with distinct types of mutations (su or sh2) differ in terms of soluble glucan content, which is higher only in sul genotypes. Such differences are attributed to finer biochemical differentiation among sweet corns for soluble glucans (16.54 to 59.55 mg/kernel) and could be understood and comprehended in the context of earlier information relating to effects of different mutations. Hence, this technique could easily differentiate the sweet corn genotypes into *sul* (with higher value of soluble glucans) versus non-sul types (with lower value), even on the basis of individual kernel. Similar to field corn and sweet corn as a group, QPM also conformed to a characteristic range of values in terms of content and composition of soluble and insoluble polysaccharides. Results can be extrapolated and applied to other major cereals (wheat, rice barley, jowar, etc.), considering their common core pathway of starch metabolism^{12,13}. Some insights into apparent variations and consequent specialized utilization are evident in crops like barley, sorghum and wheat.

- Takeda, Y., Shitaozono, T. and Hizukuri, S., Structures of subfractions of corn amylose. *Carbohydr. Res.*, 1990, **199**, 207–214.
- Sumner, J. B. and Somers, G. F., The water-soluble polysaccharides of sweet corn. Arch. Biochem., 1944, 4, 7–9.
- 3. Cameron, J. W. and Teas, H. J., Carbohydrate relationships in developing and mature endosperms of Brittle and related maize genotypes. *Am. J. Bot.*, 1954, **41**, 50–55.
- 4. Creech, R. G., Application of biochemical genetics in quality improvement and plant nutrition I. Genetic mutations affecting carbohydrate properties of maize endosperm. *Qual. Plant. Mater. Veg.*, 1966, **13**, 86–97.
- Creech, R. G., Mcardle, F. J. and Kramer, H. H., Genetic control of carbohydrate type and quantity in maize kernels. *Maize Genetics Coop. News Lett.*, 1963, 37, 111–120.
- James, M. G., Robertson, D. S. and Myers, A. M., Characterization of the maize gene sugary1, a determinant of starch composition in kernels. *Plant Cell*, 1995, 7, 417–429.
- Nakamura, Y. *et al.*, Changes in structure of starch and enzyme activities affected by sugary mutations in developing rice endosperm: possible role of starch debranching enzyme (R enzyme) in amylopectin biosynthesis. *Physiol. Plant.*, 1996, **97**, 491–498.
- Burton, R. A. *et al.*, Starch granule initiation and growth are altered in barley mutants that lack isoamylase activity. *Plant. J.*, 2002, **31**, 97–112.
- Morris, D. Z. and Morris, C. T., Glycogen in the seed of Zea mays. J. Biol. Chem., 1939, 130, 535–544.
- Andrew, R. H., Brink, R. A. and Neal, N. P., Some effects of the waxy and sugary genes on endosperm development in maize. *J. Agric. Res.*, 1944, 69, 355–371.
- Tsai, C. Y., Larkin, B. A. and Glover, D. V., Interaction of the opaque-2 gene with starch forming mutant genes on the synthesis of zein in maize endosperm. *Biochem. Genet.*, 1978, 16, 883–896.
- 12. Gadag, R. N. and Denyer, K., Endosperm starch mutants in barley and maize analysis and implication. In *Proc. Golden Jubilee Conf. Challenges and Emerging Strategies for Improving Plant Productivity*, ISPP, New Delhi, 2008.
- Gadag, R. N., Elayaraja, K. and Jain, N., Marker assisted selection and differentiation of starch mutants in barley and maize. National Seminar on Contemporary Approaches to crop Improvement. UAS, Bangalore, 2011.

