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Abstract 
Sheet charge density of AlxGa1-xN/GaN 2DEG structure is analytically computed as a function of material composition. Strain relaxation factor, carrier 
concentration and quantized length of the well are also taken into account for computation purpose. Both spontaneous and piezoelectric polariza-
tions are calculated as function of mole fraction and charge density is determined from the simulated findings. Results are important for calculating 
electrical characteristics of HEMT. 
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1.  Introduction
High Electron Mobility Transistor (HEMT) is one of the preferred 
research area1,2 now-a-days for the device engineers due to the pos-
sibility of microwave and millimeter wave application. Among the 
different materials, nitride based devices are used to form heterostruc-
tures owing to the higher bandgap, higher thermal conductivity, larger 
breakdown voltage, higher electric field3. More precisely, AlxGa1-xN/
GaN material composition is suitable of high frequency and high 
power operation4. By virtue of bandgap engineering, this composition 

is the choicest candidate for HEMT design owing to the formation of 
Two-Dimensional Electron Gas (2DEG)5,6. 

Among the III-V materials, nitride based materials have exhibit the 
polarization properties. Spontaneous polarization arises due to asym-
metric bonding and piezoelectric polarization arises due to mechanical 
stress. Hence from design perspective of the heterostructure based 
devices, it is better to include the effect of polarization while comput-
ing electrical parameters7–9. Ambacher10 and co-workers showed the 
effect of structural parameter and material composition for nitride 
based heterostructures on spontaneous and piezoelectric polarization 
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induced by 2DEG. Works is also carried out to study the effect on sheet 
charge density and well thickness11, where carrier–carrier and carrier–
phonon scattering effects are considered. Polarization effects on effects 
on electronic and optical properties are also investigated12. 

Later, strain relaxation effect of AlGaN barrier layer on conduc-
tion band structure, electron concentration and 2DEG sheet charge 
density is calculated by self-consistent solution of Schrödinger and 
Poisson’s equation13. It is also shown very recently that strain effect can 
be reduced by altering doping concentration in the heterostructure14. 
Current-voltage characteristics are developed considering these effects 
for HEMT and reported15.

In the present paper, sheet charge density of AlxGa1-xN/GaN based 
structure is calculated after evaluating polarization effect and the effect 
of strain relaxation factor, carrier concentration and quantized length 
are taken into consideration. Result will play important role for HEMT 
design.

2.  Mathematical Modeling
Strain (ε) generated due to band-bending at the hetero-interface of 
AlGaN and GaN is given by:
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where a is the in-plane lattice constant and r is the amount of strain 
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Therefore, the total polarization vectors for GaN and AlGaN are given by:

	 P GaN P GaNTz sp( ) ( )= � (3.1)

	 P AlGaN P AlGaN P AlGaNTz sp pz( ) ( ) ( ) = + � (3.2)

The total hetero-interface charges (σ) can be computed for the AlGaN 
surface and the AlGaN/GaN interface given as:
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where the total piezoelectric polarization of AlGaN layer is given as: 

	
P AlGaN 2

a 0 a
pz 31 33

13( )
( ) (x)

=
−

−
a x( )












e e

c
c33

� (5.1)

	
P AlGaN 052sp 0 29( )== − . − .0 x � (5.2)

	
P GaN 0 029sp( )== − . � (5.3)

where a(0) and a(x) are the lattice constants, c13 and c33 are the elastic 
constants, e31 and e33 are piezoelectric constants. In the above expres-
sion, it has been assumed that GaN layer is fully relaxed. 
The 2DEG density of the AlGaN/GaN HEMT can be written as:

	
n

t

t d

AlGaN AlGaN
0 0

AlGaN 0
s =

− +

+

s ee ee D
q

E AlGaNB cf
q2 ( )

� (6) 

where the symbols have usual significances. 
Sheet resistance of the 2DEG is given by:
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3.  Results and Discussions
Based on the mathematical formulation as mentioned in the previous 
section of this paper, spontaneous and piezoelectric polarizations are 
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first calculated as a function of material parameters. Figure 1 shows 
the variation of Al concentration with spontaneous polarization for 
the structure. The graph shows that spontaneous polarization varies 
inversely with the Al concentration. Figure 2 shows the variation of 
piezoelectric polarization where it is seen that the variation of Al con-
centration is directly proportional to the piezoelectric polarization. 
The plot is made for three different strain relaxation factors (‘r’). With 
the increase in the value of r, it is observed that the slope of the line 
monotonically decreases.

