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In bioinformatics, multiple sequence alignment (MSA) 
is an NP-hard problem. Nature-inspired approaches 
can provide an approximate solution compared to 
conventional approaches. In this article, the MSA 
problem is dealt with using chemical reaction optimi-
zation (CRO). The limitations of CRO are slow con-
vergence and low population diversity. Therefore, the 
initialization process is improved by pairwise align-
ment technique which maintains diversity. In the per-
formance analysis, we have taken benchmark datasets 
from Bali base version 2.0. The Bali score of the pro-
posed approach is compared with those of the existing 
approaches such as SB-PIMA, SAGA, RBT-GA and 
GAPAM, HMMT. Simulation results confirm the  
superiority of the proposed approach over others. 
 
Keywords: Bioinformatics, chemical reaction optimi-
zation, multiple sequence alignment, population diversity. 
 
MULTIPLE sequence alignment (MSA) is an alignment 
problem where more than three amino acids or protein 
sequence participate in the alignment. We can solve many 
biological problems with the help of MSA. It is useful to 
suggest primary and secondary structures of RNAs and 
proteins1,2. MSA can reconstruct phylogenetic tree. We 
can also predict the function of unknown amino acid  
sequences using the phylogenetic tree. MSA can find  
similarity between sequences, which is helpful to know 
the function and structure of similar protein or amino acid 
sequences3,4. However, MSA maximizes the matching 
component as well as minimizes the mismatching com-
ponent, which is problematic. There are many problems 
in bioinformatics such as finding ancestral and hereditary 
relationships, which can be solved by MSA. Hence, the 
MSA problem must be dealt with in the efficient manner. 
 In 1970, Needleman and Wunsch5 proposed an algo-
rithm using dynamic programming (DP) to solve  
the MSA problem. This algorithm is useful to solve pair-
wise sequence alignment problem. DP can also solve the 
MSA problem and give an optimal solution. However,  
the process is time-consuming, especially when the num-
ber and length of sequences are large. Hence the MSA 
problem becomes NP-hard and it is not feasible to use DP 
to solve the MSA problem. We need to develop new  
algorithms for the same. 

 The MSA problem can be solved in a systematic way 
by progressive alignment. This approach is less complex 
in terms of time and space for solving the MSA pro-
blem6,7. This method has used repeatedly Needleman and 
Wunsch algorithm to find guide tree between MSA. The 
progressive alignment method initially aligns more  
similar sequences, after which it incrementally aligns 
more dissimilar sequences or groups of sequences in the 
initial alignment. CLUSTAL W is the standard represen-
tation of the progressive method8. In the first step, we  
assign weights to every pair of sequences in a partial 
alignment. We assign small weights for the most similar 
sequences and big weights for most divergent sequences. 
Next, we take a substitution matrix which defines the 
score between two residues of a protein sequence based 
on similarity. Two types of gaps are introduced in the 
third step. The first is residue-specific gap and the second is 
locally residue gap penalties. These steps are integrated 
into CLUSTAL W, which is freely available. Progressive 
alignment method performs better for MSA package in 
terms of accuracy and time. However, this method has 
some limitations – dependency on initial alignment and 
choice of scoring scheme. In other words, we need to 
align more similar sequences in the initial stage. If not, 
the solution may be trapped in local optima. 
 An iterative method initially starts with a random solu-
tion and improves the solution in an iterative manner un-
til no more upgradation is possible. In this case, the result 
does not depend on the initial population. The main aim 
of this method is to find the global optimum. In order to 
solve the MSA problem, the objective of the iterative 
method is to find an alignment which is the globally  
optimal alignment. Simulated annealing is an example of 
the iterative process. Hidden Markov Model Training 
(HMMT) method is based on simulated annealing pro-
cess9. The drawback of the iterative method is that the  
solution may be trapped in local optima. So researchers 
have switched to another method for solving the MSA 
problem, which is evolutionary or nature-inspired 
method. 
 The evolutionary method starts with a random initial 
population. In the second step, we calculate fitness value 
of each solution using an objective function. In the third 
step, we modify the initial solution using some operators 
and continuously use this operator until we reach the 
global optimum. In this method, the initial solution is 
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originated in a random way, after which we apply evolu-
tionary operators to enhance the similarity of MSA. Some 
algorithms available are based on evolutionary computa-
tions for MSA10–14, while others are based on genetic  
algorithms for MSA such as SAGA14, MSA-GA15, RBT-
GA16 and genetic algorithm with progressive alignment 
method (GAPAM)17. In the case of GAPAM, Naznin et 
al.17 have taken 56 different types of datasets from refer-
ence sets 1–5. The limitation of these evolutionary-based 
algorithms is that the result may be trapped in local optima. 
 An improved chemical reaction optimization 
(ICROMSA) has been proposed to solve the MSA prob-
lem. We have developed a technique to generate initial 
molecular structure which is helpful to converge to global 
optimal alignment. We have also compared the classical 
chemical reaction optimization (CRO) and ICROMSA 
with respect to some Bali base datasets and found that the 
latter can perform better in most cases. 

