
National Conference on Recent Innovations in Computer Science & Communication Engineering, July 2016 

OCRA: Offloading of Code of Recursive Algorithm from 
Smartphone to Cloud to Enhance Performance

Deep Mandal*, Koushik Dey, Debdip Ghosh and Diptabrata Saha

Department of Computer Science and Engineering, RCCIIT, Kolkata – 700015, West Bengal, India; deep.mandal106@gmail.com,  
deykoushik89@gmail.com, debdip20@gmail.com, diptabrata1994@gmail.com

Abstract
Developments in mobile computing have changed user preference for computing in modern era. However, Smartphones have limited resources - 
smaller memory and cache, less powerful processors, limited screen size, etc. Therefore, it take too much time for computational intensive jobs. 
One way of improving performance of Smartphones is to offload its computation intensive tasks to more powerful servers, keeping the GUI to the 
phones9,10. As the Smartphone and the backend server have different Software and Hardware Architectures and different Memory address Space, 
to migrate an executing process we need to clone the Stack, Heap and Process Control Block. In case of Recursive algorithms, additionally, we need 
to migrate the Data and the Control Stacks. A network monitor should check the network condition and take a decision dynamically for offloading. 
This paper introduces a system prototype named OCRA that shows such an offloading scheme using the Tower of Hanoi (TOH)8 as an example. 
The Smartphone is connected to the server through Wi-Fi. The system can perform multiple back and forth offloading between the server and the 
Smartphone. The system uses URLClass Loader3 to load the TOH class once into the JVM from Network at the beginning of the offload and uses Java 
Reflection API4.5 to instantiate and dynamically invoke the Tower of Hanoi methods by examining Stack Object. The system was tested and achieved 
more than 50% improvement in performance for higher values of N (no. of disks) as compared to execution on Smartphone alone.

Keywords: Cloud Computing, JVM, Network Monitoring, Smart Phone

1.  Introduction
In modern era, Smartphone become one of the most important parts of 
human life. However, Smartphone is more advanced than previous but 

it is still slower than any computers or servers. To improve performance 
of execution of a Recursive Algorithm in Mobile we have implemented 
code-offloading mechanism. Code offloading is a process through 
which we can send computation from Smartphone to cloud dynami-

*Author for correspondence

ISBN: 978-93-86005-02-1



Deep Mandal, Koushik Dey, Debdip Ghosh and Diptabrata Saha

Recent Innovations in Computer Science & Communication Engineering 113July 2016 

cally, continue rest of execution or some partial execution in cloud, 
and get the result to the Smartphone. This is used to enhance the per-
formance of Smartphone. For Iterative Algorithms it is much easier to 
offload a code because we need to send only the data to the server to 
resume the execution. But for Recursive Algorithms the complexity is 
higher. Because it is not possible to resume the execution on the server 
if we only send the data. For recursion, we need to send the current 
state and the control stack of computation also. Here we send the con-
trol stack of execution in mobile. Then we reconstruct the tree to the 
server according to the control stack and resuming the execution from 
the state.

2.  Methodology

2.1  Dynamic Class Migration
In our offloading System two versions of the application is designed, one 
is Android version, meant to be run on the phone and another is JAVA 
version that runs on the server. Android uses Java as its Application 
Programming Interface. But it does not use Java Class files. Its compile 
and build process is different from simple Java compilation and build 
process. 

The process we are following to offload class file is given below:

There is a Directory in Android named Assets. Here we can insert •	
anything external to the application. So, here we are inserting our 
simple Java version Tower of Hanoi code.
Then we read the file at runtime in Android and send it as a Byte •	
Stream to the Server.
Server then compiles it by using Java Compiler Class and creates •	
the Class file at runtime. And then by passing the URI of the Class 
file to the URL Class Loader Class we are loading the class inside 
the Server JVM.

Then using the Java Reflection API, we are successfully creating the •	
Object of that loaded Class. And we can also invoke its Methods or 
modify its Fields at Runtime using Java Reflection.

Besides the Tower of Hanoi code offload we are also sending the Stack, 
a custom created Stack Class created by us to resume the Recursive 
algorithm in Server. The process to send the Stack Class is given below. 
For serialization and deserialization at Runtime we are using Google 
Gson API. Because it can create a JSON string to an equivalent Java 
Object. And it can also create a Java Object from a JSON String.

