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Plants with rising atmospheric carbon dioxide (CO2) 
level in the environment may change their nutrient 
demands to sustain growth. The mechanisms concern-
ing iron dynamics in plants under the interactive  
effect of salinity and elevated CO2 are poorly under-
stood. This study examines the effects of long-term as 
well as short-term growth at elevated CO2 and salt on 
iron deficiency-associated molecular responses of Por-
teresia coarctata through analysing the transcript  
expression of iron deficiency-responsive genes in the 
leaf tissue. Plants were grown in hydroponic media at 
ambient or elevated atmospheric CO2 (500 μl l–1), with 
or without salt, and samples were analysed at three 
time points, on the 15th, 45th and 90th day. The semi-
quantitative RT-PCR analysis showed an induced  
expression of iron deficiency-responsive transcription 
factor PcIDEF1 and its putative targets OsIRO2-like 
gene, OsNAAT1-like gene, OsNAS1-like gene, OsYSL2-
like gene and PcIRT1 at elevated CO2 with NaCl.  
Furthermore, a positive correlation in gene expression 
was observed between PcIDEF1 and its putative tar-
gets in the 15th and 45th day samples. By contrast, in 
the 90th day sample, correlation in gene expression 
was less evident. Our findings suggest that the interac-
tive effect of elevated CO2 and NaCl can induce a set 
of molecular responses in P. coarctata for enhanced 
iron uptake and utilization, thereby reflecting an iron 
deficiency like stress under such conditions. 
 
Keywords: Calcareous soil, elevated carbon dioxide, 
iron-responsive genes, Porteresia coarctata, salinity. 
 
ATMOSPHERIC carbon dioxide (CO2) concentration (here-
after referred to as (CO2)) has increased from 280 μl l–1 in 
pre-industrial era to 367 μl l–1 at present. It is further ex-
pected to reach 550 μl l–1 in the coming 40–60 years1. As 
CO2 is the main substrate for photosynthesis, its elevated 
level in the atmosphere has an acute impact on plant 
growth. The elevated CO2 or eCO2 increases the rate of 
carboxylation of ribulose 1,5-bis phosphate carboxy-
lase/oxygenase (Rubisco) and suppresses its oxygenation 
particularly in C3 plants, thereby increasing the net  
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photosynthesis rate and overall plant growth2. With  
increase in growth, the plant’s demand for essential  
nutrients also increases in order to sustain its growth and 
optimum health. This leads to an induced nutrient uptake 
response by the plants when exposed to eCO2. For exam-
ple, Arabidopsis and durum wheat increase their P uptake 
from the soil when exposed to eCO2 (refs 3 and 4). The 
increased demand for nutrients by plants in response to 
eCO2 could be limiting over a long run considering their 
low bioavailability in the soil5. Fe is an essential micro-
element whose supply to the plant is often limited by ed-
aphic factors like pH and salinity. In saline and 
calcareous soils which represent 8% and 30% of the total 
land respectively, pH ranges from 7.4 to 8.5 (refs 6 and 
7). In this pH range the soluble iron concentration drops 
from 10–8 to 10–10.4 M due to over-accumulation of 
Fe(OH)3 (ref. 7). Also, higher concentration of Na+ in sa-
line soil restricts the uptake of K, P, Ca, Cu, Fe and Mn 
ions by the plants8,9. Therefore, a continued increase in 
atmospheric CO2 level would further aggravate the iron 
deficiency stress of plants. Under Fe-limiting condition, 
plant uses either strategy-I (reduction) or strategy-II (che-
lation) mechanism for iron uptake from the soil10. While 
strategy I is followed by non-graminaceous monocot and 
dicot species, graminaceous plants use strategy II which 
is mediated by natural ions chelator of mugineic acid 
family called phytosiderophore11. Till date, there are only 
few reports on the response of plants to iron deficiency 
under eCO2 condition. In tomato grown in Fe-limited 
medium, the iron deficiency-induced responses like ferric 
chelate reducatse activity, proton extrusion and sub-
apical root hair development were more pronounced 
when exposed to eCO2 for a short duration of 2–3 days 
compared to the ambient CO2 condition12. Also at the mo-
lecular scale, the expression of iron deficiency-responsive 
genes like FER, FRO1 and IRT1 was more induced under 
eCO2 condition12. Over a long-term exposure to 550 μl l–1 