Basics of CRO 

Most of the swarm intelligence techniques developed ear-
lier are based on constant population, but CRO is based 
on variable length population18. In CRO, a solution is 
represented by the structure of a molecule. A molecule 
has two types of energy – potential energy (PE) and ki-
netic energy (KE). The structure of a molecule is repre-
sented by its PE. The motion of a molecule is  
defined by its KE. PE function is considered as a quality 
of the molecule, i.e. fitness function. PE of a molecule 
can be expressed as an objective function as follows 
 
 PEz = f (x). (1) 
 
where PEz means potential energy of molecular structure 
z and f (x) is a fitness function. 
 The potential energy of a molecular structure is the  
fitness value of a molecule. Objective function is defined 
by f and molecular structure is represented by z. For  
example, suppose a molecule changes its structure from z 
to z, this is only possible if PEz  PEz or PEz + 
KEz  PEz. Kinetic energy (KE) of a molecule defines the 
degree of local optimum. There are mainly two types of 
collision among molecules – uni-molecular collision and 
inter-molecular collision. Uni-molecular reaction can be  
divided into two types – on-wall ineffective collision and 
decomposition. Inter-molecular collision can also be 
categorized into two types – inter-molecular ineffective 
collision and synthesis. 

On-wall inadequate reaction 

Here, molecules hit the wall and return but there is a 
change in some of the molecular properties. Figure 1 
graphically explains this collision. 

 Suppose the present molecular structure is z and the 
modified molecular structure is z. Then this change is 
only possible if 
 
 PEz + KEz  PEz (2) 
 
since we know that this collision is not much more vigor-
ous. Hence the difference between actual molecule and 
resultant molecule is small. We get KEz = (PEz + KEz – 
PEz)  p, where p lies between [KELossRate, 1], the 
range of KELossRate is 0 to 1 and (PEz + KEz – 
PEz)  (1 – p) is the amount of energy lost when the  
molecule hits the wall. We keep this energy in buffer, 
which can be used for decomposition reaction. 
 
Algorithm 1. On-wall-ineffective (K, buffer) 
Input: Molecule K and buffer 
1. Find 1 = Neighbour () 
2. Calculate PE1 
3. If (PE + KE  PE1) 
4.  Find r a random number between [KE LOSS  
    Rate, 1] 
5.  KE1 = (PE + KE – PE1)  r 
6.  Upgrade buffer = buffer + (PE + KE – PE1)  
    (1 – r) 
7.   upgrade the molecular structure of K by  = 1 
8.  end if 
9. output K and buffer 

Decomposition 

Here, the molecules hit the wall and convert into two or 
more components. This collision is robust and the struc-
ture of resultant molecules is different from the actual 
molecule. Figure 2 provides a graphical representation of 
this collision. 
 

 
 

Figure 1. On-wall ineffective collision. 
 
