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The whitefly, Bemisia tabaci (Aleyrodidae, Hemip-
tera), regarded as a species complex comprising over 
34 genetic groups, is a serious insect pest of several 
crops. The aim of this study was to find out the differ-
ence in alkaline phosphatase (ALP) activity between 
developmental stages of two populations of B. tabaci 
belonging to Asia II-1 and Asia I genetic groups. There 
was a rise in ALP activity from first to second instar 
followed by gradual decline through third and fourth 
instars. ALP activity reached its peak during the adult 
stages of both Asia I and Asia II-1 populations. The 
specific activity of ALP in nymphal instars of Asia II-1 
was significantly higher than that of Asia I.  
 The kinetics of ALP revealed that Asia I population 
showed significant increase in Vmax value compared to 
Asia II-1 in the second instar, fourth instar and adult 
stages, whereas the opposite is seen in the first and 
third instars. Also, the Asia I population showed sig-
nificant decrease in Km value compared to Asia II-1 in 
the first and fourth instars; the opposite was seen in 
second instar. No significant differences were obser-
ved between the Km values of the third instar and 
adult stages of both the populations. The possible  
physiological role of ALP and its implications in man-
agement of this pest are also discussed in this commu-
nication.  
 
Keywords: Alkaline phosphatase, Bemisia tabaci,  
developmental stages, genetic groups. 
 
WHITEFLY, Bemisia tabaci (Hemiptera: Aleyrodidae), 
one of the world’s top 100 invasive pests with a host 
range of well over 900 plants (http://www.issg.org/ 
database) causes serious damage directly as sap-sucking 
pest and indirectly as vector of plant pathogenic viruses. 
B. tabaci is regarded as a species complex comprising 
about 34 morphologically indistinguishable genetic 
groups1. There is a great amount of diversity of B. tabaci 
in Asia with the presence of 19 of the 34 genetic groups 
recorded so far. The Indian subcontinent represents an 
important Old World centre of diversification and evolu-
tion of B. tabaci with Asia 1 and Asia II-1 being the two 
dominant genetic groups widely distributed in India2,3.  
 Alkaline phosphatase (ALP, EC 3.1.3.1; a ubiquitous 
hydrolase enzyme present in animals, fungi and bacteria) 
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is responsible for removing phosphate groups from many 
types of molecules, including nucleotides, proteins and 
alkaloids4. ALP has been documented in several species 
of insects, including Leptinotarsa decemlineata5, Bombyx 
mori6 and Drosophila melanogaster7. ALP activity was 
reported to be localized in several insect organs and tis-
sues, including salivary glands, intestine and ovarioles in 
the B-biotype of B. tabaci8. ALP was reported to be  
involved in many key biological processes in insect, viz. 
development, nerve conduction, hormone synthesis,  
substance metabolism and caste differentiation4. Poly-
phagous insects were reported to be swift in adjusting 
their digestive enzymes for adapting to the changing nu-
trient conditions of their host plant(s) within a short 
time9. Comparative studies on ALP activities of two whi-
tefly species on different host plants revealed that the 
quicker host plant adaptation of B-biotype of B. tabaci 
could be attributed to its ALP activity10. There is no  
information available on enzymatic attributes of two pre-
dominant B. tabaci genetic groups, Asia I and Asia II-1, 
prevalent in India. The present study was undertaken to 
find out differences, if any, in the kinetics of ALP acti-
vity in various developmental stages of these two genetic 
groups of B. tabaci.  
 The field populations of B. tabaci were collected dur-
ing 2013 from New Delhi (28.6139N, 77.2089E) and 
Guntur, Andhra Pradesh (16.3008°N, 80.4428°E), India. 
The insects were collected from cotton plants by follow-
ing standard sampling procedures. The puparia were 
sampled for valid species authentication. The respective 
populations were reared in insecticide-free exposure con-
ditions on cotton (Gossypium hirsutum, L) at 27  2C, 
photoperiod of 14:10 h (L : D) and 60–70% of relative 
humidity in insect-proof climate-control chambers at the 
Division of Entomology, Indian Agricultural Research 
Institute, New Delhi, India.  
 The genetic group status of the two field populations of 
B. tabaci was ascertained using mtCOI primers. Genomic 
DNA was extracted from single B. tabaci adult using 
DNeasy blood and tissue kit (Qiagen) according to the 
manufacturer’s protocol. The mtCO1 region was ampli-
fied using forward primer CI–J–2195 (3–TTGATTTTT-
TGGTCATCCAGAAGT–5) in combination with reverse 
primer TL2–N–3014 (3–TCCAATGCACTAATCTGC-
CATATTA–5)11. The PCR mixtures consisted of 
10 pmol of primer, 2.5 l of 10 buffer, 2 mM MgCl2, 
2.0 mM dNTPs, 1U Taq DNA polymerase and the tem-
plate DNA from individual insects from each population. 
The PCR cycling conditions were as follows: initial denatu-
ration of 94C for 5 min followed by 35 cycles of denatu-
ration at 94C for 30 sec, annealing for 40 sec at 54C, 
extension for 40 sec at 72C followed by final extension 
at 72C for 5 min in a thermal cycler (Biorad C1000 
Thermal Cycler, USA). The amplified products were re-
solved by electrophoresis using 1% agarose gel with 1 
TAE buffer in a submerged electrophoresis system at 

