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Cadmium is an extremely toxic heavy metal and 
causes neurotoxicity by inducing oxidative stress and 
membrane disturbances in brain. Phyllanthus emblica 
and Lycopodium 200c have anti-oxidative properties 
and are able to remove the cadmium-produced free 
radicals. This study investigates the role of Lyco-
podium 200c and Phyllanthus emblica (amlaki) in 
ameliorating the toxic effects of cadmium on the brain 
of mice. Swiss albino mice were used and divided into 
four different sets with one control, one induced, one 
with amlaki and other with both amlaki and Lyco-
podium treatment. To observe the changes, tests for 
brain acetylcholinesterase along with Mg2+ ATPase  
activities were performed. Results show that cadmium 
toxicity leads to decrease in enzymatic activities which 
can be reversed by the effects of amlaki and Lyco-
podium 200c. 
 
Keywords: Antioxidative properties, cadmium, free 
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AMONG the well-known toxic heavy metals, cadmium is 
very common which can found in the environment in var-
ious compounds, e.g. oxides, sulphides, chlorides, etc. It 
enters the animal body through food and drinks and is 
transported through blood and gets easily accumulated in 
different organs including liver, kidney, testes, lung, etc. 
and causes severe toxicity. It also acts as a harmful neu-
rotoxin in mammalian brain1,2. Cd-induced toxicity is  
responsible for the generation of reactive oxygen species 
(ROS)3,4. Cadmium also influences the activity of certain 
enzymes such as the uptake of catecholamines5  
affecting the levels of several neurotransmitters and also 
affects antioxidant status6. It blocks adrenergic and  
cholinergic synaptic transmissions7. There are many  
chelating agents which form a chelator–metal complex  
resulting in a decrease of tissue cadmium concentration. 
Acetylcholinesterase (AChE) is important in the Ach 
(acetylcholine) cycle8. Besides, it is co-released from the 
dopaminergic neurons9. Studies have been conducted to 
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assess the chemo-preventive roles of several natural anti-
oxidants in heavy metal induced toxicities10,11. They are 
considered effective in preventing oxidative stress-related 
abnormalities and as potential remedial agents in various 
diseases. They can restrain the decreased ATPase activi-
ties and increased Cd-induced oxidative stress12. As Phyl-
lanthus emblica (amlaki) and Lycopodium clavatum 
contain many such antioxidants, they are considered  
effective in treating such kinds of metal toxicity. Along 
with their antioxidative properties, they also have anti-
tumorigenic, anti-inflammatory and anti-toxic effects. 
The most useful form of Lycopodium clavatum is its  
alcoholic diluted form that is broadly used in homeo-
pathy. For this study, the homoeopathic medicine Lyco-
podium 200c was used. We study the antagonistic role of 
antioxidants and flavonoids present in both amlaki and 
Lycopodium 200c on cadmium-induced neurotoxicity in 
mice. A short-term (40 days) in vivo study was conducted 
to measure AChE and Mg2+ ATPase activities of mice 
brain. 
 The animals were handled and kept under normal labo-
ratory conditions maintaining all Animal Ethical Rules. 
The animals were provided with normal food and water. 
Swiss albino mice (~20 g each; 4 mice in each set) were 
used as experimental model and divided into four differ-
ent sets such as (i) SI or normal control (NC) set: daily 
administered with normal food and water and without any 
treatment, (ii) SII or cadmium-induced (Cd) set: adminis-
tered with cadmium chloride in addition to normal feed-
ing, (iii) SIII or cadmium and amlaki treated (Cd + A) 
set: administered with both cadmium and amlaki along 
with normal food and water and (iv) SIV or cadmium, 
amlaki and lycopodium (Cd + A + L) treated set: admin-
istered with cadmium, amlaki and lycopodium along with 
normal food and water. Cadmium chloride was used as 
the source of cadmium and a high dose of 100 mg/kg 
body weight was given. Amlaki juice and Lycopodium 
200c were administered at a dose of 10 l/25 g body 
weight. 
 AChE activity was assessed from mice brain according 
to the method of Ellman et al.13, where acetylthiocholine 
iodide was used as a substrate. The AChE, present in 
samples, hydrolyses acetylthiocholine iodide into acetate 
and thiocholine. In the next step, 5-thio-2-nitrobenzoic 
acid was formed when thiocholine reacts with 5,5-
dithiobis-2-nitrobenzoic acid. The developing yellow 
colour was then measured by spectrophotometric analysis 
at 412 nm. The brain Mg2+ ATPase activity was deter-
mined following the method of Ohinishi et al.14. The 
Mg2+ ATPase activity in 0.1 ml of tissue homogenates 
was determined by adding 0.1 ml of 125 mM Tris-HCl 
(pH 8), 0.1 ml 50 mM MgCl2, 0.1 ml of 10 mM ATP. 
These final mixtures were incubated for 10 min at 37C. 
Finally, the reaction was stopped by introducing 1 ml ice-
cold 10% TCA and centrifuged at 1500 g for 10 min. The 
liberated inorganic phosphate (Pi) from the protein free 