of (CO2) for more than one growing season, rice and leg-
umes showed a significant drop in iron and zinc content 
in grains compared to ambient condition13. 
 While the effect of elevated CO2 on C3 crops is adverse, 
C4 crops are marginally affected with this change due to 
their unique physiology, where CO2 gets saturated around 
Rubisco at ambient CO2 (ref. 14). Porteresia coarctata is 
a C4 grass which occupies a significant part of estuarine 
vegetation as mangrove associates in the eastern and 
western coasts of India. It is a wild relative of rice which 
can survive salinity up to 30–40 dSm (ref. 15). The natu-
ral habitats of P. coarctata are usually alkaline with pH 
ranging between 7 and 8.8 (ref. 16). High pH and salinity 
make Porteresia bed a restrictive source for bio-available 
iron to the plants. Yet, P. coarctata grows well in its 
natural habitat without showing any phenotypes related to 
iron deficiency. This makes it an ideal candidate host sys-
tem to study its iron deficiency stress response. In the 
present study, we examine how the interactive effect to 

salinity and eCO2 affects the iron deficiency response of 
P. coarctata at the molecular level. We have analysed the 
temporal expression pattern of key iron deficiency-
responsive genes in the leaf tissue with a goal to under-
stand the molecular responses involved in plant adapta-
tion to these stresses. 
 P. coarctata plants were collected from Pichavaram 
mangrove wetlands, Tamil Nadu, India. They were vege-
tatively propagated in clayey soil in big plastic trays in 
open-air conditions. After one month, young plants which 
emerged from the rhizomes were transferred to four 
blocks, each containing one 1-m-diameter circular tank of 
100 litres holding capacity. The plants were cultured hy-
droponically in half-strength Hoagland’s solution at pH 
5.7 in each tank17. The medium was changed every 14 
days and 5 litres of medium was poured daily in each 
tank to maintain the water level lost by evapotranspira-
tion. After four months, plants growing in two out of four 
tanks were acclimatized to 500 μl l–1 of CO2 during day-
light hours for one month and labelled as CO2 rings. 
Plants from the remaining two tanks continued to grow 
under atmospheric air and were labelled as ambient rings. 
After acclimatization, 200 mM NaCl was added to one 
tank each from ambient and CO2 rings with continued 
exposure to CO2 in the CO2 ring. Thus, the treatment 
conditions imposed were ambient control, ambient NaCl, 
CO2 control and CO2 NaCl. The treatments were given 
for three months. The leaf samples from each treatment 
were collected at three time points, i.e. on 15th, 45th and 
90th day. The samples were frozen in liquid N2 immedi-
ately after harvesting and stored at –80° until use. 
 Total RNA was extracted from P. coarctata leaf sam-
ples of ambient and CO2 rings using a modified LiCl me-
thod18. The RNA sample was then treated with RQ1-
RNase-free DNase (Promega, USA) at 37°C for 30 min to 
remove the genomic DNA. First-strand cDNA was syn-
thesized with 2 μg total RNA from each treatment by  
M-MLV reverse transcriptase (Invitrogen, USA) accord-
ing to the manufacturer’s instructions. Transcript-level  
expression was analysed by semi-quantitative RT-PCR 
for six iron-responsive genes, PcIDEF1 (JN615009.1), 
OsIRO2-like gene, PcIRT1, OsYSL2-like gene, OsNAS1-
like gene and OsNAAT1-like gene, which are P. coar-
catata homologs to IDEF1 (ref. 19), OsIRO2 (ref. 20), 
OsIRT1 (ref. 21), OsYSL2 (ref. 22), OsNAS1 (ref. 23) and 
OsNAAT1 (ref. 24) genes respectively, from rice. All the 
cDNA samples were normalized using PcActin1 primers. 
The RT-PCR exponential phase was determined to be  
between 22 and 30 cycles to allow for the semi-
quantitative comparison of cDNAs developed from iden-
tical reactions with ampliqon PCR master mix. Table 1 
lists the gene-specific primers and endogeneous control 
primers used in the present study. 
 P. coarctata is an iron deficiency-tolerant species as it 
thrives on alkaline soil in its natural habitat. Previously, 
we had reported that P. coarctata could withstand iron 
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Table 1. List of primers used in the present study 

 Primer sequences Annealing  Expected  
Gene (F, forward and R, reverse) temperature (°C) product size (bp) 
 