 

 
 

Figure 2. Decomposition. 
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 The condition for decomposition is (NHits[z] – 
MHits[z]) > . In this collision, the shape of the original  
molecule is z while those of the resultant molecules are 
z1 and z2. Suppose the original molecule has more en-
ergy (PE + KE) to capitalize the resulting molecules of 
PE of then the change is allowed as follows 
 
 PEz + KEz  PEz1 + PEz2, (3) 
 
Let temp1 = PEz + KEz – 

1 2
PE PE .z z   

 
Therefore, 

1
KEz = temp1  q and 

2
KEz = temp1  (1 – q), 

where q is randomly generated from the interval [0, 1]. 
Since potential energy of z, z1 and z2 is approximately the 
same. Hence, when kinetic energy of molecule z is very 
large, then only eq. (3) satisfied. But according to proper-
ties of on-wall ineffective reaction, kinetic energy of a 
molecule always decreases. Hence we have drawn some 
energy from buffer to favour for satisfying the criteria of 
decomposition collision. Due to this reason, some energy 
is drawn from buffer for satisfying the criteria of decom-
position. 
 
 PEz + KEz + buffer  

1 2
PE PE .z z   (4) 

 

When eq. (4) holds then we can get 
 

 
1

KEz  = (temp1 + buffer)  q1  q2, (5) 
 

 
2

KEz
 = (temp1 + buffer – 

1
KE )z   q3  q4, (6) 

 
where q1, q2, q3 and q4 are randomly generated from the 
interval [0, 1]. Since the buffer already stores a large 
amount of energy, we multiply two random numbers in 
both eqs (5) and (6) to ensure that KEz1 and KEz2 are not 
too large. 
 Also, buffer = buffer + temp1 – 

1 2
KE KE .z z   If eqs (3) 

and (4) are not satisfied, the decomposition reaction does 
not hold and the molecule has its original structure z. 
 

 
 

Figure 3. Intermolecular ineffective collision. 
 

 
 

Figure 4. Synthesis collision. 

Algorithm 2. Decompose (K, buffer) 
Input: Molecule K and central energy 
 1. Obtain 1 and 2 from  
 2. Determine PE1 and PE1 
 3. Let temp = PE + KE – PE1 – PE1 
 4. Generate a Boolean variable 
 5.  If (temp  0) 
 6.   Boolean = TRUE 
 7   Find a random number p between [0, 1] 
 8.   KE1 = temp  p 
 9.   KE2 = temp  (1 – p) 
10.   Determine new molecule K1 and K2 
11.   Assign 1, PE1, and KE1 to the molecular  
     structure of K1 and 2, PE2 and KE2 to  
     the molecular structure of K2 
12.  else if (temp + buffer  0) 
13.   Boolean = TRUE 
14.   Get k1, k2, k3 and k4 randomly in meanwhile  
     [0, 1] 
15.   KE1 = (temp + buffer)  k1  k2 
16.   KE2 = (temp + buffer – KE1)  k3  k4 
17.   Upgrade buffer = temp + buffer –  
     KE1 – KE 2 
18.   Assign 1, PE1 and KE1 to the molecular  
     structure of K1 and 2, PE2 and KE2 to  
     the molecular structure of K2 
19.  else 
20.  Boolean = FALSE 
21.  end if 
22. output K1, K2, Boolean and buffer. 

Inter-molecular ineffective reaction 

Here two or more molecules collide with each other and 
then return. There is little change in the result. This is 
similar to the on-wall inadequate reaction. The difference 
between the two reactions is only the number of mole-
cules. In the first case only one molecule participates in 
the collision, whereas in the second case two or more  
molecules participate. In this collision KE is not drawn 
from the central buffer; there is only interchange among 
the molecules. Figure 3 is an example of inter-molecular  
ineffective collision. 
 Suppose z1 and z2 are two original molecules and after 
the inter-molecular ineffective collision we get two  
different molecular structures 1z  and 2z . Since this colli-
sion is not vigorous, the molecular structures of 1z  and 

2z  are not much distinct from the original molecules z1 
and z2. The change is only possible if the following con-
dition is satisfied. 
 
