
RESEARCH ARTICLES 
 

CURRENT SCIENCE, VOL. 112, NO. 3, 10 FEBRUARY 2017 517 

*For correspondence. (e-mail: srisornaprabu@gmail.com) 

Implementation of stochastic approach for  
vessel and ridge studies in retinopathy of  
prematurity screening 
 
S. Prabakar1,*, K. Porkumaran1, Parag K. Shah2 and V. Narendran2 
1Department of Biomedical Engineering, Dr N.G.P. Institute of Technology, Coimbatore 641 048, India 
2Department of Paediatric Retina and Ocular Oncology, Aravind Eye Hospitals, Coimbatore 641 014, India 
 

The retinopathy of prematurity (ROP) is an ocular 
pathological disorder of retinal blood vessels in  
premature infants and low birth weight infants. The 
medical professional who is taking care of premature 
infants should know who is at the risk of this disease 
and its exact severity stage. It is also important to  
decide when screening must begin and how often these 
infants need to be examined as disease progression 
leads to a more severe stage causing blindness. The 
contrast stretching method has been utilized to  
enhance the ROP colour image. Then an automatic 
isotropic undecimated wavelet transform (IUWT) 
scheme has been proposed to extract the abnormal re-
tinal blood vessel and measure its width and tortuos-
ity. The ridge formation of this pathological disorder 
has also been extracted by IUWT. The quantitative 
measurements of mean diameter, standard deviation, 
tortuosity, length of retinal blood vessel and ridge 
have been considered and computed to find the exact 
severity stage of ROP. The proposed methods for ROP 
stage screening system have been validated through 
machine vision techniques. This proposed system  
improves the optimum time utilization for ophthal-
mologists; ophthalmic technicians can provide exact 
ROP stage and deliver better accuracy and sensitivity 
in diagnosis. 
 
Keywords: Isotropic undecimated wavelet transform, 
retina vessel and ridge, retinopathy of prematurity, tortu-
osity. 
 
MODERN opthalmology utilizes image processing, inves-
tigation and computer vision techniques for exact diagno-
sis. Retinopathy of prematurity (ROP) is a pathological 
disorder when abnormal blood vessels develop at the 
edge of normal retinal blood vessels in premature infants. 
It is characterized by blood vessel width, tortuosity of the 
vessels and ridge formation in various zones in the retinal 
area. The optic disk, macula and fovea are important 
landmarks for zone selection and cater to the severity 
level of ROP. A hybrid automated retinal vessel and ridge 
segmentation method is discussed here. The measurement 

of features such as tortuosity, width, length of abnormal 
retinal vessel and ridges has been utilized to screen ROP 
stages1. The immature retinal vascular structures are dis-
tressed by the ROP disease in premature infants2,3. The 
high risk pre-threshold stage of ROP can cause blindness 
in premature infants4. ROP at the initial phase does not 
have any visual defects but can become aggressive with 
neovascularization. At the extensive progressive stage, the 
detachment of retina occurs leading to blindness5. Infants 
who weigh less than 1800 g at birth or are born before 32 
weeks gestation period are at higher risk of ROP occur-
rence6,7. The exact time to begin screening and how often 
infants need to be examined has to be decided for the in-
fants at risk. Based on screening, ophthalmologists decide 
when to treat ROP infants and what long term follow-up 
is essential to manage other complications of ROP8,9. 

Classification and severity stages of ROP 

Retinal blood vessels develop from the optic disc out  
towards the periphery. From the flattened retina, the  
progression of the disease is classified based on location 
of the disease presence as referred by ICROP (ref. 3). 
Generally, Zone-I disease is the most precarious and may 
lead to retinal detachment and further can cause blind-
ness. Also, Zone-II is more severe than Zone-III disease. 
The Retcam images are analysed by ophthalmologists to 
diagnose various severity stages of ROP. ROP is a rap-
idly progressive disease which starts slowly, usually any-
where from the fourth to the tenth week of infant’s life 
and may progress through successive stages, from stages 
1 to 5 (refs 10, 11). 
 The familiar ROP severity stage classification (Figure 1) 
is described as follows. Stage 1: A-vascular retina is  
separated from the vascularized retina posteriorly by a 
thin, white, flat demarcation line. Stage 2: The ridge 
which is an extended flat line developed in height, width 
and volume from stage 1 turned out to be pink-white 
ridge. Stage 3: The posterior aspect of the ridge contains 
continuous extra-fibrovascular proliferating tissue; immedi-
ately posterior to the ridge or extending directly into  
the vitreous. Stage 4: Partial retinal detachment drags the
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Figure 1. Sequence of ROP images for stages 1–5 and plus disease. 
 