Received 7 January 2016; revised accepted 6 May 2016

doi: 10.18520/cs/v111/i9/1522-1524

Importance and sensitivity of variables defining throw and flyrock in surface blasting by artificial neural network method

A. K. Raina^{1,*} and V. M. S. R. Murthy²

 ¹CSIR-Central Institute of Mining and Fuel Research, Regional Centre Unit-I, MECL Complex, Seminary Hills, Nagpur 440 006, India
 ²Department of Mining Engineering, Indian Institute of Technology (ISM), Dhanbad 826 015, India

Rock breakage by explosives is followed by throw or heaving the broken material and occasional flyrock. Heaving is a desired feature of blasting for efficient mucking. However, flyrock is a rock fragment that travels beyond the designated distance from a blast in surface mines, and poses a threat to adjacent habitats. Here, we decipher the importance and sensitivity of the variables and factors used to establish the predictive regime of throw with more emphasis on flyrock. The data collected were modelled using artificial neural network approach. The importance and sensitivity of variables and factors were delineated so that they are in tune with the rationale of the outcome of the blast. A combinatory approach was devised to arrive at minimal variables and factors to reduce the statistical redundancy, and to propose a rational predictive regime for throw and flyrock in surface mines.

Keywords: Artificial neural network, blasting, flyrock, throw, surface mines.

BLASTING is an integral part of excavation in mines and continues to be a major method of rock fragmentation due to the economy of operation. Blasting, in addition to fragmentation, is associated with throwing the muck generated, vibrations, air overpressure and flyrock. While fragmentation and throw are desired effects, flyrock is an undesirable outcome. Flyrock is a fragment of rock that travels greater distances than desired, in comparison to throw which is limited to a few multiples of bench height. Flyrock is not only a threat to nearby habitats, but poses a challenge to miners as all sorts of 'Objects of Concern' $(OC)^1$ are affected by it. Flyrock is one of the major causes of blast induced fatalities and accidents².

There are several reasons for flyrock which belong to the domain of rockmass including structural discontinuities³, blast design and explosive variables. Several attempts were made by different authors to identify the reasons for flyrock and several equations have been proposed to predict flyrock distance. However, there is a disparity between cause of flyrock and the variables identified that have been used in prediction regime⁴. Such a disparity is reflected in Tables 1 and 2 and a comparison is shown in Figure 1.

^{*}For correspondence. (e-mail: rainaji@gmail.com)

CU					-	Table 1.	Causes o	of flyrock	identified	l by differei	nt authors						
RREN										Cause							
Reference Reference	Insul	ffícient (rden a	Jeological anomalies	l Insufi stem	ficient ming	Excess explosive	Impro	per Ina ayout	dequate delay c	Poor	Poor qualit t stemm	y Drillin ng accurae	g Explosi cy density	High /e specific / charge	Misfire	Spacing	Total variables identified
Y Fletcher and D'Andre	° 1	~ ~	~		~	27					1.		1.				4 -
O Gupta ^{**} Workman and Calder ¹	_	~	~			7	~				7		7				4 0
1 Davies ¹²		~ ~	7		7		~ ~		7		-	-		-	7		9
X Schneider ⁵ 0 Adhiteari ¹³		22	7		22	7	>		77		7	7		22		7	6 v
6 Richards and Moore ¹⁴		~ ~		,	~ ~				~	7	7			~		~	০ ব
Description of the Bajpayee et al. ²	:	~	7							7							3
Kecojevic and Radom	sky ¹⁵	77	27	-	7	2	7		-	-							ŝ
V Verabis and Lobb ¹⁷		2 7	77	ŕ	7	7	7		77	7							n v
E Little and Blair ¹⁸		~ ~	~ ~	ĩ	~ ~		-		-								n m
E Amini <i>et al.</i> ¹⁹		~	~			7				7							4
$\begin{array}{c} \begin{array}{c} \text{Ghasemi} et \ al. \\ \begin{array}{c} 20 \\ 20 \\ 20 \\ 20 \\ 20 \\ 20 \\ 20 \\ 20 $			7		~												7 ,
Kricak <i>et al.</i> ⁵ Mishra and Mallick ²¹		~	~ ~	ţ	7				7			7			7		1
Total citations		13	13	1	0	9	5		9	4	3	2	1	2	2	1	
					Table	2. Varis	tbles used	in differe	nt flyrock	distance pr	rediction n	nodels					
									Fa	ctors used							
Deference	Rock ?	Specific	Total charge 1	Hole Lanth B	S	r Buiora	Blast- hole S	temming length	Density	Density of	Specific	Explosive weight/m	Fragment	Charge per blacthola	Charge ner delay	Drill hole	No. of parameters
Kererce	conditions	ariting	lengu (repur 15	urden S	pacing c	nameter	lengu	01 TOCK	explosive	cnarge	weignum	snape	DIASTIOLE	per delay	angle	nsea
Lundborg ²² Roth ²³			~				7		7		7	~					0 0
Gupta ¹⁰					7			7									2
St George and Gibson	24							-	7	~		-				-	2
Richards and Moore ¹⁴			1.		7		1.	27		1.		7				7	4 '
Moniori of 21			>	1			27	27	14	>	1		~		14		0 4
Monjezi <i>et al.</i> Stoiadinović <i>et al ²⁷</i>				>			>	>	~ ~	7	>		~		>		0 (1
Amini et al. ¹⁹		7		7		7	7	7			7						9
Rezaei <i>et al</i> . ²⁸		7		\mathbf{i}		7		7	7		7				~		7
Ghasemi <i>et al.</i> ²⁰				77	2	2	7	2			5			5	1.		<u>г</u> г
Ghasemi <i>et al.</i> ⁻ Monjezi <i>et al.</i> ³⁰		~		~ ~	~ ~	~ ~	~	~ ~			2 7			7	7		
Khandelwal and Monze	ji ³¹	7		$\overline{}$	7	7		7			7						9
Total citations	0	4	2	7	9	9	9	10	5	3	8	2	2	2	3	1	