PcIDEF1 F 5′-GCAAGGAGTTGACAAAGAGTGAT-3′ 55 100 
 R 5′-TGCAGCAAAGGTGGAAGACTAG-3′ 
 

IRO2-like gene F 5′-CGCGAGCAGCATGTCGTCGCT-3′ 62 90 
 R 5′-GATGGATACTGTAGAATGTCCTG-3′ 
 

OsNAS1-like gene F 5′-CTTCACAGATGGAGGCTCAGAA-3′ 55 100 
 R 5′-GTGAACACTTCAGTACTTCACGAC-3′ 
 

OsNAAT1-like gene F 5′-CGGTACAAGATCAGCGCCAGCG-3′ 57 100 
 R 5′-CATATTGCTACCCAACCAAGTCGCC-3′ 
 

PcIRT1 F 5′-CAGTGTAGTTGACGAACGCAAATG-3′ 55  90 
 R 5′-GATGACGCTGGAGACAAGGAT-3′ 
 

OsYSL2-like gene F 5′-GACCTTGCCGCATCGACATGTG-3′ 55 200 
 R 5′-GCTTCTGGAGAGGAACTTCATG-3′ 
 

PcActin1 F 5′-GAAAGGAAGTACAGTGTCTGGATTG-3′ 60 125 
 R5′-AAGCATTTCCTGTGCACAATGGAT-3′ 

 
 

Table 2. Porteresia coarctata iron deficiency-responsive genes used for RT-PCR analysis 

Gene from Homologue 
P. coarctata in rice Description Tissue specificity 
 

PcIDEF1 IDEF119 ABI3/VP1 family transcription factor. Constitutive regulator of iron  Leaf and root 
    deficiency-responsive genes in rice  
IRO2-like gene OsIRO220 bHLH transcription factor, positive regulator of iron Leaf and root 
    deficiency-responsive genes 
OsNAS1-like gene OsNAS123 Nicotinamine synthase enzyme Leaf and root 
OsNAAT1-like gene OsNAAT124 Nicotinamine amino transferase enzyme. Catalyses the  
    conversion of NA to 3′-keto intermediate Leaf and root 
PcIRT1 OsIRT121 Ferrous iron transporter Expresses mainly  
     in root and mildly in leaf  
OsYSL2-like gene OsYSL222 Ferrous-NA transporter Leaf 

 
 
deficiency and salt in a hydroponic medium up to three 
weeks without showing any chlorotic symptoms25. In the 
present study, we examined how the short-term as well as 
long-term growth at eCO2 and salt affect the iron defi-
ciency responses of P. coarctata at the molecular level by 
analysing the mRNA expression pattern of six iron- 
responsive genes on the 15th, 45th and 90th days of 
treatment. The choice of genes for the study was based on 
their homology with the rice gene with a specific function 
in iron acquisition or utilization. The selected genes were 
regulators of iron deficiency-responsive genes (PcI-
DEF125; OsIRO2-like gene), ferrous ion transporter 
(PcIRT1), metal-nicotinamine (NA) transporter (OsYSL2- 
like gene) and enzymes from mugineic acid biosynthetic 
pathway (OsNAS1-like gene, OsNAAT1-like gene), see 
Table 2. The study was conducted in the leaf tissue, as it 
is an important sink organ which reflects the iron status 
of the plants. 
 In the 15th day leaves, PcIDEF1 expression was 
strongly induced in ambient control, but only moderately 
in 200 mM NaCl-treated sample (Figure 1; Table 3). Cor-

roborating the PcIDEF1 induction, the expression of its 
putative targets OsIRO2-like gene, OsNAAT1-like gene, 
OsYSL2-like gene, PcIRT1 and OsNAS1-like gene was  
also increased in ambient control compared to the 
200 mM NaCl condition. The decrease in transcript level 
at 200 mM NaCl was more evident for OsNAAT1-like 
gene and PcIRT1 in particular (Figure 1). The induced 
expression of iron-responsive genes in leaves had been 
earlier seen in rice in response to Fe deficiency stress, 
where the OsIRO2 and OsNAAT1 transcripts were upre-
gulated in the leaf tissue20,24. Furthermore, the transcript 
accumulation of metal-NA transporter gene OsYSL2 was 
specific to leaf tissue upon Fe deficiency stress in rice22. 
The correlation between PcIRT1 with PcIDEF1 gene  
expressions was consistent with the earlier observation in 
P. coarctata leaves, where the PcIRT1 transcripts paral-
leled the PcIDEF1 mRNA accumulation pattern over Fe 
deficiency and 150 mM NaCl stresses25. The induced  
expression of iron responsive genes at ambient control is 
also reflective of a probable iron deficiency condition  
experienced by P. coarctata. At CO2 control, there was a 
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Table 3. Relative transcript levels of six P. coarctata iron deficiency-responsive genes on 15th, 45th 
and 90th day of ambient control (AC), ambient 200 mM NaCl (AN), CO2 control (CC) and CO2 200 mM  
 NaCl (CN) treatment conditions in leaves. Gene expression at AC is set to 1 