At first we are getting the equivalent JSON string of the runtime •	
Stack Object using Gson in Android.
Then we are sending the string through network to the Server.•	
Then creating the Stack Object at Runtime with the JSON string •	
using Gson which is equivalent to the Object in Android.

2.2  Execution Offloading
Our the system performs execution offloading by suspending the 
thread executing in the mobile devices and captures the state of the 
thread at that moment to send the state over the network to the server. 
At the server end, a new object is build up at the transfer state to start a 
new thread there, to continue the execution at that point where it was 
suspended at the client. 

In our system to offload the execution we need to suspend the Tower 
of Hanoi execution in Android Mobile and then serialize the Tower of 
Hanoi Object and the Stack object. Then send it through the network 
and deserialization is done at Server end. Then using the Stack, we are 
invoking the Tower of Hanoi object methods. In our Android appli-
cation there are three Edit Texts. One Edit Text is used for Server IP 
Address, one is for Port Number and the last one is for Tower of Hanoi 
N. And there are two Buttons. One is for start computation in Mobile. 
Other one is for clear the output. When Start Compute in Mobile 



OCRA: Offloading of Code of Recursive Algorithm from Smartphone to Cloud to Enhance Performance

Recent Innovations in Computer Science & Communication Engineering114 July 2016 

button is clicked then a popup will appear showing the background 
execution progress with an Offload button. When Offload button is 
triggered then following things happens.

Application receives an interruption request.•	
Then the application will complete its execution of current Tower •	
of Hanoi Node.
After completing the execution of the current Node it then inter-•	
rupts the execution.
At last it will offload the Tower of Hanoi and the Stack to the •	
Server.

In the server then the following things happens.

Server receives the Tower of Hanoi and Stack and instantiate its •	
objects.
It will examine the Stack which is holding Control information and •	
as well as Data related to the Control Information.
Then it will resume the Tower of Hanoi execution from the exact •	
point in which it was stopped in the Mobile by popping out the 
Stack.
We are generating Random Numbers then we are checking the •	
no. of Tower of Hanoi moves with the Random Number and if it 
exceeds the Random Number then we are Offloading it. This pro-
cess takes place both in Mobile and Server. Thus we are performing 
Back and Forth Offload.

2.3  Thread Serialization
Java doesn’t support thread serialization, so instead of serializing the 
thread, we serialize the Objects. We are using Google Gson API for 
Object Serialization and Deserialization. Gson is a Java library that can 
be used to convert Java Objects into their JSON representation. It can 

also convert a JSON string to an equivalent Java Object. Gson provides 
simple to JSON() and from JSON() methods to convert Java objects to 
JSON and vice-versa. It supports Java Generics and allow custom rep-
resentation for objects and also supports arbitrarily complex objects. 
JSON (JavaScript Object Notation) is an open standard format that 
uses human readable text to transmit data objects consisting of attri-
bute-value pairs. JSON is a language independent data format and it 
derives from JavaScript. In our system prototype before Serialization of 
Objects in Android Mobile we are suspending the Running Threads that 
are using those Objects because Google Gson is not Thread Safe. Then 
the Gson API gives us a JSON string representation on those Objects. 
After that we are sending those Strings through network to the Server. 
Then Server also uses Gson API to transform those JSON String to Java 
Objects which is a perfect clone of the Client Objects. And then we are 
creating separate Threads for computations using those Objects.

2.4  How Java Reflection is used
Java Reflection is used in our system prototype. When the server is 
setup and started, it opens a socket and goes on an infinite loop and 
waits for client’s request. As soon as the server receives the request 
from client then it reads the required Tower of Hanoi class and Stack 
from the input stream and then by using Java Reflection API, we first 
instantiate the Object of the receiving Tower of Hanoi Class by using 
new Instance() method of the class Class. Then finding a method which 
matches a particular list of arguments by using get Declared Method(). 
Then we are setting the accessibility of the method to true. After that 
we are getting the field variables by using get Declared Field() and again 
setting the accessibility of the fields to true to set the field variables as 
it was in the client machine. Then we are invoking the methods using 
invoke(). So, using Java Reflection we are instantiating the objects of 
the classes which is received through network and dynamically chang-
ing their field variables and invoking the methods of the class.



Deep Mandal, Koushik Dey, Debdip Ghosh and Diptabrata Saha

Recent Innovations in Computer Science & Communication Engineering 115July 2016 

3.  System Design
In the client server architecture, the term client refers to Smartphone 
and server can be available through the local network (desktop or lap-
top connected with Wi-Fi) or internet (cloud server). Transmission 
Control Protocol (TCP) is used to communicate between client and 
server.