Schneider⁵ identified nine and Kricak *et al.*⁶ identified only one parameter responsible for causing flyrock (Table 1). From the various influencing factors as given in Table 1, insufficient burden, geological anomalies and insufficient stemming emerge as the most important causes of flyrock generation. Improper blast design, excess explosive and inadequate delays assume a lesser role among the reported causative factors. This can help redefine strategies for modelling contributory variables of flyrock generation.

A similar compilation of variables used in models that predict distances travelled by flyrock is shown in Table 2.

As seen in Table 2, variables namely stemming length, blasthole depth, specific charge, burden and blasthole diameter emerge as the principal ones in predicting the distance which a flyrock can travel.

A comparison of top seven causative factors (Table 1), and those used in predictive equations (Table 2) are given in Figure 1.

From Figure 1 we infer that principally two variables, namely burden and rock, differ with regard to cause and prediction, probably due to the difficulty in assessing rock mass and burden. Other variables closely follow each other in cause and prediction citations, establishing their importance.

Accordingly, it was found pertinent to ascertain the importance and sensitivity of variables ranging from rock mass to blast design. For this purpose, artificial neural networking (ANN) method was deployed as it is a better predictive tool in situations like blasting⁷, where complex interactions with variables take place. Since this method yields both the importance and sensitivity of variables with regard to output, without going into the details of interactions, it is suitable without actual prediction, which could be specific to different geo-mining conditions. ANN, neurogenetic and evolutionary algorithms have been used to predict flyrock⁸. The direct prediction of flyrock using genetic algorithms poses a problem

Figure 1. Departure in causative and predictive variables cited in literature.

of being site-specific and does not reveal the interrelationships and interactions within the variables in simple terms. However, the analysis is very good in providing other details like relative importance and sensitivity of the independent variables, with respect to the dependent variable.

Surface blasting involves several variables and factors that are used in design and estimation of other parameters while predicting different outcomes of blasts. The variables and parameters used in this work are defined in Table 3.

Data on different variables and factors of blasting from 10 mines, was generated to create a reasonable database. The variables included those pertaining to rock mass and blast design along with dependent variables like throw and flyrock. The basic statistics of the data thus generated is provided in Table 4.

The entire data from field blasts was analysed with EasyNN-Plus[©], an ANN software, which has in-built routines to design a network, train and validate the ANN model. It uses a backward propagation method to minimize errors. Trimming, cloning and exclusion of data are inbuilt in the software to attain minimal error and to avoid overtraining. The software can suggest the number of input and output nodes for training a network. The type of network used in our study is shown in Figure 2.

Figure 3 shows progressive training of the network. Initially both throw and flyrock were included as output while using all input variables (Table 3), for simultaneous training of the network. However, the training continued and resulted in overtraining as validation did not work properly, as is evident from high scatter in the validation (Figure 3). This was because two different output variables, viz. throw (regular) and flyrock (random nature) were treated together. The problem could be solved by treating the output variables separately.

