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The main objective of this study is to compensate 
channel distortions in GPS-Aided GEO Augmented 
Navigation (GAGAN) applications by means of adap-
tive equalization. Positional accuracy of GAGAN sys-
tem is basically dependent on ranging errors and 
satellite constellation geometry. Further, this study fo-
cuses on enhancing the phenomena of instrumental 
biases and GAGAN augmentation.  
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LINE of sight ionospheric measurements, which are de-
rived from GPS observables, are corrupted by instrumen-
tal biases. These biases are present in both GPS satellites 
and receivers. Filter coefficients are being adopted for 
channel compensation; this is a key aspect in the design 
of an adaptive filter. Flat frequency response and linear 
phase are offered by an adaptive filter, which is the com-
bination of a filter and channel. Here the bit error rate 
(BER) performance of an equalizer can be compared for 
both cases of with and without using adaptive equaliza-
tion. In general to evaluate the least mean square (LMS) 
and recursive laser square (RLS) estimators, the details of 
receiver decision quality are used, which in turn are used 
to strengthen their robustness towards the hard decision 
errors and channel noise. Methods of adaptive equaliza-
tion by using LMS, RLS and extended Kalman filter 
(EKF) schemes are compared to each other based on their 
performance parameters. The tradeoff between different 
performance factors such as convergence rate, computa-
tion cost and minimum squared errors is to be analysed 
for the selection of an optimum adaptive equalizer. This 
multipath channel estimation technique with adaptive 
equalization is then verified using simulations. To pro-
vide position, velocity and time information1 the GPS 
signals are processed by a receiver. In general, the critical 
air navigation requirements are not met by GPS. Different 
phases of a flight are the non-precision approach and preci-
sion approach. For CAT-I Precision Approach (PA), both 
horizontal and vertical accuracies are required to be 16 m 
and 6–4 m respectively. The idea of GPS-based augmen-
tation system evolved such that GPS can be made appli-

cable for all phases of the flight. Based on the data 
received from a number of ground reference stations, the 
satellite-based augmentation system can approximate the 
error corrections. These error corrections are further trans-
mitted to the users through geostationary (GEO) satellites.  

Satellite-based augmentation system  

In satellite-based augmentation system (SBAS), dual fre-
quency GPS receivers are located at different places and 
these places are known as wide area reference stations 
(WRS). All the GPS satellites are being monitored con-
stantly by GPS receivers. GPS measurements collected of 
WRS are processed at wide area master stations (WMS). 
For each satellite, wide area differential (WAD) correc-
tions are being generated using the measurements of mas-
ter stations. These corrections include the ionospheric 
delay and satellite’s clock and position. Apart from these 
corrections, the WMS offers different integrity checks for 
validation of the satellite signals. Using C-band signals, 
information regarding integrity and differential correc-
tions is transmitted to the geostationary satellite. These 
satellites in turn relay the information to the users, using 
L-band signals.  
 In view of performance enhancement, SBAS provides 
critical information in respect of differential corrections 
which improves the positional accuracy. Geo-stationary 
satellites transmit GPS-like signals to improve the avail-
ability and continuity, thereby providing an additional 
ranging signal. Any indication of malfunction cautions 
the users instantly, this refers to the safety concern of 
SBAS. SBAS utilizes the GPS as a prime navigational aid 
for civil aviation.  
 Apart from civil aviation application, SBAS can also 
be useful for all other modes of transportation, which in-
clude maritime, highways, railways, etc. At this stage, a 
number of SBAS in different parts of the globe are in the 
process of implementation. In a similar fashion, the GPS-
Aided GEO Augmented Navigation (GAGAN) techno-
logy is being developed in India2.  

GAGAN/SBAS – errors and their correction  

An SBAS system is required to nullify most of the GNSS 
errors with a provision of needful corrections. Leftover 
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errors can be minimized to a maximum extent by trans-
mitting them with bounding information. The concept of 
providing integrity, accuracy, availability and continuity 
for a GPS is a prime concern of the SBAS.  
 The accuracy of satellite signals will be improved by 
means of SBAS corrections. The integrity information of 
SBAS confirms that the leftover errors are bounded. 
Various types of random errors and biases affect the 
GNSS measurements. Among these, some of the errors 
can be eliminated and some can be minimized. Errors  
related to the propagation medium and the errors gener-
ated due to the satellite and the receiver are the notewor-
thy errors3.  

