis and materials science. Elesvier. 2008. doi.org/10.1016/B978-0444-53057-8.X5001-6
  • Bunn CW. The lattice-dimensions of zinc oxide. Proceedings of the Physical Society. 1935; 47(5): 835-842. doi:10.1088/0959-5309/47/5/307
  • Khan AA. X-ray determination of themal expansion of zinc oxide. Acta Crystallographica Section A. 1968;403(24).doi.10.1107/s0567739468000793.
  • Ozgur U, Ozgur U, Alivov YI, Liu C, Teke A, Reshchikov MA, Dogan S, Avrutin V,. Cho SJ, Morkoc H, A Comprehensive Review of ZnO Materials and Devices. Journal of Applied Physics. 2005; 98(4):041301-041326. doi:10.1063/1.1992666
  • Huber ES, Hellstrom M, Probst M, Hermansson K, Broqvist P. Chemistry and Physics of Cu and H2O on ZnO Surfaces. Surface Science. 2014; 628(6):50-61. doi.1651-6214ISBN 978-91-554- 9111-6urn
  • Oba F, Togo A, Tanaka I, Defect energetics in ZnO: A hybrid Hartree-Fock density functional study. Phys. Rev.B. 2008; 77(24): 245-202-6,. doi.org/10.1103/PhysRevB.77.245202
  • SRIVASTAVA A, TYAGI N. Pressure Induced Phase Transitions in 1-D ZnO nanocrystal: Ab initio study. International Journal of Nanoscience. 2012; 11(5) 1250035-7. doi.org/10.1080/08957959.2012.686613.
  • Kisi E, Elcombe MM. u parameters for the wurtzite structure of ZnS and ZnO using powder neutron diffraction. Acta Crystallogr. C. 1989; 45:1867-1870. doi.org/10.1107/S0108270189004269
  • Wander A, Schedin F, Steadman P, Norris A, McGrath R, Turner TS, Thornton G, Harrison NM. Stability of Polar Oxide Surfaces.physical Review Letterrs. 2001;86()3811- 7.doi.org/10.1103/PhysRevLett.86.3811
  • Dulub O, Diebold U, Kresse G. Novel Stabilization Mechanism on Polar Surfaces: ZnO(0001)-Zn. Phys. Rev. Lett. 2003; 90(1):016102. doi.org/10.1103/PhysRevLett.90.016102
  • Landolt H, Borstein R, Hellwege KH, Bimberg D, Schulz M, Weiss H, Madelung O, Landolt-Bornstein numerical data and functional relationships in science and technology. Group 3, Crystal and solid state physics. Semiconductors.1982; 18(10): 1318-1318. Berline. Springer. ISBN: 3540106103 9783540106104.
  • Song DPY, Liang C, Chen MJ, Bai QS. Molecular dynamics study on surface structure and surface energy of rutile TiO2 (110). Appl. Surf. Sic. 2009; 255(11): 5702 5708.doi.org/10.1016%2Fj.apsusc.2008.12.062
  • Yamina B, Abderrahim A, Lazhar B, Lazhar M, Omar B, Abdelouahab O. First-principles Study of Structural and Electronic Properties of Agn and Aun (n=3-4) Clusters Adsorbed on ZnO ̅
  • Surface. Der Pharma Chemica, 2018; 10(2):77-81.doi. not Available .

Abstract Views: 66

PDF Views: 0




  • Ab initio Calculations of Structural and Electronic Properties of Pt3 and Cu3 clusters adsorbed on ZnO(000 ̅1)

Abstract Views: 66  |  PDF Views: 0

Authors

Yamina Benkrima
Ecole Normale Supérieure de Ouargla, 30000 Ouargla, Algeria., India
Abdelkader Souigat
Ecole Normale Supérieure de Ouargla, 30000 Ouargla, Algeria ., India
Yassine Chaouche
Larbi Tebessi University, Tebessa, Laboratoire de Physique Appliquée et Théorique, Route de Constantine 12002 Tebessa, Algeria., India
Zineb Korichi
Ecole Normale Supérieure de Ouargla, 30000 Ouargla, Algeria., India
Mohammed Elbar Soudani
Laboratoire de Développement des Energies Nouvelles et Renouvelables dans les Zones Arides et Sahariennes, Faculté des Mathématiques et des Sciences de la Matière, Université Kasdi Merbah Ouargla, Ouargla 30000, AlgérieTebessi University, Tebessa, Laboratoire de Physique Appliquée et Théorique,, India
Assia Belfar
Ecole Normale Supérieure de Ouargla, 30000 Ouargla, Algeria., India

Abstract


This search paper is focus on the investigation of the most stability structures of Pt3 and Cu3 clusters adsorbed on ZnO (000 ̅1) surfaces in the Wurtzite stable structure. The results are obtained by using the Density Function Theory (DFT). All the calculations are performed using the Gradient Generalized Approximation to describe the exchange correlation term in SIESTA code. From this work we found new structures of Pt3 and Cu3 clusters with lowest energy. Also we have calculated the binding energy, relaxation interlayer for each cluster, bond lengths, vertical ionization potential PIv and the density of states DOS. Through the results we found that the Pt3 cluster is more stable than Cu3 cluster and confirmed by the DOS, in the other hand the ZnO-O surface is more stable than ZnO-Zn surface. The computed electron structure and DOS illustrate that the Pt3/ZnO and Cu3/ZnO clusters adsorbed on ZnO-O surfaces display metallic characteristics.

Keywords


Ab initio calculations, Pt3 and Cu3 clusters, ZnO surfaces, Stability structure, electronic properties, catalysis.

References