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Road accessibility, population proximity and temperature increase are 
major drivers of forest cover change in the Hindu Kush Himalayan  
Region 
 
The Hindu Kush Himalayan (HKH) re-
gion has been identified as one of the 
most important landscapes that needs to 
be preserved towards a global sustainable 
ecological balance. The HKH region 
holding around 210 million population is 
subjected to forest cover changes of var-
ious magnitudes on different spatial and 
temporal scales1. Apart from the natural 
factors, including climate, extensive de-
forestation, logging, lopping, heavy graz-
ing, over-harvesting, land conversion, 
etc. are the major activities triggered by 
poverty, over population; and lack of 
awareness, that are all leading to forest 
depletion in this region2–4. In Asia, the 
most important driver of deforestation 
has been subsistence agriculture, followed 
by commercial agriculture, urbanization, 
infrastructure and mining activities5,6. 
 The explanation of climatic, topographic 
and anthropogenic drivers for forest gain 
and loss is well known. However, their 
contribution to forest cover change  
varies across locations, scale and time. 
Though various deforestation studies 
have been carried out in the HKH region, 
the major drivers responsible need to be 
identified for effective management7–9. 

Recently, Behera et al.10 have analysed 
the tree canopy cover (TCC) resilience 
and proneness in relation to the drivers in 
the HKH region. However, loss and gain 
of TCC has not been explained. The ob-
jectives of the present study are to use 
the freely available satellite remote sens-
ing-derived TCC data to find the TCC 
loss and gain over the past decade; and to 
explain the phenomenon on the basis of 
climatic, topographic and demographic 
drivers. For this purpose regression 
analysis at appropriate significance level 
has been applied. 
 The HKH region with an estimated 
area of 4.3 m ha occupies 2.9% of global 
land and 18% of the global mountain 
area; it is spread over eight countries 
(Figure 1). The HKH region is divided 
into three parts according to the climatic 
and topographic conditions. The western, 
central and eastern Himalayan regions of 
HKH are characterized by mean annual 
temperature of 9.9C, 8.9C and 13.6C  
respectively; and mean rainfall for June 
through September, estimated from 30-
year rainfall data of 1961–1990 is 86, 
546 and 1042 mm respectively11. Cold 
and hot deserts cover most of the area, 

leaving major portions uninhabited. The 
topographic and climatic variability of 
the HKH region is complex, supporting 
only 18% of the area under forest canopy. 
 We collected information on topog-
raphic, anthropogenic and climatic drivers 
from different data portals at varied reso-
lution for the period 2000–2010 (Table 
1; Figure 1). We generated secondary da-
ta such as slope and terrain ruggedness 
index (TRI) values from DEM data; and 
the distance to road, distance to built-up 
area and decadal change in population, 
from the primary data (Table 1; Figure 
1). Data on loss and gain of TCC for the 
period 2000–2012 were downloaded 
from the Earth Engine Partners database  
(Table 1). The TCC loss data represent  
total loss on an annual timescale. The 
pixels were encoded with values from 0 
(no change) to 12 (year of loss) for each 
year from 2000 to 2012. The TCC gain 
data were encoded as 0 (no change) and 
1 (gain) for each year from 2000 to 2012 
(Figure 2). We calculated and used TCC 
loss and gain data for the period 2000–
2012 in the present study. 
 All the drivers and TCC data were  
resampled to a spatial resolution of 5 km

 
 

 
 

Figure 1. Drivers play a significant role in tree canopy cover change. a, Change in population count. b, Change in mean 
annual temperature. c, Distance to road. d, Distance to built-up area. 
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Table 1. Driver data used for analysis (modified from Behera et al.10) 

Data Year Resolution Data source Processing steps 
 

Tree canopy cover 2000 and 2010 30 m Earth engine partners TCC loss and gain maps were statistically generated. 
Tree loss and gain 2000–12    Grid cells with 0% TCC are termed as ‘no’ TCC areas  
Tree loss year 2000–12    and those with 1–100% TCC are termed as forest cover. 
 
Mean annual temperature 2000–10 0.5 deg CRU data Mosaicked and extracted for the HKH region. 
Total annual precipitation 
 
Forest fire 2000–10 500 m MODIS (Reverb) Total fire occurrences were calculated during the decadal  
      period by simple addition. 
 
DEM (SRTM) slope 2000 90 m  CGIAR-CSI Slope and TRI were derived from DEM using Erdas  
 Terrain Ruggedness Index      IMAGINE package  
 (TRI) 
 
Cropland 2000 and 2010 500 m MODIS Some observed noise in the data was removed using  
      knowledge-based masking. Cropland data were  
      further converted to points for Euclidean distance  
      analysis. 
 