Multipath effects  

A multipath issue arises because of the reflected radio 
signals. These reflections may occur due to the surround-
ing terrain; buildings, walls, hard ground, etc. Multipath 
issue is also a major concern with GPS signals. These de-
layed signals because of the multipath issue are the cause 
for inaccuracy. Minimization of these multipath errors 
can be obtained with implementation of a narrow correla-
tor spacing technique. In case of longer delay multipath, 
it can be eliminated by the receiver itself; whereas the 
shorter delay multipath can be reduced by using a spe-
cialized antenna. Owing to their interference with true 
signals, it is difficult to discard short delay reflections. 
Further, these reflections may cause almost irreparable 
effects because of routine fluctuations in atmospheric de-
lay. In case of moving vehicles, multipath effects are of 
less importance. In case of moving GPS antennas, the 
false solutions because of the reflected signals fail to 
converge quickly, whereas the direct signal results in sta-
ble solutions4.  

Simulation of EKF for GAGAN positioning  

Consider EKF function with the application of GAGAN. 
The pseudorange and satellite position of a GPS receiver 
at fixed location for a period of 25 sec is provided. Least 
squares and EKF are used for this task. The following is a 
brief illustration of the principles of GPS. GPS provides 
the user with proper equipment to access positioning  
information. The most commonly used approaches for 
GPS positioning are the iterative least square (ILS) and 
the Kalman filtering (KF) methods. Both of them are 
based on the pseudorange equation 
 
 rho = ||Xs – X|| + b + v, (1)  
 
in which Xs and X represent the positions of the satellite 
and the receiver respectively, and ||Xs – X|| represents the 
distance between them; b represents the clock bias of re-
ceiver, and it needs to be solved along with the position 

of receiver. rho is a measurement given by receiver for 
each satellite, and v is the pseudorange measurement 
noise modelled as white noise.  
 There are four unknowns: the coordinate of receiver 
position X and the clock bias b. The ILS can be used to 
calculate these unknowns and is implemented in this ex-
ample as a comparison. To deal with the nonlinearity of 
the pseudorange equation, the Kalman filter solution uses 
EKF, and a constant velocity (CV) model as the process 
model5. Filters designed are tested with simulated GPS 
data by adding error models into the predicted pseudo-
range. Adaptive EKF can also be employed to estimate 
the ephemeris parameters of the orbiting satellites. Apart 
from this, an adaptive unscented Kalman filter can be 
used. Thereby, a high-precision kinematics satellite, 
aided with inertial navigation will be developed. Further 
to obtain carrier phase smoothing and ambiguity resolu-
tion6,7, a modern receiver can be included.  

Estimation of channel SNR for GAGAN 
applications  

In order to compensate channel distortions, adaptive 
equalization is the best proposed technique. A flat fre-
quency response and linear phase can be offered when a 
filter is associated with a communication channel. In case 
of the adaptive filters, filter coefficients are being adapted 
to compensate the channel. Most of the times, the adap-
tive equalization approach can be implemented by using 
RLS and LMS algorithms. These techniques should be 
compared with each other in terms of bit error rate per-
formance. There will be a continuous analysis of various 
performance factors such as convergence rate, computation 
cost instability and ensemble averaged minimum squared 
errors, to select an optimum adaptive equalizer8. The  
basic communication system model is shown in Figure 1.  