 
vessels which lead to retinal detachment. Stage 5: Total 
retinal detachment is observed with ultrasonographic 
scans. 
 Plus disease: The presence of dilated posterior veins, 
tortuous retinal arteries, vitreous haze and pupillary rigid-
ity; it is represented as ‘+’ disease ROP. It denotes a high 
risk of ROP and the patient must be monitored closely 
and carefully. 

Analysis of retinopathy related work 

Ophthalmologic disorders are accurately diagnosed based 
on automated fundus image analysis in computer-aided 
diagnosis. The inception and progression of diseases such 
as diabetic retinopathy (DR), maculopathy, ROP, etc., are 
diagnosed by changes in retinal vessel morphology. 
However, detecting blood vessels in retinal fundus  
images with the presence of bright and dark lesions is a 
challenge which requires intelligent image processing 
methodologies. 
 Healthy and unhealthy retinas have been simultaneously 
handled by a novel multiconcavity modelling approach 
which delivered attractive performance on a mixture of 
healthy and pathological retinas7. Sofka and Stewart12 
have proposed a new technique for extracting low-
contrast and narrow vessels to eliminate false detections 
at non-vascular structures. 
 ROP, hypertension, stroke, diabetes and cardiovascular 
diseases prelude tortuosity as the most significant symp-
tom. An early detection of retinopathies requires automatic 
evaluation and quantification of retinal vessel tortuosity. 
Tudor et al.13 proposed an approach based on principal 
component analysis (PCA), for evaluation of tortuosity in 
vessels extracted from digital fundus images. Further, 
numerical integration method (NIM) and numerical dif-
ferentiation method (NDM) were implemented for auto-
matic tortuosity evaluation. The K-nearest neighbour 
classifier produced 87.3% accuracy in the estimated re-
sults against ground truth from ophthalmologists. 
 Bankhead et al.14 proposed an algorithm for efficient 
detection and measurement of retinal vessels from both 
low and high resolution fundus images and fluorescein 
angiograms. The image profiles have been computed per-
pendicularly across a spline fit of each detected vessel 
centreline to locate the vessel edges. Carmen and Dome-

nico15 have proposed self-organizing maps (SOM), K-
means clustering and Fuzzy C-means clustering for seg-
mentation of retinal vessels. 
 Many retinal diseases are characterized by extreme 
changes in retinal vessels like ROP plus disease. Conor 
Heneghan et al.9 developed a general technique for seg-
menting vascular structures in retinal images and charac-
terizing segmented blood vessels. The segmentation 
technique involved morphological preprocessing and sec-
ond derivative operator to emphasize the linear and thin 
vascular structures. 
 Jomier et al.11 developed geometric information by 
considering blood vessels as tubes and measured the  
extracted tortuosity and dilation. Retinal eye diseases like 
hypertensive retinopathy (HR), DR, glaucoma, etc., are 
detected by fundus image analysis. Parameters such as 
segmentation of blood vessels, measurement of tortuosity, 
diameter measurement, artery vein ratios (AVR) are used 
to find HR using digital fundus images16. Wilson et al.17 
proposed a software for measuring tortuosity, width of  
retinal veins and arteries from digital ROP images. A  
semiautomatic computer-aided image analysis of the retina 
(CAIAR) program was developed to detect retinal vascu-
lature and measurement. 
 In general, the supervised algorithms segment the ves-
sels and ridges with higher computation time. In many 
cases of retinal images, these efficient supervised algo-
rithms could not be used to enhance the image, because 
of huge variations in image acquisition. Simple threshold-
ing operation could be used to identify retinal vessels and 
ridges11. On the other hand, unsupervised algorithms have 
been combined with the automatic optimization of para-
meters which have been utilized to obtain faster results 
with new image types18,19. The manual detection of  
tortuosity, vessel and ridge width to screen the severity 
level of ROP is a time-consuming procedure and the  
ophthalmologist may get fatigue on scanning and analys-
ing the ROP images20. 
 By reviewing all methods, an unsupervised stochastic 
algorithm has been proposed for ROP screening. This has 
two stages, the first stage using wavelet schemes deals 
with detection of blood vessels, measuring tortuosity and 
vessel width from the ROP RETcam image using third 
level decomposition. The next stage of fourth level  
decomposition deals with ridge parameters such as
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Figure 2. General block diagram of wavelet based ROP screening system. 
 