The values were thus independently analysed by ANN. The training results of ANN analysis of throw and flyrock when treated independently are shown in Figures 4 and 5 respectively.

The importance and sensitivity of different variables on throw and flyrock distance for combined and independent treatments of throw and flyrock obtained from ANN analysis are shown in Table 5.

In order to reduce variables entering into the scheme, a combinatory approach was evolved and used for furthering the results. The combinations of variables defined earlier that compensate several variables, are shaded in Table 5 and further elaborated in Table 6.

The variables adopted from Table 5 for defining a predictive regime for throw and flyrock distance were normalized. In order to retain the significance of parameters, the original ranking of the variables (Table 5) was maintained and the relative importance and sensitivity of the factors identified (Table 7).

	Т	able 3. Defin	ition of variables and factors used
Name	Nature	Symbol	Definition
Compressive strength	x_i	σ_c	Uniaxial compressive strength of rock estimated with Schmidt Hammer
Joint spacing	x_i	S_j	Spacing of the major joint set as observed in field
Joint orientation	x_i	O_j	Orientation of the major joint set with respect to blast face
P-wave velocity	x_i	C_{Pi}	In situ P-wave velocity of rock mass from geophysical survey
Density of rock	x_i	$ ho_r$	Density of rock specimen measured in lab
Acoustic impedance of rock	F_i	Z_r	Product of in situ P-wave velocity of rock and its lab density
Blastability Index	F_i	I_{BI}	Empirical estimation of blastability using method ³²
Drill diameter	x_i	d	Blasthole diameter as measured in field
Burden	x_i	В	Minimum burden observed in the blast
Spacing	x_i	S	Drilled spacing between two adjacent holes measured in field
Stemming length	x_i	l_s	Minimum stemming length applied to blastholes
Specific charge	F_i	q	The explosive charge per unit volume of rock used in blast
Explosive density	x_i	$ ho_e$	Density of explosive used as measured in blasts
Deck length	x_i	l_{sd}	Length of solid or air deck used to separate the charges in a single blasthole
Charge diameter	x_i	d_c	Explosive diameter in case of cartridge explosives used in blasts
Bench height	x_i	H_b	The height of bench being blasted
Hole depth	x_i	l_{bh}	Depth of the blasthole drilled
Charge length	x_i	l_c	Length of the explosive charge placed in the blasthole
Charge length to drill depth ratio	F_i	l_c/l_{bh}	Ratio of the charge length to the blasthole depth
Charge/hole	x_i	Q	Total weight of explosive used in a blasthole
Effective in-hole explosive density	F_i	$ ho_{ee}$	The weight of explosive used per unit volume of a blasthole
Throw	x_o	R_m	Distance of broken material from the bench blasted
Flyrock distance	x_o	R_f	Distance of flyrock fragment thrown from the blast

 x_i is input variable, F_i is input factor, x_o is output variable.

Table 4.	Statistics of differen	t variables and	factors	investigated
				~ ~

Group	Name of the variable/factor	Units	Data sets	Mean	Minimum	Maximum	Standard deviation
Rock mass properties	Compressive strength (Schmidt)	MPa	145	52	17	105	24
	Joint spacing	m	145	0.53	0.10	1.30	0.26
	Joint orientation	Å	145	36	1.00	115.00	26.59
	P-wave velocity	m/s	145	2960	473	4690	1009
	Density of rock	kg/m ³	145	2455	1720	4100	295
	Blastability Index	×10	145	6.12	1.00	9.00	1.58
Basic blast design variables	Drill diameter	mm	145	128	100	165	24
including modifications	Burden	m	145	3.20	0.68	5.00	0.78
within the hole and explosive	Spacing	m	145	4.36	1.50	7.30	1.13
properties	Stemming length	m	145	3.19	0.30	6.50	1.38
	Specific charge	kg/m ³	145	0.50	0.08	1.50	0.30
	Explosive density	g/cm ³	145	1.06	0.77	1.30	0.12
	Deck length	m	145	0.58	0.00	4.70	0.77
	Charge diameter	mm	145	119	83	165	32
	Bench height	m	145	7.71	0.90	14.00	3.16
	Hole depth	m	145	8.17	0.90	14.50	3.28
	Charge length	m	145	4.44	0.60	8.95	2.15
	Charge length to drill depth ratio	-	145	0.57	0.19	0.94	0.15
	Charge/hole	kg	145	57.6	1.9	203.7	52.9
	Effective in-hole explosive density	kg/m ³	145	429.3	123.7	720.8	133.1
Rock movement descriptors	Throw	m	145	11.6	4.3	16.6	2.3
	Flyrock distance	m	27	69.3	32.0	137.0	28.7