The total polarization is a sum of the spontaneous and piezoelectric 
polarizations which provides Figure 3, which insinuates that the total 
polarization is inversely proportional to the Al concentration. This is 
due to the fact that GaN bulk is fully relaxed and, therefore, its polar-
ization vector contains only the spontaneous component Psp (GaN). 
But for AlGaN layer, in addition to the spontaneous component Psp 
(AlGaN), the piezo-polarization component due to the presence of 
strain because of Al content in AlGaN must be considered. The piezo-
polarization component of AlGaN is a function of strain and lattice 
constant.

Figure 4 shows the total polarization charge density as a function of 
mole fraction for different strain relaxation. The total hetero-interface 
charge (σ) is a function of total piezoelectric polarization, which, in 
turn, depends on lattice constants, elastic constants and piezoelectric 
constants of AlGaN layer. 

As strain increases the amount of strain relaxation decreases. 
As strain is directly related to piezoelectric polarization, so with 
the decrease in the value of r, the total polarization charge density 
increases at a constant value of mole fraction x. Therefore, we observe 
an increase in the slope of the graph with the decrease in the value of 
r. This is plotted in Figure 5. This is due to that fact that increasing the 
carrier concentration enhances the probability of scattering and thus 
sheet charge density decreases.

Figure 2.  Piezoelectric polarization variation with mole fraction of 
AlxGa1-xN for different amount of strain relaxation.

The total hetero-interface charges (σ) can be computed for the 
AlGaN surface and the AlGaN/GaN interface given as: 
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Increasing the Al mole fraction of AlGaN barrier can increase 
2DEG density. In an AlGaN/GaN HEMT, the 2DEG sheet charge den-
sity approaches the net polarization charge density at AlGaN/GaN 
interface with increasing AlGaN thickness. The polarization charge 
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Figure 3.  Total polarization variation with mole fraction of AlGaN for 
different amount of strain relaxation.

As strain increases the amount of strain relaxation decreases. 
As strain is directly related to piezoelectric polarization, so 
with the decrease in the value of r, the total polarization charge 
density increases at a constant value of mole fraction x. 
Therefore, we observe an increase in the slope of the graph 
with the decrease in the value of r. This is plotted in Figure 5. 
This is due to that fact that increasing the carrier concentration 
enhances the probability of scattering and thus sheet charge 
density decreases. 

 

Figure 3. Total polarization variation with mole fraction of AlGaN for 
different amount of strain relaxation. 

 

Figure 4. Total polarization charge density variation with mole fraction of 
AlGaN for different amount of strain relaxation. 

 

Figure 5. Sheet charge density with AlGaN layer thickness for different 
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at x = 0 to 3.24 per square at x = 0.4. Again, by reducing carrier 
concentration, sheet resistance increases as it lowers the conductivity.

4.  Conclusion
Increase in Al mole fraction enhances the amount of spontaneous 
polarization but piezoelectric polarization varies inversely. The spon-
taneous polarization, has a negative value and is greater in magnitude 
as opposed to piezoelectric polarization. Change of Al mole fraction 
enhances the 2DEG density greatly for an AlGaN/GaN-based HEMT 
because of reducing the electron wave function penetration into the 
AlGaN barrier layer and the larger effective ∆Ec also increased the 
2DEG density. The total polarization charge density increases with the 
increase in mole fraction. However, it decreases with the increase in 
the strain coefficient. The 2DEG sheet concentration at the AlxGa1-xN/
GaN heterojunction is sensitively dependent on the Al mole fraction, 
which leads the GaN-based HEMT towards microwave and millimeter 
wave applications.
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and is greater in magnitude as opposed to piezoelectric 
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reducing the electron wave function penetration into the 
AlGaN barrier layer and the larger effective ∆Ec also increased 
the 2DEG density. The total polarization charge density 
increases with the increase in mole fraction. However, it 
decreases with the increase in the strain coefficient. The 2DEG 
sheet concentration at the AlxGa1-xN/GaN heterojunction is 
sensitively dependent on the Al mole fraction, which leads the 
GaN-based HEMT towards microwave and millimeter wave 
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