Distance to cropland 2000 and 2010 5 km EDIT Each cell shows population count and density  
 Population count      used for change detection during 2000–10. 
 Population density 
 
Built-up locations  2000 Vector SEDAC Built-up location data were used to estimate the  
 (distance to built-up     Euclidean distance of each location from the nearest  
 locations)     built-up locations. 
 
Road locations (distance 1980–2010 Vector SEDAC The data layer was used to find the Euclidean distance  
 to road locations)     of each location from the nearest road (line) 

EDIT, European Distributed Institute of Taxonomy; SEDAC, Socio-economic Data and Applications Centre; CSI, Consortium for Spatial Informa-
tion; DEM data, http://srtm.csi.cgiar.org/; SEDAC, http://sedac.ciesin.columbia.edu/; MODIS DATA, http://reverb.echo.nasa.gov/reverb/; EDIT, 
http://edit.csic.es/HumanPopulation.html; CRU, http://www.cru.uea.ac.uk/cru/data/hrg/. 
 

 
 

Figure 2. TCC loss and gain during 2000–10. Part of North East Indian states, Western Myanmar and a small part of China are 
highlighted, where deforestation and plantation are going on hand in hand. 

 
 
to achieve optimum computation time 
and space (Figures 1 and 2). Changes in 
the driver data (between time T1 and T0) 

were estimated by simple subtraction 
(Table 1; Figure 1). However, the topo-
graphic variables, distance data to built-

up area and road available for the year 
2000 were also used (Table 1). The grid 
cells with 0% TCC were classified as 
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Table 2. Driver-wise -coefficients and their corresponding significance levels as derived using logistic  
 regression for TCC gain and loss; -coefficients at <0.005 level are considered significant 

 Gain Loss 
 

Driver -Coefficient Significance level -Coefficient Significance level 
 

Distance to road location –1.398 0.055 –2.841 0 
Distance to built-up location –0.747 0 –0.572 0 
Change in mean annual temperature 0.518 0 0.247 0.001 
Change in population count 0 0.16 0.012 0 
Change in total precipitation  0 0 0 0 
Change in population density 0 0.981 0.0001 0.6 
Elevation 0 0 0 0 
Slope 0.088 0.01 0.049 0.081 
TRI 0.003 0.021 0.002 0.1 
Change in distance to cropland 0.414 0.03 0.367 0.06 
Total fire occurrence 0.093 0.762 0.46 0.017 

 

 
having ‘no’ forest cover, and those with 
1–100% TCC were classified as having 
forest cover. To analyse the change in 
TCC in relation to the drivers, TCC loss 
and gain and other driver data of the ras-
ter grids were converted to vector points. 
Due to the large number of TCC loss and 
gain point occurrences, only 1% of the 
‘no change’ points was selected (ran-
domly) for regression analysis. Due to this 
data limitation (i.e. availability of data on 
forest cover change and no change), a  
binary logistic regression analysis was 
performed to determine the relationship 
between forest cover changes and drivers 
in terms of -coefficients with the re-
spective significance values (Table 2). 
The logistic regression can be mathe-
matically formulated as: 
 
 0 1 1 2 2( ),n nY X X X        
 
where Y is the dependent variable, 0 is 
the intercept and 1,2…n are the coeffi-
cients associated with the variables 
X1,2,…n. The sign (–/+) and magnitude of 
the -coefficients define their direction 
(direct and inverse, i.e. positive and neg-
ative) and relationship. For example, if 
1 = 0.5 and 2 = 0.3, then Y will be in-
fluenced more by X1 (corresponding to 
1) than by X2 (corresponding to 2), and 
Y will increase with increasing X1 and X2. 
A positive -coefficient signifies a directly 
proportional relationship, and a negative 
-coefficient defines an inversely pro-
portional relationship, i.e. with a positive 
-coefficient, the driver triggers a posi-
tive change and vice versa. 
 About 816,325 and 805,075 sq. km of 
the total study area (4,323,750 sq. km) 
was found under TCC in 2000 and 2010 

respectively12. Between these years, 
13,225 and 1975 sq. km of forest cover 
was lost and gained respectively, leading 
to an overall loss of 11,250 sq. km and a 
gain of 6050 sq. km (Figure 2). Table 2 
presents the -coefficient and signifi-
cance values corresponding to TCC loss 
and gain for each driver. The change in 
mean annual temperature and distance to 
built-up area were the two significant 
drivers associated with TCC gain. The 
changes in mean annual temperature and 
population count and the distances to 
built-up area and roads were observed to 
be significant drivers of TCC loss.  
The other drivers were either insignifi-
cant (>0.005) or had -coefficient  
values of 0 and were therefore rejected 
(Table 2). 
 The TCC loss in relation to distance to 
road with a negative -value (–2.841) 
was highly significant, indicating that 
road networks have a dominant role in 
deforestation as they increase accessibi-
lity. A rapid expansion of the population 
enhances and/or leads to the establish-
ment of sprawling built-up areas. The 
negative -coefficient (–0.572) associat-
ing TCC loss with distance to built-up 
area explains the inverse proportional  
relationship between these two and the 
effect of the proximity of built-up areas. 
However, distance to built-up area is also 
observed to have a negative -coefficient 
value (–0.747) for TCC gain, indicating 
that there are afforestation activities 
around built-up areas12. 
 The mean temperature has increased 
during the past decade in the HKH  
region. Thus, there is a positive -
coefficient (0.518) related to TCC gain 
with change in mean annual temperature. 