General operation mode of adaptive equalizer  

Training and tracking are the general operations of an 
adaptive equalizer. The training sequence is a shifted ver-
sion of the original transmitted symbols. Following this 
training sequence, the user data is immediately sent and 
the adaptive equalizer uses specific algorithms to evalu-
ate the time dispersive channel. Filter coefficients are  
estimated further. Thereby, the channel distortion can be 
compensated. The function of training sequence is to  
allow receiver to obtain stable state when the worst case 
happens such as long time delay spread or fast velocity, 
so that after iteration of data have been sent, the filter  
coefficients are almost optimal values9.  
 As the adaptive equalizer is continuously changing its 
filter characteristics over time, the varying channel will 
be tracked by the algorithm. This process will be obser-
ved soon after receiving the user data. To obtain fastest 
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Figure 1. GAGAN-based communication system model. 
 
 
convergence, RLS is the optimal algorithm. Faster con-
vergence means less sequence is used during the training 
to obtain the minimum error power. Each time when a 
new data block has been received, the same training se-
quence is used. As the baseband complex envelope ex-
pression is used in representing band pass waveform, the 
equalizer is implemented at the baseband. Usually at 
baseband, the impulse response of the channel, adaptive 
equalizer algorithm and the demodulated signal are simu-
lated and implemented.  
 Consider the equation y(t) = x(t) * h(t) + n(t), in which 
the transmitted signal is x(t), and the received signal y(t) 
is fed into equalizer. Assume the complex baseband im-
pulse response of a transversal filter equalizer is given by  
 

 ( ) ( ),n
n

f t c t pT   (2) 

 
in which cn are the equalizer coefficients; T the equaliza-
tion delay; the adaptive equalizer has p taps which are 
complex multipliers, called weights. So, the output of the 
equalizer is ˆ( ).g t   
 
 ˆ ( ) ( ) ( ) ( ) ( ) ( ).* * *g t x t h t f t f t n t   (3) 

Adaptive equalization algorithms  

To initiate linear equalizer coefficients, a number of 
adaptive equalization algorithms are introduced. They are 
used to track the channel variations. To identify the best 
performance of a filter various factors are to be consid-
ered:  
 The number of iterations required for an algorithm is 
defined as the rate of convergence with respect to a sta-
tionary input, where the number of iterations are needed 
to obtain an optimum solution. In addition, these algo-
rithms adapt quickly to a stationary environment of un-
known statistics with a faster convergence rate. Further, 
this allows the algorithm to track statistical variations 
during the operation of a non-stationary environment.  
 It is understood that small estimation errors are the re-
sultant of tiny disturbances only. These disturbances may 
occur inside or outside the filter because of simple fac-
tors. The block diagram representing adaptive channel 

equalization is shown in Figure 2. An adaptive algorithm, 
for its use in digital implementation, is observed to be in-
sensitive to the variations of a word size. The number of 
bits used for the numerical representation, of data sam-
ples and filter coefficients are required in the computa-
tion of numerical accuracy, of an adaptive algorithm.  
 Two classic equalizer algorithms such as LMS and 
RLS are discussed here. They are primitive according to 
most of today’s wireless standards; they provide optimum 
performance of the algorithm design and operation10.  

Least mean square algorithm  

For an adaptive filter, the filter tap weights, in respect of 
LMS algorithm for each iteration, are updated based on 
the following expression  
 
 ˆ( 1) ( ) 2 ( ) ( ).t p t p e p x p    (4) 
 
Here, x(p) is the time delayed input value of the vector 
 

 ...( ) { ( ) ( 1) ( 1)] .Tx p x p x p x p P     (5) 

 
The vector t(n) = {t0(p)t1(p)tP–1(p)}T represents coeffi-
cients of the adaptive FIR filter. The parameter  is a step 
size parameter, and it is a small positive constant. 
 For each iteration, this algorithm is required to be im-
plemented in the following sequence.  
 (1) y(p), output of the FIR filter is calculated using the 
equation  
 

 
1

0

( ) ( ) ( ) ( ) ( ).
P

T

i

y p t p x p i t p x p




    (6) 

 
 (2) Using the following equation error estimation value 
is computed 
 
 e(p) = d(p) – y(p) 
 
MSE 
 
 2( ) {| ( ) | }.p E e p   (7) 
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Figure 2. Adaptive channel equalization in GAGAN systems. 
 
 
 (3) As a part of preparation for the next iteration, the 
FIR filter’s, tap weights are updated by using the expres-
sion  
 
 ( 1) ( ) 2 ( ) ( ).t p t p e p x p    (8) 
 
The ease of implementation and simplicity of computa-
tion made the LMS algorithm a most commonly used 
technique for the adaptive filtering process. 