 
location, length and width in various zones in the retinal  
images. Thus, the estimated parameters of vessel and 
ridge have been utilized to detect the disease severity  
level of ROP. The implementation of proposed automatic 
machine vision algorithms using computer simulation 
tool will reduce manual investigation complications. 

Materials and methods 

Literature review described many clinical procedures and 
imaging algorithms to study retinal fundus images. All 
the proposed methods have their own merits and demerits 
depending on the application on ROP image analysis. To 
overcome the disadvantages and ensure efficient quantifi-
cation of retinal vessels and ridges presented in the ROP 
images, a new wavelet based methodology has been pro-
posed in this study. This method considers various para-
meters of retinal vessels and ridges to efficiently screen 
the severity stages of ROP. 
 The premature infant retinal images were obtained 
from the paediatric section of Aravind Eye Hospital 
(Coimbatore). The digital retinal images have been cap-
tured by RetCam-120; MLI Inc., Pleasanton (California) 

at 130 field of view. A minimum of five retinal images 
for each right and left eye of the premature infants were 
collected and considered to accomplish the proposed  
algorithm. These raw colour images are in .hdr or .bmp 
format with a size of 640  480 pixels. In all cases,  
colour images were converted to gray scale by extracting 
the green channel components, because the green channel 
revealed the best contrast for vessel detection. Before  
the gray scale conversion of the colour retinal image,  
the brightness, colour and contrast of the image were en-
hanced with mean intensity adjustment and contrast stret-
ching method. This process improved the appearance of 
retinal blood vessels and ridge formation in ROP images. 
Further, a minimized mask was created to exclude the  
unnecessary parts of the image to improve the accuracy 
level on the boundary detection. 
 The two-dimensional isotropic undecimated wavelet 
transform (IUWT) has been proposed for the gray scale 
ROP images to analyse the blood vessel by third iteration 
and ridges by fourth iteration (Figure 2). Consecutively, 
the dark vessel thresholding (16–20%) or bright vessel 
thresholding (13–17%) has been applied to extract the  
retinal vessel and ridges respectively. Various numerical 
parameters such as length, width, tortuosity of the  
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segmented vessel and ridge have been measured by dif-
ferent mathematical computations. These parameters  
cater to the appropriate severity level ROP disease. The 
Otsu thresholding technique has been utilized to develop 
the retinal mask and define the various zones of the ret-
ina. The optic disk and fovea localization has been ob-
tained to define the exact zones in the retina. The fusion 
of extracted ridge with zones and diameter of the ridge 
information indicate the proper severity stage of the ROP. 