Detail division of the client and server process of the system is 
shown in below figure. The components of the clients are as followsz;

APP: User application named OCRA that need to be run in 
Smartphone.

Local Executor: Executes the user application entirely on the 
mobile (if cloud offload button is turned off) or partially for the back 
and forth approach.

Remote Executor: Executes the user application on server if cloud 
offload button is turned on.

Service Requestor: Open a connection with server and requests 
for a service.

Class Sender: Offload the class from the client to the server 
process.

State Sender: Responsible for sending the current state of user app 
from the client mobile to the server.

State Receiver: Responsible for receiving the state of execution 
thread running on the server.

Result Receiver: Receives the result from the server.
The server process are as follows:
Request Acceptor: Responsible for opening a connection and wait-

ing on those connections to accept service request from the client.
Class Receiver: Responsible for receiving the application classes 

from the client’s class sender component.
State Receiver: Responsible for receives the execution state of the 

clients thread on the fly from the state sender components of client.

State Migrator: Sends the execution state of server thread when 
required by the client’s state receiver component on the time of back 
and forth execution.

Executor: Executes the task and send the result to the client’s result 
receiver component.

4.  Experimental Results 
Specification:
Server:	 Processor: �Intel Core i5-3210M CPU @ 2.50GHz 

(2 Cores and 4 Threads) 
	 RAM: 4.00GB
	 System Type: �64-bit Operating System, x64-based  

processor
	 OS: Windows 10
Mobile 1:	 Processor:Qualcomm Snapdragon 410, 1.21G
	 Architecture: 4x ARM Cortex-A53 @ 1.21 GHz
	 RAM: 1.00GB
	 OS: Android 4.4.4

Figure 1.  Client Server Architecture



OCRA: Offloading of Code of Recursive Algorithm from Smartphone to Cloud to Enhance Performance

Recent Innovations in Computer Science & Communication Engineering116 July 2016 

Mobile 2:	 Processor: Qualcomm Snapdragon 801, 2.27GHz
	 Architecture: Krait 400
	 RAM: 3.00GB
	 OS: Android 5.1.1

4.1 Without Interruption (Server vs Mobile)

4.2 � With Offload (Back and Forth) Vs Without 
Offload in Mobile 1

N Avg. exec time in 
mills (Mobile 1)

Avg. exec time in 
mills (Mobile 2)

Avg. exec time in 
mills (Server)

8 7.34 2.5 11.4
9 14.34 6.75 18

10 68.67 12.25 26.5
11 71 27 50.8
12 135 59 61
13 218.34 91.5 114.4
14 366.34 147.25 200.8
15 760.34 312.66 335.6
16 1606.34 522.25 533.33
17 3194.67 1121 936.66
18 5971.34 1893 1749
19 13364 3822.5 3308

N No. of 
Offload

(Back and 
forth)

Part 
Execution 
Time with 

Offload
In Server
(in ms)

Part 
Execution 
Time with 

Offload
In Mobile
1 (in ms)

Overall 
Execution 
Time with 

Offload
(in ms)

Mobile 1 
Execution 

Time 
Without 
Offload
(in ms)

8 2 5 31 249 7.34
9 2 3 19 261.34 14.34

10 4 4 23 286.34 68.67
11 4 8 25 408.67 71
12 4 9 61 479 135
13 6 24 60 520.67 218.34
14 6 21 215 616.34 366.34
15 8 84 260 890.67 760.34
16 8 78 960 1546.67 1606.34
17 10 285 1160 2308.34 3194.67
18 10 286 3718 4776 5971.34
19 12 1088 3695 6254.34 13364



Deep Mandal, Koushik Dey, Debdip Ghosh and Diptabrata Saha

Recent Innovations in Computer Science & Communication Engineering 117July 2016 

4.3 � With Offload (Back and Forth) Vs Without 
Offload in Mobile 2:

N

No. of 
Offload

(Back and 
forth)

Part 
Execution 
Time with 

Offload
In Server
(in ms)

Part 
Execution 
Time with 

Offload
In Mobile 2

(in ms)

Overall 
Execution 
Time with 

Offload
(in ms)

Mobile 2 
Execution 

Time 
Without 
Offload
(in ms)