Recursive least squares algorithm  

All the past input samples of a RLS algorithm are used 
for the estimation of the inverse autocorrelation matrix of 
the input vector. This feature is not applicable in the case 
of LMS algorithm. Mean square errors (MSE) are esti-
mated using instantaneous values, this approach may not 
provide sufficiently rapid rate of convergence.  
 If r(c) is representing a matrix with c previous input 
column vectors, till present time, then s(c) can be repre-
sented as,  
 

 
( ) [ (1), (2),...., ( )]

( ) ( ) ( ).T

R c r r r c

s c R c t p




 (9) 

 

Alternatively, to consider error measure that does not  
include expectations, MSE is replaced by LSE. 
 Where  is an exponential forgetting factor, which  
decreases the influence of the past input samples. The er-
ror signal k(i), calculated for all times such that 1  i  p, 
using the current filter coefficient tp 
 

 ( ) ( ) ( ).Tk i d i tp x i   (10) 
 
The error is estimated at time i using the latest filter coef-
ficient set, which assumes that the weights are held con-

stant over the entire observation interval (0, p). When 
0 <  < 1, there will be an exponential decrement for all 
past error values. 
 Minimizing least square error (LSE) in RLS is different 
from minimizing MSE. However, minimizing MSE pro-
duces the same filter coefficient set for all the sequences 
that have the same statistics, which means that the coeffi-
cients depend on ensemble average of the incoming data. 
On the other hand, minimizing LSE depends on specific 
value of input, which means for different signals, differ-
ent filters are obtained. Different realizations of x(n) and 
d(n) will lead to different solutions. The filter coefficients 
which minimize LSE are found to be optimal for a given 
data; whereas for a particular class of process, they are 
observed to be statistically optimal. Although exponential 
weighting improves the tracking characteristics of RLS, it 
is not quite clear to choose forgetting factor. In the result 
part, BER versus performance shows how to choose for-
getting factor.  
 Algorithm for a nth order RLS filter can be shown  
as parameters which are as follows: n is filter order;  
forgetting factor;  value of initialize, N(0) and initializa-
tion tp is 0.  
 In case of RLS algorithm, the memory is limited to  
the finite number of values. This number is indicated  
with reference to the order of the filter tap weight vector. 
It is required to realize the two basic factors related  
to RLS implementation. They are: (i) Implementation of 
RLS algorithm reduces the computational complexity to  
a greater extent. This happens because matrix inversion  
is essential in the derivation of the RLS algorithm.  
Further, it does not require any matrix inversion cal- 
culations for its implementation. (ii) Values of the previ-
ous iteration can be used for updating the current  
variables, within the present iterations which are ready to 
be used.  



RESEARCH ARTICLES 
 

CURRENT SCIENCE, VOL. 110, NO. 5, 10 MARCH 2016 796 

 The steps for RLS implementation are as follows  
 
 Filter out is computed based on the filter tap weights 

from the previous iteration and the current input vec-
tor,  

 
  1( ) ( 1) ( ).T

cs c t c r c    (11) 
 
 Using the following equation, the intermediate gain 

vector can be calculated  
 

  

1( ) ( 1) ( ).
1( ) ( ).
( ) ( )T

u c c r c

k c u c
r c u c





 





 (12) 

 
By using the following equation, the estimation error 
value can be calculated 
 
 1 1( ) ( ) ( ).c ce c d c y c    (13) 

 
Updating of the filter tap weight vector can be done using 
the equation in step (3) and the gain vector is calculated 
in the following equation 
 
 1( ) ( 1) ( ) ( ).T

pt p t p k p e p    (14) 

 
Using eq. (15), the inverse matrix can be calculated 
 
 1 1 1 1( ) ( ( 1) ( )[ ( ) ( 1)]).Tp p k p r c p               (15) 
 
Figure 3 shows simulated result of channel equalization. 
In this result, SNR forgetting factor and BER are plotted 
on X axis and Y axis respectively. Observations were 
made using RLS scheme such that different values of 
EbN0 channel equalization will be done. Based on the 
 