70 V, then stained with ethidium bromide (1 g/ml) and 
visualized in a gel documentation system (AlphaImager 
HP, Protein sample). Later, the PCR products were puri-
fied and sequenced. The mtCO1 sequences obtained from 
each population were subjected to homology search  
using Basic Local Alignment Search Tool (nBLAST) in 
NCBI (http://www.ncbi.nlm.nih.gov). Based on sequence 
analysis, the genetic group status of B. tabaci populations 
from New Delhi and Guntur was determined respectively, 
as Asia II-1 and Asia I (vide Gen Bank accession num-
bers of KF298440 for Asia II-1 and KF298441 for Asia I). 
 B. tabaci has six developmental stages, viz. egg, four 
nymphal instars and adult (Figure 1). Twenty individuals 
from each of the four nymphal instars and adult stages 
were homogenized in 100 l of 10 mM sodium acetate–
magnesium acetate solution (pH 7) at 4C. Samples were 
centrifuged at 10,000 g, 4C for 15 min, and the super-
natants were collected for assaying enzymatic activity. 
ALP activity was estimated by incubating 20 l of super-
natant in 200 l of substrate buffer containing 100 mM 
N-Tris-hydroxymethyl-1-methyl-3-aminopropanesulfonic 
acid (TAPS; pH 7.8) and 0.75 mM of para-nitrophenyl 
phosphate (pNPP) for 30 min. Then the reaction was 
stopped by keeping the plate in an ice bath for 5 min. Ab-
sorbance was measured at 405 nm in a Micro plate Reader 
(Molecular Devices, USA). p-Nitrophenol was also quan-
tified at 405 nm to estimate pNPP hydrolysis. The enzyme 
unit (U/mg protein) is defined as the production of 1 nmol 
of p-nitrophenol by a reaction between 1 g protein and 
related substrate (pNPP) per min at 37C (ref. 10). Total 
protein content of the tissue samples was analysed using 
Bradford reagent with bovine serine albumin (BSA) as 
the standard. The enzymatic activity was calculated as  
p-nitrophenol produced (nmol/l/min) and specific acti-
vity (nmol/g/min) was determined as enzymatic activity 
(nmol/l/min) divided by protein content (g/l).  
 Vmax, the maximum initial velocity and Km, the Micha-
elis constant were determined using specific activity of 
ALP at five different concentrations of the substrate for 
each developmental stage of the insect using the software 
program, Graphpad Prism® (version 6.05). Data were 
analysed by one-way ANOVA and multiple comparisons 
within population were made by Tukey–Honest Signifi-
cant Difference (HSD). Mann–Whitney U test was per-
formed for comparisons between data of two populations 
in SPSS program, as this test is considered to be more  
efficient for analysis of data for continuous measure-
ments like enzymatic activity.  
 Table 1 presents the specific activities of the enzyme. 
Comparison of ALP activity between the two B. tabaci 
populations revealed that the specific activity in nymphal 
instars of Asia II-1 was significantly higher (about 1.2–
1.5 times) than that of Asia I. The highest ALP activity 
was recorded in adult stages with values being 1.209  
0.093 nmol/g/min and 1.225  0.083 nmol/g/min for 
Asia II-1 and Asia I respectively. However, the specific
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Figure 1. Nymphal and adult stages of whitefly, Bemisia tabaci. 
 
 
Table 1. Specific activity of alkaline phosphatase (ALP) in develop- 
  mental stages of Bemisia tabaci Asia II-1 and Asia I  

 ALP specific activity (nmol/g/min) 
 

Stage Asia II-1 Asia I 
 

First instar 0.671  0.017aA 0.478  0.005aB 
Second instar 0.947  0.007bA 0.822  0.005bB 
Third instar 0.866  0.005bA 0.720  0.016bB 
Fourth instar 0.634  0.004aA 0.413  0.004aB 
Adult 1.209  0.044cA 1.225  0.047cA 

All values are mean of three replications. Numbers followed by same 
alphabet are not statistically different. Statistical significance within 
the population is indicated by small alphabets and between the popula-
tions by capital letters.  
 