 PEz1 + KEz1 + PEz2 + KEz2  

1 2
PE PE .z z   (7) 

 

Let temp2 = (PEz1 + KEz1 + PEz2 + KEz2 – 
1 2

PE PE ),z z   
Then, 

122KE  = temp2  r and 
2zK   = temp2  (1 – r), 

where r is a random number between [0, 1]. 
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Algorithm 3. Intermolecular ineffective (K1, K2) 
Input: molecules K1, K2 with their profile 
 1. Find β11 = Neighbour (1) and β21 = Neighbour (2) 
 2. Determine PE1

1 and PE2
1 

 3. Let temp = (PE1 + PE2 + KE1 + KE2) –  
   (PE1

1 + PE2
1) 

 4.  If (temp  0) 
 5.  Find a random number q between [0, 1] 
 6.  KE1

1 = temp  q 
 7.  KE2

1
 = temp  (1 – q) 

 8.  update the profile of K1 by 1 = 11, PE1 = PE1
1 

   and KE1 = KE1
1 and the profile of K2  

   by 2 = 21, PE2 = PE2
1 and KE2 = KE2

1 

 9.  end if 
10. output K1 and K2. 

Synthesis 

In this reaction, two or more components collide with 
each other to form new components. In this collision 
change is much more effective. Hence the difference be-
tween original and resultant molecule is more. Figure 4 is 
an example of the synthesis reaction. If KEz1   and 
KEz2  , this is favourable case for synthesis. In this re-
action the original molecules are z1 and z2, and the resul-
tant molecule is z. This change is applicable if the 
following condition is satisfied 
 
 PEz1 + KEz1 + PEz2 + KEz2  PEz, (8) 
 
Then we get 
 
 KEz = PEz1 + KEz1 + PEz2 + KEz1 – PEz.  (9) 
 
If eq. (8) is not satisfied the molecules return to their 
original structures. In this case, PE does not change, but 
KE of the resultant molecule is larger than the original 
molecules. In this reaction, secure molecule has greater 
ability to escape from local optimum. Any one of the 
above reactions can hold in each iteration. 
 

Algorithm 4. Synthesis (K1, K2) 
Input: Molecules K1 and K2 with their profile. 
1. Calculate  from 1 and 2 
2. Determine PE 
3. Generate a Boolean variable 
4. Generate a new molecule K 
5.  If (PE1 + PE2 + KE1 + KE2  PE) 
6.    Boolean = TRUE 
7.   KE = PE1 + PE2 + KE1 + KE2 – PE 
8.    Assign , PE and KE to the profile K 
9.   Else 
10.   Boolean = FALSE 
11.  end if 
9. output K and Boolean 

There are mainly three stages in CRO – initialization,  
iteration, and final stage. Figure 5 shows a flow chart of 
the CRO algorithm. 

Proposed method 

In the proposed method, we have used a novel CRO 
(ICROMSA) to find an approximate solution to the MSA 
problem. Here the initialization process is improved 
compared to the basic CRO. ICROMSA generates the 
new solution using elementary reactions such as on-wall 
ineffective, synthesis, inter-molecular ineffective and  
decomposition. 

Initialization scheme 

Here, we have considered the Needleman and Wunsch5 
algorithm to generate the initial population. The process 
of initialization is shown in Figure 6 and described as fol-
lows: (1) Let the problem be defined as given in Figure 
7 a. The first pair is selected as given in Figure 7 b. Next, 
the alignment is computed by considering pairwise 
alignment approach, as shown in Figure 7 c. In this way, 
alignment of each pair is estimated. (2) In this step, a 
random permutation between 1 and N is generated. Sup-
pose N = 4, then the random permutation is generated  
between 1 and 4. If the obtained random permutation is 
(1, 2, 3, 4), then the complete alignment is generated, as 
shown in Figure 7 d. In the generalized way, k number of 
solutions are generated using k random permutations  
between 1 and N. 

Molecular representation 

In the MSA problem, dimension of a molecule is equal to 
the number of profiles (n). Let Xi = (Xi1 ,…, Xid,…, Xin) be 
the ith molecule. In profile representation, all the protein 
elements in MSA are replaced by 0 and the gap is filled 
by 1. Then the binary sequence in the column is con-
verted into the decimal value which represents the Xi,d for 
all 1  d  n. 
 Figures 8 and 9 show the molecular representation.  
Initially, the entire protein element in Figure 8 is replaced 
by 1 and gap is filled by 0 as shown in Figure 9. Then the 
complete binary sequence in each column is converted  
into the decimal value which represents the profile as 
shown in the last row of Figure 9; the resultant decimal 
sequence of all the profiles is (5, 0, 0, 0, and 10). 