Two-dimensional isotropic undecimated wavelet  
transform 

The multiscale method is an expansion of wavelets in 
which decimated Bi-orthogonal wavelet transform (DBWT) 
has been used in many medical image applications. But 
DBWT has loss of translation invariance property which 
leads to a large number of artefacts in its results. So, this 
technique is not mostly preferred for analysis of biologi-
cal data. An undecimated transform for thresholding 
which improves the result by more than 2.5 dB in denois-
ing applications has been proposed21–25. The undecimated 
wavelet transform and its reconstruction consist of the 
standard undecimated wavelet transform and IUWT26,27. 
The undecimated wavelet transform, particularly IUWT 
and its reconstruction has been described in this section. 
Then the specially designed filter bank for IUWT decom-
positions has been utilized to process artefacts in ROP 
images. 
 IUWT algorithm is more suited for retinal image  
analysis, because the objects are more or less isotropic in 
most cases. The requirements for a good analysis of such 
data are as follows. Filters must be symmetric 
 
 ˆ[ ] [ ] and  [ ] [ ].h k h k g k g k   (1) 
 
In two dimension or higher dimension, h, g, ,  must be 
more or less isotropic. 
 Consider a real discrete-time filter whose impulse  
response is ˆ[ ],  [ ] [ ],h n h n h n n   is its time reversed 
version. For wavelet representation and analysis, filters 
are denoted as h and g and the scaling and wavelet func-
tions are denoted as  and  respectively. Filters need not 
be orthogonal or bi-orthogonal, so that the separability 

[ , ] [ ] [ ]h k l h k h l  has been considered for fast calculations 
for huge volume of data set. For wavelet theory at each 
iteration i, scaling coefficient c has been computed by 
low pass filtering and wavelet coefficients wi by subtrac-
tion. The related filters h and g are defined by 
 

 1 [1, 4,6, 4,1][ ] , 2,...,2,
16

Dh k k    (2) 

 
 (1 ) (1 )[ , ]   [ ] [ ],D Dh k l h k h l  (3) 

 [ , ] [ , ] [ , ],g k l k l h k l   (4) 
 
where  is defined as  [0, 0] = 1 and  [k, l] = 0 for all  
(k, l) different from (0, 0). Also, the filter h0 = [1, 4, 6, 4, 
1]/16 is obtained from the cubic B-spline. The mean orig-
inal signal is conserved by scaling coefficients. But the 
wavelet coefficients have a zero mean and information 
has been encoded for different spatial scales present with-
in the signal. This has been applied to a signal c0, and the 
subsequent scaling coefficients are calculated by convo-
lution with a filter hui. hui is the up-sampled filter  
obtained by inserting 2i – 1 zeros between each pair of 
adjacent coefficients of h0. 
 
 .* ui

i ic c h  (5) 
 
Filtering has to be applied in all directions when the orig-
inal signal c0 is multidimensional. The finite impulse  
response filters (h, g =  – h) should follow certain even 
symmetric properties using FIR filters. Based on the 
structure of g, the wavelet coefficients have been  
obtained by calculating the difference between two reso-
lutions 
 
 ( 1) ( 1)[ , ]  [ , ] [ , ],i i iw k l c k l c k l    (6) 
 
where ( 1)

ˆ ˆ[ , ] ( ( ) ( ) )[ , ].*i ic k l h i h j c k l   
 One set of {wi} has been obtained for each scale of i. 
The addition wavelet scales and smoothed array recon-
structs the ROP image. 
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So the reconstruction of the original signal from all wave-
let coefficients and the final set of scaling coefficients  
required only the addition. After computing n wavelet  
levels. 
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The synthesis filters andh g     are FIR based on 
the symmetric filter properties. This wavelet transforma-
tion has been adopted for analysis of ROP images which 
contain isotropic objects. Features such as retinal vessels 
and ridges have become visible with improved contrast 
on higher wavelet levels. Especially wavelet level 3 has 
been adopted for better blood vessel visibility and level 4 
to visualize ridges on ROP images. The wavelet levels 
exhibit the best contrast to be added and thresholding has 
been applied to lowest valued coefficients to carry out the 
segmentation of vessels and ridges in ROP images. The 
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field-of-view (FOV) has been estimated for an ROP  
image and the thresholds computed from pixels within 
the FOV. 
 The wavelet levels and thresholds need not be changed 
for all fixed sizes of retinal images. But to extract the 
blood vessel from all ROP images, the wavelet level has 
to be chosen to third level decomposition and the thresh-
old has to be fixed as 18–23% of lowest coefficients. 
Similarly, to extract the ridges from ROP images, the 
wavelet levels and threshold have been chosen to fourth 
level and 15% respectively, and the inverted binary image 
has been preferred to obtain the perfect ridge. 