This may be explained by the fact that 
more areas will be available/suitable for 
afforestation due to increased tempera-
tures at higher elevation, which would 
otherwise have been cold deserts lacking 
vegetation. This elevation range shift has 
been reported13. However, the low, posi-
tive -coefficient (0.247) relating TCC 
loss with change in mean annual tem-
perature is not very significant (signifi-
cance level, 0.001). This may be 
explained by the fact that increasing 
temperatures will lead to loss of TCC at 
lower elevation. Burgess et al.14 mention 
that, conversely, a loss of forest cover 
leads to a temperature rise. The change 
in total population over the last decade 
was observed to be positively correlated 
with ( = 0.012) TCC loss (Table 2). 
 The rate of TCC loss during 2000–2010 
in the HKH region was observed to be 
around 937.5 ha/year. The TCC change 
caused by the explanatory variables was 
efficiently modelled by the binary logis-
tic regression model. The sign and mag-
nitude of the -coefficients helped qualify 
and quantify the impacts of the individ-
ual drivers on the TCC change process. 
Although a positive correlation was ob-
served for change in mean annual tem-
perature, with both a loss and gain 
occurring, it was concluded that change 
in mean annual temperature is an insig-
nificant driver of TCC change in the dec-
ade studied. However, the impacts of 
anthropogenic variables are clearly seen 
from the negative and high values of the 
-coefficients associated with distance to 
roads and built-up area, and the positive 
-coefficient associated with change  
in total population. Thus the present 
study shows the usefulness of statistical 



SCIENTIFIC CORRESPONDENCE 
 

CURRENT SCIENCE, VOL. 111, NO. 10, 25 NOVEMBER 2016 1602 

modelling approach in identifying the 
major drivers of TCC change. 
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Histopathological changes in golden hamsters induced by  
Leishmania tropica 
 
Several hundred million people are living 
in areas where they can be infected with 
leishmaniasis, a disease caused by over 
20 species of pathogenic intracellular 
protozoan parasites of the genus 
Leishmania and transmitted through the 
bite of a female phlebotomine sandfly. 
Leishmania parasites infect phagocytes, 
dendritic cells and fibroblasts1. The  
essential vertebrate host target cell is the 
macrophage, where the intracellular 
amastigotes of Leishmania reproduce, 
eventually rupture the cell and spread to 
other uninfected macrophages2. Then 
these infected cells migrate to all host 
tissues. Leishmania parasites have a high 
chance for damaging some tissue func-
tions. The clinical spectrum of leishma-
niasis varies from an auto-resolving 
cutaneous lesion, to a distorting mucocu-
taneous disease, to a fatal visceral  
illness3. One of the important factors  
determining the pattern of pathology is 
the species of Leishmania4. However, the 
vectors, nutritional status, genetic back-
ground of the host and socioeconomic 
and environmental factors also have an 
important impact on the outcome of the 
disease3,4. Patients, infected by the same 
species of Leishmania, may give rise to 
various symptoms5 and may respond dif-
ferently to treatment6,7. Lately, the 

BALB/c strain of mice has attracted 
much attention because it produces vis-
ceral leishmaniasis which may be used as 
a model for studying human visceral 
leishmaniasis8. We address some histo-
pathological features of viscerlizing of L. 
tropica in golden hamsters as a model to 
study human visceral leishmaniasis. 
 Leishmania tropica was isolated in 
Baghdad teaching hospital, Baghdad, 
Iraq from a skin lesion on the left arm of 
a 21-year-old male9. Males of golden 
hamster (n = 60), aged 8–10 weeks, were 

supplied by the National Center for Drug 
Control and Researches (NCDCR), 
Baghdad. The golden hamsters were di-
vided into two groups, each consisting of 
30 hamsters which were inoculated as 
follows: one was inoculated with 5  107 
promastigotes of virulent isolate of L. 
tropica which was already cultivated in 
biphasic medium10. The other was the 
control group with hamsters inoculated 
with 0.2 ml of phosphate buffer saline. 
 All hamsters were injected intrader-
mally in the left rear footpad using 1 ml 

 
 
Figure 1. Section in footpad of infected group, showing hyperkeratosis (black arrow) and 
hyperplasia (P), 60 days post-infection, hematoxylin and eosine stain (400X). 
 