 
 
Figure 3. BER performance of channel equalization using RLS 
scheme. 

same purpose to update the weight coefficients to the op-
timal values, they act in a reverse way but have different 
results. Even though they are all ranged from 0 to 1, the 
errors decrease as step size decreases and the errors  
decrease as forgetting factor increases.  
 RLS algorithm has higher advantage as it gives lower 
BER. This can be explained as LMS algorithm considers 
only the current error value, which is the total weighted 
error from the beginning to the current data point for 
RLS. Additionally, an exponential weighting factor plays 
a significant role in determining how to treat the past data 
input with the algorithm. So in the end, an exponential 
weighted LSE is estimated among the desired signals and 
output.  
 Another essential parameter for determining how to 
choose an algorithm is the learning curve, which depicts 
the speed of convergence to the MSE. Figure 4 shows 
simulated results representing the performance of GAGAN 
signals, which are plotted across MSEs to number of  
iterations. These results are plotted for both LMS and 
RLS algorithms. Observations were made for the learning 
curve of two algorithms with low and high values.  
 For low values on the right side of Figure 5, it is diffi-
cult to sort out which algorithm gives the faster conver-
gence. As for the rate of convergence is concerned, it can 
be seen that RLS and LMS perform almost in the same 
manner. However, for high values on the left side of the 
figure, it is obvious that RLS consistently achieves faster 
rate of convergence with smaller ensemble average 
squares error. The convergence of RLS is attained in 
about 70 iterations, approximately twice the number of 
equalizer taps. The convergence for LMS is about 700  
iterations. Hence, it is observed that the magnitude of 
convergence is faster in case of RLS than LMS. It is  
because RLS algorithm in the process of initialization 
uses the inverse of the correlation matrix. Here, inverse 
of the correlation matrix is obtained from the input vec-
tor. So RLS has the effect of whitening the tap input by  
 

 
 
Figure 4. MSE performance of GAGAN signals (LMS versus RLS). 
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zero mean, and it uses less iteration time to lower the  
error power. For LMS, the applied step size is independ-
ent of the input data. However, this advantage of faster 
convergence is lost when the signal-to-noise ratio is of 
small values. The equalizer performance is estimated  
according to different factors, such as convergence rate 
and computation complexity11.  

Comparison of computation cost between RLS and 
LMS 

RLS filter whitens the input data; thereby, its conver-
gence rate becomes much faster than LMS algorithm. 
This could happen by using the inverse correlation  
matrix of the input data. Hence the input becomes white 
with zero mean. Owing to the expensive computational 
complexity, RLS algorithm exhibits the faster conver-
gence rate. For LMS, the computation cost is 2p + 3  
multiplications and 2p + 2 additions; whereas, the com-
putation cost of RLS requires the order of operations p2 
instead of p operations, i.e. totally 3(p + 1)2 + 3(p + 1) 
times. Thereby, the computational complexity for the RLS 
algorithm is found to be more than the LMS algorithm. 
 So far, fading effects, channel parameters, signal para-
meters, channel modelling and modulation skills in 
GAGAN channel are studied and verified by simulated 
results. This is followed by a description of different 
adaptive equalization techniques combating noise, chan-
nel distortion and interference to improve the BER per-
formance. Further, two types of applied algorithms such 
as RLS and LMS are compared through simulated results 
in terms of rate of convergence, computation complexity 
and stability. In this case, MATLAB simulation will use 
modulation technique and combine channel with the 
equalizer to mitigate channel distortion. The bi-phase 
shift keyed (BPSK) and quadrature phase shift keyed 
 
 

 
 
Figure 5. BER performance of GAGAN signal estimation using RLS 
scheme. 