Vessel width and ridge width measurement 

The vessel width and ridge width measurement strategy 
consist of two stages of processing, the middle line esti-
mation and edge identification. The morphological thin-
ning algorithm has been proposed to extract the middle 
line of the vessel and ridge. The exterior pixels on  
the identified retinal vessels are iteratively eliminated by 
the thinning algorithm. The vessel centres are obtained by 
the connected lines of ‘on’ pixels along the entire length 
of the vessel28–31. 
 The end pixels which have less than 2 neighbours are 
identified which are described as the branch in the  
vessels. In the proposed method, many monotonous  
middle lines have been eliminated as much as possible by 
removing the short segments which have less than 10 
pixels. Further, the pixels which have greater than 2 
neighbours are also removed. The unnecessary spur 
which produced side-effect on thinning process and end-
bifurcated vessels has also been eliminated. The vessel 
widths are coarsely estimated in the inverted binary ridge 
image using distance transform. The connected pixels 
represented the middle line and edges of a possible vessel 
and ridge segment which could be used for further analy-
sis of ROP screening. The smooth middle line could be 
obtained as shown in Figure 3, using a parametric spline 
curve based on the centripetal scheme. 
 The edge points of vessels and ridges are estimated to 
compute the vessel and ridge widths respectively. At any 
point, the segmented vessel orientation is estimated from 
the middle line. The ROP vessel and ridge profiles have 
resemblance of Gaussian functions which have been de-
fined using gradients. The second derivative of accurate 
zero crossings identified as sub-pixels at a local maxi-
mum or minimum derives the edge of vessels and ridges. 
Otherwise the widths have been defined as the rising edge 
and the falling edges. The average vessel or ridge width 
has been estimated from binary profiles. 
 The median of the sums of vessel pixels of each profile 
is estimated to derive the temporary width. Then the  
average of all the vessel profiles has been calculated to 
identify the locations of the maximum and minimum  
gradient to the left and right of the centre respectively. 

An anisotropic Gaussian filter and connected components 
are used to reduce noise and the possible edges into dis-
tinct trails have been linked. The zero-crossings at each 
side of the vessel centers have been estimated as edges 
for all trails. The diameter is simply the Euclidean dis-
tance between these edges adopted to estimate the vessel 
and ridge as represented in Figure 3. 

Results and discussion 

The ROP severity has various stages from stages 1 to 5, 
plus disease and aggressive progressive ROP. This re-
search work considered the ROP images up to stage 3 and 
plus disease to develop the ROP screening system.  
Obviously stages 4 and 5 are the most severe stages and 
the baby may not get a clear vision although proper clini-
cal procedures are followed with utmost care. IUWT has 
been applied for stage 1 to stage 3 ROP images and the 
ridges were extracted by the fourth level of wavelet  
decomposition. The threshold has been defined to 15% 
with bright vessel selection. Almost in all cases the ridges 
were looking brighter than other locations. If the ridges 
are compared with retinal vessels in ROP images, they 
have inverse intensity and resolution property of the  
images. 
 The present work considered 52 premature infants who 
have ROP issues at various stages. Each infant’s retinal 
images (in total 260 ROP images) have been acquired 
with RetCam at the Aravind Paediatric Ophthalmology 
 
 

 
 

Figure 3. Representation of middle line (blue) and edges (red) of ves-
sels and ridges. 
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Figure 4. Original RetCam ROP image and contrast enhanced image. 
 
 

 
 

Figure 5. a, IUWT level 3 applied image; b, Thresholded image; c, Segmented retinal vessels. 
 
 

 
 

Figure 6. a, IUWT level 4 applied image; b, Bright thresholded image; c, Segmented ridge structure. 
 