8 2 4 1 223 2.5
9 2 4 2 198.75 6.75

10 4 5 5 232.5 12.25
11 4 10 20 318 27
12 4 11 30 335 59
13 6 24 65 465.33 91.5
14 6 27 111 519.66 147.25
15 8 105 128 654.25 312.66
16 8 107 420 891 522.25
17 10 311 585 1673.25 1121
18 10 600 883 2186.5 1893
19 12 1205 1857 3532.25 3822.5
20 12 1240 5607 6257.5 7376
21 14 4006 7084 11772.5 19905.3

5.  Future Scope
Currently our system is a prototype but we would like to continue 
our work to make it a complete system for code offloading. We would 
introduce the below features in our system-

A network decision maker that check the network condition before •	
offloading and should make a decision that whether to offload or 
not.
Server should handle multiple clients at a time.•	
System should perform offloading for any recursive algorithm. •	

6.  Conclusion
This paper presents a system prototype that supports dynamic class 
migration as well as offloading of Tower of Hanoi (TOH) computa-
tion for different number of disk from Smartphone to cloud or local 
server. To use the system, user need to install our android app as well 
as run java code in an IDE. Benefits of using the system prototype 
are shown by the result while running the TOH. Result is dependent 
on Round Trip Delay (RTD) that depend on network health. Result 
changed according to the specification of smartphone. Result show 
that by using our system we can achieve more than 50% improvement 
in performance for higher values of N (no. of disks) while offloading 
as compared to execution on Smartphone alone. For lower values of 
N (no. of disks) it is better to not offload the code to the server and 
execute it on the Smartphone.

7.  References
1.	 Das PK, Shome S, Sarkar AK. APPS: Accelerating Performance and 

Power Saving in Smartphones using code offload. 6th IEEE International 
Advance Computing Conference; 2016 Feb. 



OCRA: Offloading of Code of Recursive Algorithm from Smartphone to Cloud to Enhance Performance

Recent Innovations in Computer Science & Communication Engineering118 July 2016 

2.	 Android.widget.EditText class. Available from: http://developer.android.
com/reference/android/widget/EditText.html

3.	 java.net.URLClassLoader class. https://docs.oracle.com/javase/7/docs/
api/java/net/URLClassLoader.html

4.	 java.lang.reflect.Method class. Available from: https://docs.oracle.com/
javase/7/docs/api/java/lang/reflect/Method.html

5.	 java.lang.reflect.Field class. Available from: https://docs.oracle.com/
javase/7/docs/api/java/lang/reflect/Field.html

6.	 java serialization/deserialization library: Gson. Available from: https://
github.com/google/gson

7.	 Android Studio Apk build process. Available from: http://developer.
android.com/sdk/installing/studio-build.html

8.	 Tower of Hanoi. Available from: https://en.wikipedia.org/wiki/Tower_of_
Hanoi

9.	 Cuervo E, Balasubramanian A, Cho D, Wolman A, Saroju S, Chandra R, 
Bahl P. Maui: Making Smartphone last linger with code offload. Mobisys 
’10 Procedings of 8th International Conference on Mobile System, 
Application and Services; 2010 Jun.

10.	 Chun BG, Ihm S, Maniatis P, Naik M, Patti A.Clonecloud: Elastic execu-
tion between mobile devices and cloud. Eurosys ’11 Proceedings of Sixth 
Conference on Computer System, 2011. p. 301–14.

11.	 Kemp R, Palmer N, Kielmann T, Bal H. Cuckoo: A computation offload-
ing framework for smartphone. MOBICASE ’10 Mobile computing, 
Applications, and Services 2010.

12.	 Kosta S, Aucinas A, Hui P, Mortier R, Zhang X. ThinkAir: Dyanamic 
Resource allocation and parallel execution in the cloud for mobile code 
offloading. INFOCOM IEEE Proceedings; Orlando, FL. 2012 Mar 25-30. 
p. 945–53.

13.	 Khan A, Othman M, Madani S, Khan S. A survey of mobile cloud com-
puting application models. Communication Surveys Tutorials, IEEE. 
2013; 16(1):393–413.

14.	 Zhang Y, Huang G, Liu X, Zhang W, Mei H, Yang S. Refactoring 
Android Java code for on demand computation offloading. OOPSLA ’12 
Proceedings of the ACM International Conference on Object Oriented 
Programming Systems Languages and Applications; 2012. p. 233–48.