Table 7 reveals that ρ_r , ρ_{ee} , B, c_{Pi} , S are the most important variables/factors that determine throw whereas B, c_{Pi} , ρ_r , ρ_{ee} , l_q/l_d and S are important to flyrock respectively.

Figure 6 shows that burden, density of rock, effective in-hole density of explosive, and *P*-wave velocity of rock

assume significant importance in all types of rock displacement. However, the ratio of charge length to blasthole depth becomes more prominent for flyrock distance compared to throw. From this analysis, the parameters affecting the flyrock distance get outlined. This also conforms to the general trend in variables identified in the

					Table	5. Tł	ne relati	ve impor	tance a	nd sen	sitivit	y of v	variable	es, fact	ors						
Varia	ble/factor	$ ho_{ee}$	ρ_r	В	C_{Pi}	I_{BI}	$ ho_e$	O_j	S_j	d	lsd	S	l _c /l _{bh}	q	l_c	l_{bh}	H_b	σ_c	d_c	ls	Q_h
R _{all}	Imp.	1	8	4	2	9	12	6	3	10	16	14	7	13	15	20	19	5	18	11	17
	Sens.	1	10	5	4	3	18	11	2	9	7	12	15	8	13	6	19	17	14	16	20
R_m	Imp.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
	Sens.	3	1	2	17	4	8	9	16	10	6	11	19	5	12	18	15	13	14	7	20
R_f	Imp.	1	3	2	5	9	4	17	19	14	11	16	12	18	6	15	8	20	7	13	10
	Sens.	16	17	1	3	2	15	12	20	4	11	18	9	13	8	7	6	19	5	10	14

See Table 3 for symbols; the shadowed variables are combined later.

		1	
Group	Name of the variable/factor	Combinatory variable, factor or compensatory factor/description	Comments
Rock mass properties	Compressive strength (Schmidt) Joint spacing Joint orientation <i>P</i> -wave velocity Density of rock Blastability Index	 <i>P</i>-wave velocity of rock, and Density of rock 	Can be further combined into acoustic impedance of rockmass
Basic blast design variables including modifications within the hole and explosive properties	Drill diameter Burden Spacing Stemming length Specific charge Explosive density Deck length Charge diameter Bench height Hole depth Charge length Charge length to drill depth ratio Charge/hole	Included in ρ_{ee} 3. Included as design variable 4. Included in design variable Included in ρ_{ee} Included in ρ_{ee} and <i>B</i> , <i>S</i> , <i>H</i> _b Included in ρ_{ee} Included in ρ_{ee}	 <i>ρ_{ee}</i> designed by Raina¹ incorporates several variables as shown here and is a better descriptor in comparison to specific charge The burden and spacing represent the design of blast. The charge length to drill depth ratio is treated separately as it emerged out as an important linear factor controlling flyrock. (Note: Numbers indicate the variable identified after combination)

Figure 2. Network architecture for ANN analysis of the data.

cause of flyrock. Finally, the following functions (eq. (1)) and (eq. (2)) can be defined for throw and flyrock.

$$R_m = f(\rho_r, \rho_{ee}, B, c_{Pi}, S), \tag{1}$$

$$R_f = f(B, c_{Pi}, \rho_r, \rho_{ee}, l_q/l_d, S).$$
 (2)

These functions assume use of a similar explosive since velocity of detonation of explosive was not considered in the analysis. An exercise can be made to further reduce the parameters entering into equations by considering the following: (a) The product of c_{Pi} and ρ_r constitutes the acoustic impedance of rock mass (Z_r) ; (b) The product of

Figure 3. Training of the network.

