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This communication proposes methods to improve the 
biocompatibility performance of synthetic materials 
for biological and biological material for synthetic  
applications. -cloud extension by suitable ligand–
ligand/metal–ligand interactions can make the  
synthetic–biological fusion suitable for such applica-
tions. The judicious use of ligands for -cloud exten-
sion can be applied to carbon transformations and 
target-oriented drug delivery systems. Embedded 
metal-centre catalysts for synthetic–biological fusion 
include: (i) axial coordination via bridging ligands; (ii) 
ligands with weak to intermediate field strength and 
multidenticities; (iii) design of inert complexes, and 
(iv) development of multi-nuclear complexes. 
 
Keywords: Biocompatibility, carbon transformation, 
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SYNTHETIC and biological materials can be used for many 
complex transformations in carbon management and  
target-oriented drug delivery systems. Carboxylation and 
reduction are two important reactions responsible for car-
bon management in nature. Eight biological pathways are 
known for converting inorganic carbon to organic  
material in cell biomass: (i) reductive pentose phosphate; 
(ii) Hatch–Slack cycle; (iii) Crassulacean acid metabo-
lism; (iv) reductive citric acid; (v) 3-hydoxypropionate; 
(vi) dicarboxylate/4-hydroxybutyrate; (vii) 3-hydroxypro-
pionate/4-hydroxybutyrate pathway and, (viii) reductive 
acetyl-CoA cycle. The first three are present in plant and 
some prokaryotes, 4th and 5th in bacteria, 6th and 7th in  
archaea and 8th in bacteria and archaea. 
 The choice of a carrier molecule is important in target-
ted drug delivery because it significantly affects pharma-
codynamics and pharmacokinetics of drugs. Materials 
like lipids, natural and synthetic polymers, carbohydrates, 
surfactants and dendrimers are used as drug carriers1–3. 
The drug conjugate can be designed for improving its  
potential for complex – interactions towards the target 
moiety and drug4–7. 
 Biological materials are eco-friendly, but they have  
limitation with regard to the proposed application as they 
are less durable in terms of mechanical strength and resis-
tance to corrosion. Synthetic materials, on the other hand, 
have issues related to environment and biocompatibility 
in complex transformations. Metal complexes can serve 
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Figure 1. Synthetic–natural fusion. 
 

Table 1. Hybrid fusion for carbon transformation 

   Proposed complexes for 
Pathways  Organisms CO2-fixing enzyme chemical modification 
 

Calvin–Benson Bassham cycle Oryza sativa, Nicotiana sylvestris, Ribulose-1,5-bisphosphate Carboxylation: 
 (reductive pentose phosphate cycle)27,28  Nicotiana tabacum,   carboxylase/oxygenase N-heterocyclic carbene (NHC) 
  Gossypium hirsutum,   copper complexes; 
  Solanum tuberosum   Pd(OAc)2 with Cs2CO3 

  Saccharomyces cerevisiae Transketolase  
  Saccharomyces cerevisiae Phosphoribulokinase 
Hatch–Slack cycle Flaveria trinervia Phosphoenol pyruvate Reduction 
 (dicarboxylic acid pathway)29   carboxylase 
  Saccharum officinarum Malic anhydrase 
Crassulacean–acid metabolism30 Bryophyllum tubiflorum, Phosphoenol pyruvate Electrocatalytic: Iridium 
   Sedum praealtum  carboxylase  dihydride pincer complexes and 
  Aptenia cordifolia Malic enzyme  carbene-supported copper(I)boryl 
     complex; CODH-modified TiO2 
     nanoparticles 
Arnon–Buchanan cycle Chloroflexus aurantiacus 2-Oxoglutarate synthase Photocatalytic: 
 (reductive citric acid cycle)31 Aquifex pyrophilus, ATP-citrate lyase  Ru(bpy)2

3
+/triethanol amine, 

   Thermoproteus neutrophilus,   Ru(bpy)2
3

+/methylviologen/ 
   Hydrogenobacter thermophiles   triethanolamine, Ru(bpy)2

3
+/ 

  Advenella mimigardefordensis Succinyl-CoA synthetase  nicyclam2+/ascorbic acid, 
  Pyrococcus sp. Fd-dependent pyruvate  FeTTP/triethylamine 
    synthase/PFOR 
  Clostridium perfringens  PEP carboxylase  

Wood–Ljungdahl pathway Moorella thermoacetica Acetyl-CoA synthase Bpy-2,2-bipyridine, 
 (reductive acetyl-CoA pathway)32 Clostridium thermoaceticum, Formate dehydrogenase  Cyclam-1,4,8,11- 
  Methanobacterium formicium   tetraazacyclotetradecane, 
  Clostridium thermoaceticum, 5,10-Methylene-H4 folate  TTP-5,10,15,20- 
  Clostridium formicoacetium,  dehydrogenate  tetraphenylporphinato 
  Eubacterium acidaminophilum,  
  Acetobacterium woodi  
  Clostridium thermoaceticum Corrinoid  
  Carboxydothermus  CODH 
   hydrogenoformans,  
 Rhodosprillium rubum   
3-Hydroxypropionate33 Chloroflexus aurantiucus, Propionyl-CoA synthase 
   Metallosphaera sedula   
 Metallosphaera sedula, Malonyl-CoA reductase 
   Sulfolobus spp. Malyl-CoA lyase  
    