(QPSK) modulation procedure give symbols after gener-
ating random bits. After that, upsampling is applied to the 
symbols. Upsampling and oversampling are both effec-
tive ways to increase sampling rate, with slight difference 
in the implementation method. Upsampling inserts zero 
in the original sample stream. Upsampling factor is equal 
to four means inserting three zeros between all samples, 
which means the number of samples per symbol is 4. The 
symbol period is 16 ns.  
 Equalization using training sequence and tracking un-
known channel characteristics does improve the BER 
without changing the data rate. However, QPSK transmits 
two bits per symbol, which carries more information. 
Hence, the QPSK modulation is chosen for the next 
equalization part. Based on upsampling factor which is 
equal to 4, the received symbols will be sent to the equal-
izer to check the equalizer’s performance. The training 
sequence uses the shift version of the whole transmitted 
sequence by 10 symbols delay. The equalizer length has 
to be larger than the channel characterization length.  
 Simulated results for BER performance of GAGAN 
signal estimation using RLS scheme are shown in Figure 
5. These results are plotted for BER versus SNR to obtain 
channel equalization. It is observed that after equaliza-
tion, the BER curve is closer to the ideal curve which 
means distortion is reduced. It is further observed that if 
equalization curve gets more closer to the theoretical 
curve, there will be a better equalizer performance. Ap-
parently, the RLS equalizer offers smaller error than the 
LMS equalizer. However, it involves two factors to be 
considered: the weight number and algorithm factors. 
About RLS algorithm, it works best when the weight 
number is 35 and forgetting factor is equal to 0.99.  

Analysis and comparison of BER performance 
among LMS, RLS and EKF algorithms 

Extended Kalman filter  

The EKF enhances the property of a linear Kalman filter 
approach for nonlinear systems, which offers better esti-
mated results. This filter is the most used nonlinear filter 
in the earlier decades5,12. It is based directly on the linear 
Kalman filter. In addition to this concept, EKF is used to 
linearize the nonlinear system. Both the time and meas-
urement updates are implemented in their non-linear 
forms; but for the covariance matrix, linearization is 
needed. EKF offers a simple and practical approach to 
deal with essential nonlinear dynamics. The algorithm for 
computing the extended sequential estimate can be sum-
marized as follows. 
 The EKF will yield a new state estimate at each obser-
vation, which is of value when a real-time solution is  
desired as the filter processes data. By adding the correc-
tions to the state at each observation, the effects of the 
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non-linearities in the equations of motion are not as se-
vere, as the attitude parameters are being updated with 
each measurement. Also, the partials of the system  
dynamic function are recomputed at each time step at the 
given updated state. This allows for a more accurate state 
transition matrix.  
 The algorithm for implementing EKF can be summa-
rized as follows. 
 The algorithm for EKF requires 
 
 1 ( , , ) and ( , ).k k k k k k k kp f p q r s t p u    

 
Initialize with  
 

 0 0 0 0 0 0 0
ˆˆ ˆ ˆ( ), [( )( ) ],Tp E p V E p p p p     

 
where p is state vector; sk the observation vector and qk is 
the control vector. 
 
 1. for k = 1, 2, … do 
 2.  if time update, then 

 3.   ˆatk T
fF p p

p



   

 4.   ˆatk T
f p p

v



    

 5.   1 ( , )k k kp f p q   

 6.   1
ˆ T

k k k k k k kV F V F Q      
 7. end if 
 8.  if measurement update, then 

 9.   atk T
tH p p

p



   

10.   1ˆ ( )T T
k k k k k kK V H H VH R    

11.   ( ( ))k k k k kx x K z h x    

12.   ˆ ( )k k k kV I K H V  
13.  end if 
14 end for 
 
where rk is the process noise of covariance matrix Q; wk 
the measurement noise of covariance matrix R; k binds 
the inputs to the system states; k binds the process noise 
to the process state vector; k state transition matrix; Kk 
the Kalman gain; and Hk is the observation matrix. 
 The performance of the two filters RLS and LMS is 
observed to be poor when lower signal-to-noise ratios 
were used. These signals may have a Doppler shift. By 
adding another state, additional Doppler effects can be 
accounted for, in future research. EKF algorithm is found 
to be more efficient since it takes the statistics of the 
transmitted sequence into consideration. It seems to be 
more robust with respect to local minima, and channel 
drifting problem. With the availability of several fully 