Figure 4. ANN Training and validating results for throw only.

Figure 5. ANN training and validating results for flyrock only.

		Table 7	. Importanc	ce and sensitivi	ty of final var	iables identifie	d from ANN a	nalysis		
		Relat	ive importan	ce (imp.)	Relati	ve sensitivity ((sens.)		imp. × sens.	
Variable group	x_i, F_i	All	Throw	Flyrock	All	Throw	Flyrock	All	Throw	Flyrock
Rock	c_{Pi} $ ho_r$	0.189 0.156	0.176 0.188	0.179 0.188	0.183 0.157	0.136 0.196	0.191 0.147	0.035 0.024	0.024 0.037	0.034 0.028
Explosive	$ ho_{ee}$	0.194	0.194	0.158	0.196	0.189	0.150	0.038	0.037	0.024
Blast design	$B \\ l_q/l_d \\ S$	0.178 0.161 0.122	0.182 0.127 0.133	0.192 0.133 0.150	0.179 0.136 0.149	0.192 0.128 0.158	0.197 0.172 0.144	0.032 0.022 0.018	0.035 0.016 0.021	0.038 0.023 0.022

RESEARCH COMMUNICATIONS

Figure 6. The relative importance and sensitivity of the variables for throw and flyrock.

 ρ_{ee} and in-hole velocity of detonation (c_{dc}) relates to the acoustic impedance of the explosive (Z_e) and (c) the burden and spacing for a given bench height constitutes the blast pattern b_P .

Replacing the variables in eq. (1) and (2) by the factors mentioned above, the final form of the functions is given as

$$R_m = f(Z_r, Z_e, b_P), \tag{3}$$

$$R_f = f(Z_r, Z_e, b_P, l_q/l_d).$$
 (4)

It is thus possible to define the parameters as mentioned in (eq. (1)) and (eq. (2)) in a particular mining condition without compromising on the variables. Equations (3) and (4) will thus require an estimation of least number of parameters to define the throw and flyrock distance.

We have enumerated a scheme consisting of variables in blasting that define the throw and flyrock distance. The method based on a significant database and importance of variables through artificial neural network, defines a new paradigm in the estimation of important outcomes of a blast. A combinatory approach has been devised to minimize parameters for estimation of throw and flyrock. It is evident from the developed functions that the basic factors defining throw and flyrock distance are similar, except for the charge length to drill depth ratio, which has a strong influence on flyrock distance. The crisp functions defined here can be used to work out independent parameters of the functions influencing throw and flyrock distance for a given mining condition, while considering that the explosive is similar.

- Raina, A. K., Murthy, V. M. S. R. and Soni, A. K., Flyrock in bench blasting: a comprehensive review. *Bull. Eng. Geol. Envi*ron., 2014, 73(4), 1199–1209.
- Bajpayee, T., Rehak, T. R., Mowrey, G. and Ingram, D., A summary of fatal accidents due to flyrock and lack of blast area security in surface mining, 1989 to 1999. Proceedings of the 28th Annual Conference on Explosives and Blasting Technique, ISEE, 10–13 February 2002, Las Vegas, 2, pp. 105–118.
- Singh, D. P. and Sastry, V. R., Rock fragmentation by blasting influence of joint filling material. J. Exp. Eng., 1986, 3(5), 18–27.
- Raina, A. K., Murthy, V. M. S. R. and Soni, A. K., Flyrock in surface mine blasting: understanding the basics to develop a predictive regime. *Curr. Sci.*, 2015, **108**(4), 660–665.
- Schneider, L., Back to basics: flyrock (Part 1 Safety and Causes). J. Exp. Eng., 1996, 13(9), 18–20.
- Kricak, L., Kecojevic, V., Negovanovic, M., Jankovic, I. and Zekovic, D., Environmental and safety accidents related to blasting operation. *Am. J. Environ. Sci.*, 2012, 8(4), 360–365.
- Trivedi, R., Singh, T. N. and Raina, A. K., Prediction of blastinduced flyrock in Indian limestone mines using neural networks. *J. Rock Mech. Geotech. Eng.*, 2014, 6(5), 447–454.
- Faradonbeh, R. S., Armaghani, D. J. and Monjezi, M., Development of a new model for predicting flyrock distance in quarry blasting: a genetic programming technique. *Bull. Eng. Geol. Environ.*, 2016, **75**(3), 993–1006.
- Fletcher, L. R. and D'Andrea, D. V., Control of flyrock in blasting, Proceedings of the 12th Annual Conference on Explosives and Blasting Technique, ISEE, 9–14 February 1986, Cleveland, pp. 167–175.
- Gupta, R. N., Surface blasting and its impact on environment. In Impact of Mining on Environment (eds Trivedy, R. K. and Sinha, M. P.), Ashish Publishing House, New Delhi, pp. 23–24.
- Workman, J. L. and Calder, P. N., Flyrock prediction and control in surface mine blasting, 1994; <u>http://docs.isee.org/ISEE/Support/</u> <u>Proceed/General/94Gen/9406g.pdf</u>
- Davies, P. A., Risk based approach to setting of flyrock danger zones for blasting sites, transactions of the institute of mines and metals, May-August 1995, pp. 96–100.
- Adhikari, G. R., Studies on flyrock at limestone quarries. Rock Mech. Rock Eng., 1999, 32(4), 291-301.
- Richards, A. and Moore, A., Flyrock control by chance or design. Proceedings of the 30th Annual Conference on Explosives and Blasting Technique, ISEE, 2004, vol. 1, pp. 335–348.