test samples of Mg2+ ATPase activities was measured fol-
lowing the method of Eibl and Lands15. The developing 
colour was measured spectrophotometrically at 820 nm. 
The activities of these ATPase enzymes in tissue homo-
genates were expressed as g Pi liberated per minute per 
mg of protein. Statistical analysis was carried out using 
the SPSS statistical package version 12.0. The results are 
expressed as mean  SD and the data analysis was  
performed by one-way analysis of variance (ANOVA) 
followed by Turkey’s multiple comparison tests when 
there is a significant F test ratio. The level of significance 
was fixed at P = 0.05. 
 The effect of cadmium on brain AChE activity of mice 
along with antagonistic effects of Lycopodium 200c and 
amlaki is presented in Figure 1. It shows that the activi-
ties of mice AChE were significantly decreased 
(P < 0.05) in cadmium-induced group when compared 
with normal control group. The activities are increased in 
experimental groups compared to cadmium-induced 
group. In experimental sets, the data are significant in 
case of dual treatment, i.e. with both Lycopodium 200c 
and amlaki (P < 0.05). Figure 2 represents the result of 
Mg2+ ATPase activities on the brain of mice. This figure 
shows that the activities of Mg2+ ATPase are decreased in 
cadmium-induced group compared to the normal control 
group. The activities of Mg2+ ATPase are significantly 
higher (P < 0.05) in other two groups, i.e. in Cd + A and 
Cd + A + L groups than in cadmium-induced group. 
 The enzyme AChE is effective in detecting the neuro-
toxic effects of certain heavy metals including cadmium. 
Studies have suggested that free radical production is 
partly associated with decreased activity of brain AChE16 
which leads to the accumulation of acetylcholine causing 
cholinergic hyperactivity, convulsion, status epilepticus, 
etc.17. Cadmium-related neurotoxicity also alters the neu-
rotransmitter release mechanism and sometimes blocks 
the Ca2+ influx by following action potential through 
membrane channels into the nerve terminal. Cadmium is 
well known for its production of ROS. A significant re-
duction of intracellular thiols and antioxidants has been 
seen after the interaction of cadmium with mitochondrial 
sites18. It was also found that Cd acts as metal inactivator 
of the enzymes and induces a conformational change of 
the protein which leads to the formation of an ‘unreac-
tive’ enzyme species19. Cadmium-induced free radical 
production in the brain of the mice interferes with the  
antioxidant defence system and leads to an alteration of 
the structural integrity of membrane lipids and mem-
brane-bound enzymes, for e.g. different ATPases20. Fig-
ure 1 shows a decreased AChE activity due to cadmium 
induction. Figure 2 shows the decreased levels of mem-
brane-bound ATPases in brain of cadmium intoxicated 
mice also conforms to the above explanation. Mg2+  
ATPase maintains the high intracellular Mg2+ level in 
brain. Its changes can control the protein synthesis rate 
and cellular growth21. 
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Figure 1. Acetylcholinesterase activities of mice from different sets. 
The bar diagram shows low AChE activities in cadmium-induced set 
than others. 