3-Hydroxypropionate-4  Metallosphaera sedula Acetyl-CoA-propionyl  
 hydroxybutyrate cycle34  CoA carboxylase  
 Propionibacterium shermanii Methylmalonyl-CoA mutase  
Dicarboxylate-4-hydrobutyrate cycle35  Clostridium aminobutyricum, 4-Hydroxybutyryl-CoA  
   Ignicoccus hospitalis  dehydratase  
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as highly efficient and commonly utilized catalysts or 
precursors for organic and biological transformations  
using the principle of bioorthogonal chemistry8,9. In  
nature, many bionuclear complexes with hydrophobic 
binding pockets show enhanced chemical reactivity  
towards the activation and transformation of small mole-
cules such as CO2 (ref. 10), and effect photosynthesis 
within a certain concentration11. It is therefore an appeal-
ing strategy to make use of embedded metal centres as 
modified biological and synthetic catalysts or precursors. 
This communication proposes methods to fuse synthetic 
and biological complexes to design efficient and biocom-
patible materials. The proposed fusion has the advantages 
in the upcoming research in carbon management and  
target-oriented drug delivery using the benefits of both 
biological and synthetic materials (Figure 1). The  
methods/protocols used to design embedded metal-centre 
catalysts for synthetic–biological fusion include the  
following. 
 (i) Axial coordination via bridging ligands can be an 
important strategy to connect synthetic and biological 
components. Axial coordination to NiII and ZnII for trans-
III cyclams is favoured in protein complexes via bridging 
ligands such as phthalate and is responsible for their  
biological activity12–15. Metal complexes are readily 
available for combinatorial synthesis of metal centres and 
ligand exchange. There are several examples of this  
fusion, such as insertion of symmetric metal complexes 
into the active site of apomyoglobin by binding to His93, 
which enables these new semisynthetic metalloenzymes 
to catalyse enantioselective sulphoxidation using the 
chiral protein cavity16. 
 (ii) Ligands with weak to intermediate field strength 
and multidenticities may be suitable to design pharma-
ceutically acceptable metal carriers with embedded metal 
centres. To make hexamine cobalt [Co(NH3)6]+ biocom-
patible, the four NH3 ligands are replaced by ligands such 
as N2O4 or its isoelectronic moieties17. Furthermore,  
ligands with chiral centres can optimally tune the activity 
of metal centres towards their catalytic application in a 
living system18; and with some exceptions, aromaticity 
reduces cytotoxicity19. 
 (iii) Metals exert structural roles, and inert complexes 
can be generally biocompatible. Free ion activity controls 
the bioavailability of metals, and complexation restricts 
metal activity. Similar biological activities are found in 
isostructural ruthenium and osmium complexes, and con-
firm the structural role of metals20. Labile metal complexes 
are more bioavailable and cytotoxic compared to inert 
complexes. Higher metal bioavailability makes the corre-
sponding complex less biocompatible and vice versa8. 

Complexes with heavy metals, metals from the middle of 
the transition series or the third row down, or rare earth 
elements are preferred as a synthetic complex choice. 
 (v) Development of multi-nuclear complexes capable 
of forming an adduct with biomolecules. Improved bio-

activity is found in tetranuclear ruthenium complexes 
compared to dinuclear complexes21. 
 Ligand choices for this purpose are planar aromatic 
amines, alkyl amines, iminoethers, chiral dienes, amino 
acids, carbohydrates, steroids, alkaloids, small peptides 
and their isoelectronic entities. The above strategies can 
provide the optimal ligand for making biocompatible  
catalysts in order to optimize carbon management (Table 
1). Synthetic–biological fusion can solve many problems 
in carbon sequestration by increasing the catalytic rate 
and/or oxygenase activity, improving plant photosynthe-
sis, and making synthetic carbon transformations more 
efficient and eco-friendly. 
 Targeted drug delivery increases patient compliance  
efficiency of pharmaceutical agents through improved 
biodistribution and pharmacokinetics22–24. Synthetic–
biological fusion can be used to design target-oriented 
drug delivery systems4–7 (Table 2) by selecting appropri-
ate -cloud extension, such as estrogen moieties for tar-
geting the breast, or xylylbicyclam, a potent anti-HIV 
agent that mobilizes stem cells (AMD3100, ‘Mozobil’) 
via targeting the 7-helix membrane receptor, CXCR4. 
Specific metallomacrocycle configurations can be recog-
nized by proteins via metal coordination to specific  
amino acid side chains, H-bonding and hydrophobic in-
teractions, allowing drug design optimization25. Nucleic  
acid (A10 RNA) ligands, aptamers and Dox which bind 
to the surface of prostate cancer cells have been used for 
targeted drug delivery26. 
 The proposed fusion has the potential for scientific 
merger of different therapies (like Ayurvedic and allo-
pathic medications) in cases where there is involvement 
of a metal either in the target or in the drug to develop  
effective medications with less side effects. 
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