CURRENT SCIENCE, VOL. 111, NO. 9, 10 NOVEMBER 2016

- Kecojevic, V. and Radomsky, M., Flyrock phenomena and area security in blasting-related accidents. *Saf. Sci.*, 2005, 43(9), 739– 750.
- Little, T. N., Flyrock risk. Proceedings of EXPLO Conference, Wollongong, NSW, 3–4 September 2007, pp. 35–43.
- Verakis, H. and Lobb, T., Flyrock revisited an ever present danger in mine blasting, 2007; <u>http://docs.isee.org/ISEE/Support/Proceed/</u> <u>General/ 07GENV1/ 07v109g.pdf</u>
- Little, T. N. and Blair, D. P., Mechanistic Monte Carlo models for analysis of flyrock risk. Rock Fragmentation by Blasting (ed. Sanchidrián), Taylor & Francis, 2010, pp. 641–647.
- Amini, H., Gholami, R., Monjezi, M., Torabi, S. R. and Zadhesh, J., Evaluation of flyrock phenomenon due to blasting operation by support vector machine. *Neural Comput. Appl.*, 2011, 21(8), 2077–2085.
- Ghasemi, E., Sari, M. and Ataei, M., Development of an empirical model for predicting the effects of controllable blasting parameters on flyrock distance in surface mines. *Int. J. Rock Mech. Min. Sci.*, 2012, **52**, 163–170.
- Mishra, A. K. and Mallick, D. K., Analysis of blasting related accidents with emphasis on flyrock and its mitigation in surface mines. *Rock Fragmentation by Blasting* (eds Singh, P. K. and Sinha, A.), Taylor and Francis, London, 2013, pp. 555–561.
- 22. Lundborg, N., The hazards of fly rock in rock blasting. Swedish Detonic research foundation, Report DS, 1974, p. 12.
- Roth, J. A., A model for the determination of flyrock range as a function of shot condition, US Department of Commerce, NTIS Report No. PB81222358, 1979, p. 61.
- St George, J. D. and Gibson, M. F. L., Estimation of flyrock travel distances: a probabilistic approach, AusIMM EXPLO 2001 Conference, Hunter Valley, 2001, pp. 409–415.
- McKenzie, C. K., Flyrock Range and Fragment Size Prediction, 2009; http://docs.isee.org/ISEE/Support/Proceed/General/09GENV2/ 09v206g.pdf
- Monjezi, M., Bahrami, A. and Varjani, A. Y., Simultaneous prediction of fragmentation and flyrock in blasting operation using artificial neural networks. *Int. J. Rock Mech. Min. Sci.*, 2010, 47, 476–480.
- Stojadinović, S., Pantović, R. and Žikić, M., Prediction of flyrock trajectories for forensic applications using ballistic flight equations. *Int. J. Rock Mech. Min. Sci.*, 2011, 48, 1086–1094.
- Rezaei, M., Monjezi, M. and Varjani, Y. A., Development of a fuzzy model to predict flyrock in surface mining. *Saf. Sci.*, 2011, 49, 298–305.
- Ghasemi, E., Amini, H., Ataei, M. and Khalokakaei, R., Application of artificial intelligence techniques for predicting the flyrock distance caused by blasting operation. *Arab J. Geosci.*, 2012; doi:10.1007/s12517-012-0703-6,10.
- Monjezi, M., Dehghani, H., Singh, T. N., Sayadi, A. R. and Gholinejad, A., Application of TOPSIS method for selecting the most appropriate blast design. *Arab J. Geosci.*, 2012, 5, 95–101.
- Khandelwal, M. and Monjezi, M., Prediction of flyrock in open pit blasting operation using machine learning method. *Int. J. Min. Sci. Technol.*, 2013, 23(3), 313–316.
- Lilly, P. A., An empirical method of assessing rock mass blastability. Proceedings AusIMM/IE, Australian Newman Combined Group Large Open Pit Mines Conf., 1986, pp. 41–44, 89–92.