 
Center (Coimbatore) using regular ROP screening proce-
dures. The ophthalmologist’s proficiency level plays a  
vital role in ROP severity screening. Based on the clinical 
features of ROP images, IUWT has been adopted for left 
eye and right eye images to extract vessels and ridges and 
measure the widths. ROP images obtained from RetCam 
are in .hdr or .bmp file format with the size of 640  480. 
These unprocessed images have been preprocessed to en-
hance the contrast of retinal vessels and ridges (Figure 4). 
These images have been considered as the input for the 
proposed IUWT based system. 
 This work involved two main steps: the first step  
included the much faster unsupervised vessel and ridge 
segmentation by thresholded wavelet coefficients, which 

would achieve better accuracy and less computation time 
when compared with other existing techniques. The sec-
ond step included a graph-based algorithm to extract 
middle lines and locate the vessel edges and ridge edges 
from ROP images. Spline fitting has been used to deter-
mine the vessel or ridge orientation. The detection of zero 
crossings of second derivative at right angles to the vessel 
or ridge has been utilized to extract the middle line and 
edges. The various IUWT iteration levels have been im-
plemented for input ROP images. It was observed that the 
level 3 iteration delivered satisfactory output on retinal 
vessels. Then the dark thresholding was selected to 20% 
to extract dark blood vessels. The output has more  
unwanted noise, so that simple morphological functions
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Table 1. Various properties of stage 1 ridge measurement 

  Number of Mean width Standard Minimum ridge Maximum ridge Ridge length  
Case Eye widths (mm) deviation width (mm) width (mm) (mm) Tortuosity 
 

1 LE 150 1.26 0.35 0.57 1.85 40.25 1.04 
 RE 224 1.87 0.64 0.59 3.19 61.14 1.49 
 

2 LE 36 0.93 0.24 0.56 1.39 9.83 1.04 
 RE 56 2.48 0.27 1.97 3.03 14.62 1.04 
 

3 LE 75 1.43 0.38 0.67 2.24 22.04 1.77 
 RE 39 0.99 0.39 0.46 1.58 11.40 1.00 
 

4 LE 27 2.59 0.45 2.14 3.56 7.64 1.01 
 RE 154 3.08 0.82 1.61 4.98 41.39 1.12 
 

5 LE 32 1.48 0.28 0.83 2.06 14.09 1.04 
 RE 32 2.70 0.39 2.30 3.41 8.15 1.03 
 

6 LE 66 1.63 0.57 1.00 2.75 17.21 1.04 
 RE 40 2.89 0.46 2.52 4.02 10.48 1.06 
 

7 LE 42 1.32 0.40 0.56 1.90 12.13 1.05 
 RE 47 2.26 0.53 0.93 3.12 11.88 1.21 
 

8 LE 31 2.02 0.56 0.92 2.69 10.01 1.02 
 RE 27 1.49 0.14 1.22 1.66 7.51 1.01 
 

9 LE 171 1.75 0.57 0.39 3.18 52.94 1.25 
 RE 300 2.11 0.63 0.70 3.39 86.89 1.02 

 
 

Table 2. Various properties of stage 2 ridge measurement 

  Number of Mean width Standard Minimum ridge Maximum ridge Ridge length  
Case Eye widths (mm) deviation width (mm) width (mm) (mm) Tortuosity 
 