 
activities of the enzyme during the adult stages of both 
the populations were not statistically different (Table 1). 
There was a rise in ALP activity from the first to second 
instar followed by gradual decline through third and 
fourth instars. ALP activity reached its peak during the 
adult stages of both Asia I and Asia II-1 populations. The 
rise in ALP activity was seen in the active feeding stages 
of whitefly, i.e. early nymphal instars and adult stages. 
As the insects grow, they settle on the leaves remaining 
stationery (third and fourth instars). The fourth instar of 
whitefly is a quiescent stage (puparia) having no feeding 
activity and as such, ALP activity declined probably dur-
ing the third and fourth instars. 
 Analysis of the kinetic parameters of ALP revealed 
significant difference in Vmax and Km values between the 
two whitefly populations. The Asia I population showed 
significant increase in Vmax value compared to Asia II-1 
in the second instar, fourth instar and adult stages, whe-
reas the opposite was seen in the first and third instars 
(Figure 2). There was significant decrease in Km value of 
Asia I as compared to Asia II-1 in the first and fourth in-
stars, whereas the opposite was seen in the second instar. 
However, there was no significant difference between Km  
values of the third instar and adult stages of both the pop-
ulations. The adult stage showed lower Km value com-
pared to other stages for both the genetic groups under 
study (Figure 3). 
 The relationship between rate of reaction and concen-
tration of substrate depends on the affinity of the enzyme 

to its substrate. This is usually expressed as Km (Micha-
elis constant) of the enzyme, an inverse measure of affin-
ity. If an enzyme has a small value of Km, it achieves its 
maximum catalytic efficiency at low substrate concentra-
tions. Considering the role of ALP in sucrose metabo-
lism, the relatively high affinity of the enzyme in adult 
stages of Asia I and Asia II-1 populations (as indicated 
by significantly lower Km values) indicates better host 
adaptation by these two cryptic species of B. tabaci. 
 Insect ALPs appear to have a pivotal role in absorp-
tion, cuticle formation and development4. Some studies 
have reported that mammalian and insect ALPs are  
involved in sucrose metabolism12–14. The whiteflies are 
piercing–sucking insects which feed on the plant phloem 
sap, a rich source of sucrose, and as such the insects  
require a sucrose concentration between 5% and 10%  
for maximum rate of metabolism while feeding15. Local-
ization of ALP in salivary gland secretory system indi-
cates their possible role in sucrose metabolism in  
B. tabaci8.  
 The differential ALP activities recorded in Asia I and 
Asia II-1 populations of B. tabaci in this study are sup-
ported by similar studies showing significant differences 
in ALP activity in the developmental stages of two white-
fly species, B. tabaci and T. vaporariorum16. While 
studying the effects of different host plants on ALP  
activity, it was observed that swift host adaptation of  
B-biotype of B. tabaci could be attributed to its better 
utilization of ALP for faster assimilation of sucrose10.  
 B. tabaci has assumed the status of a global invasive 
pest with the rapid establishment of B. tabaci B- and Q-
biotypes in over 35 countries in the past two decades. The 
diversity of B. tabaci in Asia is enormous, with the pres-
ence of 19 of its 34 genetic groups recorded so far17. With 
the distribution on large geographic range, higher genetic 
variability, capability to successfully colonize new areas 
and with the large host plant range, Asia I has emerged as 
the predominant cryptic species of B. tabaci in Asia. Re-
cent survey of B. tabaci populations across the country 
has shown that Asia I is the most widely distributed B. 
tabaci genetic group in southern India, while Asia II-1 is 
the predominant species in northern India17. Several other 
investigations have elucidated the genetic variability 
(haplotypes diversity), wider distribution and broader
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Figure 2 a–e. Comparison between Vmax values of the Asia I and Asia II-1 populations at various growth stages. Asia I population shows signifi-
cant increase in Vmax value compared to Asia II-1 in the second instar, fourth instar and adult stages, whereas the opposite is seen in the first and 
third instars. P < 0.05(*), P < 0.01(**), P < 0.001(***), P > 0.05 (not significant). 
 
 

 
 
Figure 3 a–e. Comparison between Km values of the Asia I and Asia II-1 populations at various growth stages. Significant decrease in Km value of 
Asia I is seen compared to Asia II-1 in the first and fourth instars; the opposite is seen in the second instar. No significant difference is seen  
between Km values of third instar and adult stages of both the populations. P < 0.05(*), P < 0.01(**), P < 0.001(***), P > 0.05 (not significant). 
 
 
host range of Asia I cryptic species across the Asian 
countries18–20. The wider distribution and broader host 
range of Asia I may be attributed to its ALP activity.  
 Compared to that of B- and Q-biotypes, limited studies 
are available on Asian genetic groups of B. tabaci. The 
present study has thrown light on the ALP activities of 
the two predominant genetic groups of B. tabaci preva-
lent in India, viz. Asia I and Asia II-1. Further studies on 
ALP activity in Asia I and Asia II-1 vis-à-vis host plants 
and host shifts may elaborate on its role on host adapta-
tion mechanisms. Understanding the biological traits of 
B. tabaci genetic groups would augur well for the sus-
tainable management of this pest.  
 Ethics statement: No permits were required for collect-
ing B. tabaci from the field, since it is not an endangered 
species affecting the biodiversity status. 
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