ACKNOWLEDGEMENTS. We thank Director, CSIR-CIMFR for permission to publish the paper. Thanks are due to Ministry of Mines (Govt of India) for partial funding. The work forms part of the Ph D thesis of the first author. Acknowledgement is due to the Indian School of Mines and other personnel for help.

Received 1 June 2015; revised accepted 22 June 2016

doi: 10.18520/cs/v111/i9/1524-1531

CURRENT SCIENCE, VOL. 111, NO. 9, 10 NOVEMBER 2016

New occurrence of albitite from Nubra valley, Ladakh: characterization from mineralogy and whole rock geochemistry

Aditya Kharya, H. K. Sachan*, Sameer K. Tiwari, Saurabh Singhal, P. Chandra Singh, Santosh Rai, Sushil Kumar, Manish Mehta and P. K. R. Gautam

Wadia Institute of Himalayan Geology, Dehra Dun 248 001, India

We report here the occurrence of albitite in Nubra valley of Ladakh region in the Trans-Himalaya area within Indian Territory at 34°44′46″N and 77°33′8″E before Panamik (in the Wish Pond, local name of the area). The albitite has been characterized by petrography, mineral chemistry, X-ray diffraction and whole rock geochemistry (i.e. major, trace and rare earth elements (REE)). The albitite comprises 85–96% albite and amphibole, whereas apatite, zircon and ilmenite occur as accessory minerals. The textural relationship and geochemical data indicate its igneous origin. The albitite contains about 5–6 ppm U and Th which may possibly host U-REE mineralization.

Keywords: Albitite, Karakoram, mineral chemistry, XRD, whole rock chemistry.

A number of albitite occurrences have been described in India within the Archaean basement and the Meso-Proterozoic cover rocks of Delhi Supergroup in northcentral and northern Rajasthan¹⁻³. Till now, there is only one known occurrence of albitite from Himalayan terrain, i.e. Swat valley of Pakistan in association with Mingora ophiolitic mélange⁴. However, such a rock type was not reported from Indian Himalayan or Trans-Himalayan region. Here, we present a detailed account of new occurrence of albitite from the Nubra valley of Shyok Suture Zone (SSZ) in trans-Himalayan region, based on petrography, XRD, mineral chemistry and whole rock geochemistry. The significance of albitite in Trans-Himalaya is important due to its peculiar occurrence in subductionrelated tectonic setting (i.e. Shyok Suture Zone), whereas the albitites generally occur along the intercontinental rift zone¹⁻³

The SSZ is characterized as structural boundary which separates Ladakh magmatic arc in the south from the Karakoram terrain in the north. The SSZ runs parallel to Shyok river⁵ (Figure 1). The Karakoram terrain contains a suite of rocks covering mélanges, ophiolites, sedimentary and metamorphic rocks. These rock sequences crop out in the Karakoram Range: the Nubra Formation⁶, the Karakoram leucogranite batholith (the Baltoro Plutonic Unit

^{*}For correspondence. (e-mail: hksachan@wihg.res.in)