1 LE 356 1.56 0.44 0.58 2.46 98.68 1.36 
 RE 466 1.98 0.65 0.47 3.64 129.12 1.19 
 

2 LE 246 1.93 0.62 0.63 3.57 66.79 1.07 
 RE 336 2.72 0.82 0.71 4.43 90.26 1.04 
 

3 LE 137 1.27 0.33 0.64 1.93 37.85 1.02 
 RE 317 2.14 0.75 0.95 4.29 86.25 1.06 
 

4 LE 156 5.52 1.02 2.97 7.14 42.16 1.10 
 RE 165 5.43 1.42 3.48 8.05 25.89 1.05 
 

5 LE 33 3.04 0.21 2.81 3.43 44.83 1.15 
 RE 57 2.82 0.58 1.96 3.95 9.21 1.11 
 

6 LE 250 1.80 0.60 0.50 3.38 19.81 1.03 
 RE 112 2.03 0.72 0.72 3.15 66.95 1.06 
 

7 LE 303 2.62 0.77 0.43 4.02 29.28 1.02 
 RE 112 2.63 1.05 0.60 4.71 80.94 1.05 
 

8 LE 145 1.68 0.49 0.74 2.71 29.93 1.86 
 RE 357 1.39 0.55 0.18 2.67 39.28 1.15 
 

9 LE 134 3.31 1.11 1.40 5.38 110.64 1.09 
 RE 259 3.80 1.34 1.49 6.28 37.43 1.05 
 

10 LE 198 1.88 0.84 0.41 4.00 70.29 1.18 
 RE 95 1.87 0.41 0.75 2.66 54.36 1.11 

 
 
such as erosion, dilation, connectivity and blob filling 
techniques were utilized to obtain the optimum retinal 
vessel structures as shown in Figure 5. The tortuosity 
level of the retinal vessels was estimated for the required 
vessel portions by a manual selection process, i.e. relative 
length variation method. 

 IUWT iteration was extended from third level to fourth 
level to extract the available ridges in ROP images. In 
this process, instead of dark thresholding, bright thresh-
olding was chosen to 15% to extract the ridges. Similar 
morphological operators have then been proposed to  
extract ridges and the ridge portions alone have been
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Table 3. Various properties of stage 3 ridge measurement 

  Number of Mean width Standard Minimum ridge Maximum ridge Ridge length 
Case Eye widths (mm) deviation width (mm) width (mm) (mm) Tortuosity 
 

1 LE 139 5.51 2.04 2.58 9.92 156.32 1.32 
 RE 69 5.39 0.73 3.74 6.53 18.45 1.05 
 

2 LE 219 6.50 2.01 3.10 11.28 316.01 1.34 
 RE 338 1.24 0.39 0.61 2.40 91.46 1.48 
 

3 LE 118 7.47 0.78 6.05 9.04 32.83 1.05 
 RE 254 6.74 1.54 3.03 8.91 68.16 1.05 
 

4 LE 184 3.26 0.64 2.00 4.68 48.10 1.08 
 RE 471 4.60 1.26 1.44 6.39 133.75 2.95 
 

5 LE 192 3.34 1.30 1.44 5.97 52.08 1.23 
 RE 192 3.13 0.72 1.64 4.76 57.62 1.04 
 

6 LE 168 2.65 1.06 0.70 4.55 48.99 1.02 
 RE 134 2.34 0.53 1.23 3.70 35.53 1.10 
 

7 LE 416 2.57 1.19 0.82 6.34 111.29 1.10 
 RE 38 5.71 0.21 5.21 5.97 9.46 1.00 
 

8 LE 390 4.14 1.30 1.34 7.21 104.56 1.04 
 RE 178 3.92 0.92 1.34 5.75 48.06 1.05 
 

9 LE 148 4.81 1.54 2.76 7.70 39.95 1.21 
 RE 148 4.27 0.94 2.73 6.47 41.28 1.05 

 
 

 
 

Figure 7. Stage 1 ridge parameters measurement (mean, minimum 
and maximum width) for different cases left and right eye. 

 
 

Figure 8. Stage 2 ridge parameters measurement (mean, minimum 
and maximum width) for different cases left and right eye. 

 
 

extracted as shown in Figure 6. In this work, one pixel 
(approximately equivalent to 0.27 mm) has been consid-
ered to extract the ridge length from the segmented ridge 
structure. The properties of a ridge such as maximum and 
minimum width, mean width, standard deviation and tor-
tuosity levels were then computed to screen the severity 
stage of ROP. For each and every stage various ridge val-
ues have been tabulated as shown in Tables 1–3. The 
various parameters such as number of widths, mean 
width, standard deviation, minimum width, maximum 
width, ridge length, and tortuosity of stages 1, 2 and 3 for 
the left and right eye of various infants are measured and 
tabulated. These values played a major role in the ROP 
severity stage screening. 
 Figures 7–9 illustrate the various properties of ridges 
such as mean width, minimum and maximum ridge width 
versus various individuals suffered with stages 1, 2 and 3 