 
 

 
 

Figure 2. Bar diagram showing Mg2+ ATPase activities of mice from 
different experimental sets. Diagram depicts low activities in cadmium-
induced set but increased activities in normal (NC) and treated sets. 
 
 
 According to various studies, it was seen that Cd acts 
as a potent inhibitor of brain Mg2+ ATPase and choline 
transports of synaptosomes. It interacts either by inhibit-
ing or stimulating the adenylate cyclase activity, depend-
ing upon the cationic concentration by interacting with an 
enzymatic site closely related to the allosteric site of the 
regulatory unit of the Cd ATPase complex. The decreased 
activity of ATPase could also be due to the SH binding 
nature of Cd or through its oxidative stress in brain22. 
 Flavonoids such as quercetin and kaempferol, the  
active compounds of Indian gooseberry, effectively  
impair with angiogenesis23. Besides, quercetin also 
proved that it could fight neurotoxic elements24 and thus 

reduce the adverse effects of cadmium. Amlaki contains 
antioxidants such as emblicanin A and B and is a rich 
source of vitamin C, all of them together work against 
cadmium-induced toxicity25,26. Besides, the homeopathic 
medicine Lycopodium 200c contains many active com-
pounds such as lycopodine, clavatine, epigenin, clavatox-
ine, ferulic acid, selagine, lycoflexine, lycofoline27, etc. 
The combined effect of all these active compounds  
renders protection against such kind of toxic environ-
ment28. Their effects can be seen from the results. Figures 
1 and 2 respectively, show the low AChE and Mg2+  
ATPase activities, caused by cadmium which are reversed 
by treatment with amlaki juice and Lycopodium 200c. In 
Figure 1, it is seen that the combined effects of Lyco-
podium 200c and amlaki juice are more pronounced in 
reversing the situation than with amlaki juice alone. The 
treatment with amlaki alone (Figure 2) is more effective 
than the combined effects of Lycopodium 200c and  
amlaki juice. 
 From the data in presented in this study, it can be con-
cluded that the Phyllanthus emblica and Lycopodium 
200c have potential to provide protection against cad-
mium-induced neurotoxicity. 
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Inorganic soil arsenic (As) in three soils was fraction-
ated adopting phosphorus fractionation schemes. 
Among these fractions, iron-bound arsenic (Fe-As) 
was found highest, followed by aluminium-bound ar-
senic (Al-As). The freely exchangeable arsenic was 
relatively small compared to the arsenic held by inter-
nal surfaces of soil aggregates. The arsenic fractions 
exhibited positive correlation with phosphorus content 
presumably due to the fact that high P in soil releases 
more arsenic from soil adsorption sites owing to the 
competition for the same adsorption sites. Predomi-
nantly, negative correlation of arsenic with organic 
carbon confirms the fact of lowering of arsenic mobility 
in presence of organics in soil. 
 
Keywords: Arsenic fractions, arsenic extractants, soil 
properties, resin extractable arsenic. 
 
ARSENIC (As) is a widely occurring toxic metalloid in 
natural ecosystems. It is drawing global concern because 
of its indiscriminate contamination affecting millions in 
many countries including the state of West Bengal, India. 
The entry of arsenic into the soil–plant system occurs 
through either natural process of weathering of arsenic-
bearing rocks and/or use of arsenic-contaminated 
groundwater for irrigation, or else through a host of an-
thropogenic activities such as mining operations, smelt-
ing of base metal ores, combustion of coal and 
application of arsenicals as agricultural pesticides1–5. 
 Arsenic is the twentieth abundant element in the 
earth’s crust1. It is distributed in soils in various forms 
associated with different soil constituents, namely iron, 
aluminium, calcium compounds, etc. forming varieties of 
compounds having different solubility and mobility in 
soil–water system6. Arsenic is also present in soil in  
adsorbed phases on clays, ferromanganese oxides and  
organic matter7. The amount of plant available arsenic is 
very limited compared to the total arsenic content in soil8. 
Thus, the total concentration of As in soil may be a good 
indicator of the degree and extent of contamination but is 
insufficient for evaluation of its environmental impact 
without considering the speciation9. Therefore, the  