operational satellite navigation systems, it has been rec-
ognized that an optimal combination of the output of one 
or more satellite navigation systems with the output of an 
inertial navigation system has a number of advantages 
over a stand-alone inertial or satellite navigation system. 
The use of adaptation facilitates inter-operable mixing of 
the outputs of any satellite navigation system with the 
output of an inertial navigation system.  
 Table 1 shows the results of GAGAN signal process-
ing, for BER values of approximately 10–2 and 10–3 with 
QPSK modulation. The SNR values observed for the EKF 
and LMS schemes are found to be 9.55 and 11.25 dB re-
spectively. These observations are taken for BER value of  
10–2 with QPSK modulation. It shows an improvement of 
1.7 dB in the performance of GAGAN signal processing 
with EKF. Similarly for BER values of 10–3 using QPSK 
modulation, the GAGAN signal processing with EKF 
shows SNR value of 11.35 dB compared to that of LMS 
where the SNR is 13.85 dB. An improvement of 2.5 dB in 
the performance of GAGAN signal processing with EKF 
is observed compared to that of LMS.  
 A simulated result shown in Figure 6 illustrates the 
BER performance analysis and comparison among LMS, 
RLS and EKF algorithms. It is observed that after equali-
zation, the RLS equalizer offers smaller error than the 
LMS equalizer and the EKF equalizer offers smaller error 
than the RLS equalizer. However, it involves two factors 
to be considered: the weight number and algorithm factors.  
 From Figure 6, it is observed that as the value of SNR 
increases, the BER will decrease. As SNR increases 
QPSK_BER curve will lean downward indicating reduc-
tion in BER. As SNR increases, so does the accuracy. It 
is further observed that, for the same values of BER and 
QPSK modulation, the STBC shows an approximate SNR 
value of 18 dB compared to the SNR value of 26.5 dB for 
OFDM. It is also found that for the same BER values  
16-QAM (quadrature amplitude modulation), the space-
time block coding (STBC) and orthogonal frequency  
division multiplexing (OFDM) show the SNR values of 
19 and 28.5 dB respectively. Among all the three cases of 
digital modulation schemes, discussed so far, the SNR 
values for OFDM multiplexing are found to be high, in-
dicating a large improvement, of >13 dB.  
 However, it is observed that the efficiency of data col-
lection has gone down by setting a minimum value of 
SNR. On the other side, the efficiency of data collection 
will go up by setting the higher values of SNR. To attain 
this condition, the GPS receiver needs to be positioned 
for a longer time, till it receives stronger signals.  

Conclusion  

It is concluded that the adaptive equalization is the most 
effective technique, that can be implemented for compen-
sating channel distortions. This is the most commonly 
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Table 1. Improvement of BER for required SNR with QPSK modulation 

   Gain of RLS versus  Gain of EKF versus 
Method  LMS (dB) RLS (dB)  LMS (dB) EKF (dB) RLS (dB) 
 

Required SNR for BER of 10–2  11.25   9.75 1.5  9.55  0.2  
Required SNR for BER of 10–3  13.85 11.65 2.2 11.35  0.3  

 
 

 
 
Figure 6. BER performance analysis and comparison between LMS, 
RLS and EKF. 
 
used technique for GAGAN applications. BER perform-
ance of an adaptive equalizer is compared, with and with-
out using the equalizer. GAGAN signal processing for 
BER values of approximately 10–2 and 10–3 with QPSK 
modulation is compared for various algorithms. The SNR 
values observed for EKF and LMS schemes are found to 
be 9.55 and 11.25 dB respectively. These observations 
are taken for BER value of 10–2 with QPSK modulation. 
It shows an improvement of 1.7 dB in the performance of 
GAGAN signal processing with EKF. Similarly for BER 
values of 10–3 using QPSK modulation, the GAGAN sig-
nal processing with EKF shows SNR value of 11.35 dB 
compared to that of LMS, where the SNR is 13.85 dB. An 
improvement of 2.5 dB in the performance of GAGAN 
signal processing with EKF is observed compared to that 
of LMS. The convergence of RLS is attained in about 70 
iterations, approximately twice the number of equalizer 
taps. The convergence for LMS is about 700 iterations. 
Hence, it is observed that the magnitude of convergence 
is faster in case of RLS than LMS.  
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