level of ROP diseases. These estimated parameters using 
proposed algorithm are extremely useful to predict the 
severity stage of ROP diseases. The ridge width plays a 
crucial role in severity diagnosis, the developed small 
demarcation line extends to pink-white ridges and devel-
ops to retinal fibrovascular proliferation. The ridge width 
is smaller in stage 1 severity and increases gradually in 
stages 2 and 3, when the ROP disease is not properly 
treated. Stage 3 parameters were measured using the  
proposed method which has highest span of widths start-
ing from 2.34 to 11.28 mm. The other two stages 1 and 2 
had the maximum ridge width of 4.98 and 8.05 mm re-
spectively. The mean ridge width measurements have 
also specified that stage 3 has more predominant value 
which is 30–50% higher than the other two stages. Sur-
prisingly, the minimum ridge width measurement indi-
cated that stage 2 has the lowest value, i.e. 0.18 mm when  
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compared with stage 1 minimum width value i.e. 
0.3946 mm. Such deviations may occur in very few cases 
due to the huge variation in Retcam images. Hence the 
exact severity stage identification of ROP diseases re-
quires ridge location or zone classification along with the 
ridge width estimation. 
 The ridge lengths of various stages with respect to var-
ious cases are illustrated in Figure 10. Extensive ridge 
length was observed in stage 3 cases when compared with 
other severity stages. This prolonged length may lead to 
retinal detachment through neovascular generation. 
 
 

 
 

Figure 9. Stage 3 ridge parameters measurement (mean, minimum 
and maximum width) for different cases left and right eye. 
 
 

 
 

Figure 10. Various stages ridge length measurement for different 
cases left and right eye. 

 

 
 

Figure 11. Various stages ridge tortuosity level measurement for dif-
ferent cases left and right eye. 

Similarly, Figure 11 symbolized the tortuosity level at 
various stages against different ROP cases. The increased 
tortuosity level was observed in stage 3, but the vessel 
and ridge tortuosity observed in various stages provide 
the evidence for progressive ROP and ROP plus disease. 
The proposed ROP screening system considered these 
ridge and retinal vessel parameters to categorize the exact 
severity stage of ROP disease. 

Conclusion 

A stochastic approach has been proposed to detect and 
measure the properties of blood vessels. Ridges in various 
stages of ROP images have been described in this paper. 
This developed algorithm has been implemented for vari-
ous stages of ROP images. This method could deliver 
high level of accuracy, low measurement error and short 
computation time for both low and high resolution im-
ages. The outcomes of the IUWT implementation on ROP 
images delivered the properties of retinal vessels and 
ridges, which are more suitable than the existing tech-
niques to predict the severity stages of ROP. The various 
parameter measurement of retinal vessels and ridges for 
various stages of ROP images have been quantified and 
further screening done. The measured parameters are 
more significant for severity estimation; stage 3 has pre-
dominant parameters when compared with other stages 
such as stages 1 and 2. Implementation of this system 
showed that the ROP screening system could easily iden-
tify stage 3 cases and the system felt fuzziness at stages 1 
and 2 due to the overlapping values of parameters. The 
ROP severity stage quantification and screening system 
produced 93% accurate result on stage 3 and 85% accu-
racy in stages 1 and 2. The effectiveness of the proposed 
method has been demonstrated through experimentation 
using various ROP diseased cases. The outputs from the 
developed system have been validated with the results of 
expert ophthalmologists. 
 The best ROP classification could be achieved by the 
implementation of efficient soft computing based classi-
fier using retinal vessel and ridge parameters. The thresh-
olding based retinal image mask can be created to 
classify the various zones in the retina. The fusion of the 
retinal vessels and ridges with retinal zone mask images 
could deliver the proper severity stage of ROP. The work 
could be extended with these techniques and could 
achieve better results in future. The Graphical User Inter-
face based menu options will also provide user friendly 
environment for non-ophthalmologists so that the time 
consumption can be considerably reduced, i.e. instead of 
analysing all RetCam images, diagnosis with emphasis on 
the infants who have suffered with severe stage ROP can 
be provided. 
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