 15th day 45th day 90th day 
 

Gene AC AN CC CN  AC AN CC CN  AC AN CC CN  
 

PcIDEF1 1 ↓ ↓ ↑ 1 = ↓ ↑ 1 = = = 
OsIRO2-like gene 1 ↓ ↓ ↑ 1 = ↑ ↓ 1 ↓ = = 
OsNAAT1-like gene 1 ↓ ↓ ↑ 1 = ↓ ↑ 1 ↓ = = 
OsNAS1-like gene 1 ↓ ↓ ↓ 1 = = ↑ 1 ↓ = = 
OsYSL2-like gene 1 ↓ ↓ ↑ 1 = ↓ ↑ 1 ↓ ↑ ↑ 
PcIRT1 1 ↓ ↓ ↑ ↑ = ↓ ↑ 1 ↑ ↑ ↓ 
PcActin1 1 = = = 1 = = = 1 = = = 

‘↑’ denotes up-regulation, ‘↓’ denotes down-regulation and ‘=‘ denotes equal expression of genes rela-
tive to AC. 

 
 

 
 

Figure 1. Effect of elevated CO2 and salt on the transcript accumula-
tion of iron-responsive genes on the 15th day of treatment by semi-
quantitative RT-PCR. PcActin 1 was used as endogeneous control.  

 
 

Figure 2. Effect of elevated CO2 and salt on the transcript accumula-
tion of iron-responsive genes on the 45th day of treatment by semi-
quantitative RT-PCR. PcActin 1 was used as endogeneous control. 
 
 

slight reduction in transcript level of all the genes com-
pared to ambient control. This finding is similar to an  
earlier observation in tomato, where elevated CO2 did not 
induce the expression of iron deficiency-responsive genes 
LeIRT1, LeFRO1 and FER in Fe-sufficient roots12. Inter-
estingly, however, with 200 mM NaCl at eCO2, tran-
scripts level increased for all the genes except for 
OsYSL2-like gene. The increase in expression could be 
attributed to the presence of salt in the medium, which 
limits access to bio-available iron to the plants26. For ex-
ample, in P. coarctata total Fe content in leaf and root 
tissues reduced after growth in 150 mM NaCl-containing 
medium for three weeks25. Similarly, rice plants grown in 
salt-containing medium showed decreased Fe content in 

root and shoot tissues with chlorotic leaves26. Therefore, 
it is possible that the interactive effect of salt and ele-
vated CO2 imposes an iron deficiency-like condition in 
the growth medium, which results in Fe-deficiency-
induced responses like increased expression of iron defi-
ciency-responsive genes in plants. 
 In the 45th day sample, the expressions of all the genes 
were weak under ambient condition, either with or with-
out salt (Figure 2). In contrast, under elevated CO2, the 
expressions of PcIDEF1, OsNAAT1-like gene, OsNAS1-
like gene, OsYSL2-like gene as well as PcIRT1 were  
induced in 200 mM NaCl-treated leaves, whereas the  
expression of OsIRO2-like gene was decreased. However, 
in CO2 control the OsIRO2-like gene expression was 
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high, thereby following a reverse transcript accumulation 
pattern similar to that of PcIDEF1 (Figure 2; Table 3). 
The internal control gene PcActin1 showed a constitutive 
expression and the transcript abundance was not affected 
by the treatment conditions imposed. 
 In the 90th day sample, PcIDEF1 expression was 
strongly induced across all the treatments. By contrast, 
the expression of putative targets like OsNAAT1-like 
gene, OsNAS1-like gene and PcIRT1 was substantially 
repressed both under ambient and elevated CO2 condi-
tions (Figure 3; Table 3). For OsIRO2-like gene and 
OsYSL2-like gene, transcript accumulation was repressed 
at 200 mM NaCl-treated sample, though it remained high 
for ambient control, CO2 control and CO2 NaCl treat-
ments (Figure 3). Notably, the expression profiles of the 
downstream genes were markedly different from that of 
PcIDEF1, whereas target genes like OsYSL2-like gene 
and OsNAAT1-like gene shared a similar expression pat-
tern with OsIRO2-like gene. In rice, IDEF1 is involved in 
the regulation of iron uptake/utilization-related genes 
during the early stage of iron deficiency while in subse-
quent stages it employs a different set of genes for regu-
lation27. Also in leaves the effect of IDEF1 on target 
genes is less coordinated and more divergent27. Alterna-
tively, OsIRO2 induces the expression of iron deficiency-
responsive genes during the subsequent stages of Fe defi-
ciency in rice27. Also, rice plants over-expressing OsIRO2 
were tolerant to long-term Fe deficiency in both hydro-
ponic medium and calcareous soils28. Therefore, it is pos-
sible that in response to a prolonged eCO2 exposure-
mediated Fe deficiency-like situation, the expression of 
iron uptake/utilization-related genes is independent of 
PcIDEF1 regulation, but is otherwise regulated by OsI-
RO2-like gene-encoded protein in P. coarctata. 
 

 
 

Figure 3. Effect of elevated CO2 and salt on the transcript accumula-
tion of iron-responsive genes on the 90th day of treatment by semi-
quantitative RT-PCR. PcActin 1 was used as endogeneous control. 

 Our findings support the hypothesis that interactive  
effect of elevated CO2 and salinity can impose an iron  
deficiency-like condition in the soil as evidenced by  
induced iron deficiency-associated molecular responses 
in P. coarctata under such conditions. Also, the long-
term exposure of plants to elevated CO2 and salinity  
resulted in a smooth and pronounced change in gene  
expression patterns, which would allow appropriate  
physiological and metabolic adjustments in the plants  
under the prevailing conditions. The time-dependent  
differential gene expression in leaves at elevated CO2 
could be advantageous for sustainable iron efficiency in 
P. coarctata. The difference in temporal gene expression 
pattern can also be used as an indicator to study the role 
of individual genes in P. coarctata under the combined 
treatment of iron deficiency, salinity and eCO2 for breed-
ing programmes designed to reduce the vulnerability of 
crop plants to elevated CO2. 
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The present study deciphers the interrelationship  
between petrography and texture of sediments with 
aquifer characteristics. Sandstones representing the  
aquifers around Minjhari–Murpar village (lat. 
20°34′05″N: long. 79°18′05″E), Chimur Tahsil, Chan-
drapur district, Maharashtra, India corresponding to 
the watershed WGAMG′ have been selected for the 
study. These sandstones are grouped as arenites  
and wackes to unravel the aquifer distinctiveness. The 
values of transmissivity from 102.28 to 450.42 m2/ 
day, and for wackes from 58 to 165.59 m2/day. The 
values of specific yield (storativity) for arenites range 
from 20% to 35% and for wackes from 10% to 17%. 
The computed values of transmissivity as well as spe-
cific yield are attributed to the petrographic texture of 
the rocks. It is propounded that the percentage of  
detrital grains and matrix is the prime factor that gov-
erns the characteristic of aquifers. In addition, it is 
also found that the sorting of rocks also influences the 
aquifer performance. The high values of transmissiv-
ity and specific yield in arenite aquifer are account-
able for higher percentage of detrital grains, lesser 
amount of matrix and moderate sorting of the grains. 
Conversely, the lower percentage of detrital grains, 
higher amount of matrix and poor sorting of the 
grains are responsible for low values of transmissivity 
and specific yield in the wacke aquifer. 
 
Keywords: Aquifer characteristics, petrography, texture 
of sediments, watershed. 
 
IT is now an established fact that the inherent properties 
of aquifers govern the occurrence and movement of 
groundwater. These inherent properties in hard-rock aqui-
fers encompass the presence of primary and secondary in-
terconnected conduits and post-emplacement/depositional 
physical activities like weathering, fracturing, jointing, 
etc. Extensive work has been carried out on the relation-
ship between occurrence and movement of groundwater, 
and the above-mentioned inherent hard-rock aquifer 
properties1–4. In sedimentary rocks, the occurrence and 
movement of groundwater is primarily governed by the 
grain-to-grain relationship5–9. The sedimentological pro-
perties govern the movement of groundwater and such 
well-penetrating aquifers have good yielding capacities10. 
The individual particles of the geological formation are 