Fitness function 

The fitness value of each molecule is determined using 
sum of pair approach. First, the sum of pair’s symbol is 
calculated for each column. Then, the sum of all the 
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Figure 5. Flow chart of chemical reaction optimization. 
 
 

 
 

Figure 6. Flow chart of an initial generation. 

 
 

Figure 7. Complete process of an initial generation. 
 

 
 

Figure 8. Initial solution. 
 

 
 

Figure 9. Encoding scheme. 
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columns scores is considered to determine fitness func-
tion of the corresponding molecule as 
 

 
1 1 1

, where Cost( , ),
L N N

l l i j
l i j i

T T T A A
   

     (10) 

 
where T is the total cost of MSA and L is the number of 
columns in MSA. Tl is defined in terms of cost of the lth 
column and the number of sequences in complete align-
ment is N. Cost(Ai, Aj) is equal to the alignment score of 
two sequences Ai and Aj. Cost(Ai, Aj) is defined by PAM 
matrix. When Ai  ‘_’ and Aj  ‘_’. Also when Ai = ‘_’ 
and Aj = ‘_’ then Cost(Ai, Aj) = 0. Finally, Cost(Ai, 
Aj) = 1, when Ai = ‘_’ and Aj  ‘_’ or Ai  ‘_’ and Aj  ‘_’ 
then cost(Ai, Aj) = 1. 

Solution generation 

The solution generation process is based on four types of 
elementary reactions such as on-wall ineffective, synthe-
sis, inter-molecular ineffective and decomposition. 
 
On-wall ineffective: Since this reaction is not vigorous, 
the resultant molecule is similar to the actual molecule. In 
this reaction, a random position is chosen within a mole-
cule. Thereafter, a random number generated between 0 
and 2N replaces the corresponding position. For example, 
a random position is selected, say third. Next, a random 
number is generated, say 6. Finally, the generated number 
is replaced with the corresponding position, i.e. 3 replace 
with 6. Figure 10 shows a graphical representation of on-
wall ineffective reaction. 
 
Decomposition: This reaction is robust and the differ-
ence between resultant and actual is much more. In this 
reaction, two random positions are selected within the 
molecule. Thereafter, two right circular shift operations 
are performed. The first operation is performed using the 
first randomly selected position and the other by consid-
ering the second random position (Figure 11). 
 
Inter-molecular ineffective: This reaction is not much 
effective and the difference between the resultant and actual 
molecule is less. In this reaction, two random molecules 
are considered and one random position is selected in 
each molecule. Then, the values are exchanged between 
the selected random positions as shown in Figure 12. 
 
Synthesis: In this process, two random molecules are 
considered and one random position is selected within 
these molecules (say fourth). In the next step, the values 
are interchanged from the fourth position to the last posi-
tion between the selected molecules. In the final step, a 
random molecule is considered for the next generation 
from the newly generated molecules. Figure 13 shows a 

graphical representation of the synthesis reaction, while 
Figure 14 shows a flow chart of ICROMSA. Table 1 lists 
the implementation parameters of the proposed CRO. 

Dataset 

For comparison, we have taken a dataset from BAliBASE 
version 2.0. BAliBASE 1.0 (ref. 19) contains 142 refer-
ence alignments which consist of more than 1000  
 

 

 
 

Figure 10. Graphical representation of on-wall ineffective reaction. 
 
 

 
 

Figure 11. Graphical representation of decomposition reaction. 
 
 

 
 

Figure 12. Graphical representation inter-molecular ineffective reac-
tion. 

 
 

 
 

Figure 13. Graphical representation synthesis reaction. 
 

Table 1. Implementation parameters of ICROMSA 

Pop size 200 
Nvars Number of columns in the  
   sequences 
Initial kinetic energy 40 
Mole coll 0.6 
KE loss rate 0.8 
Buffer 0 
 40 
 100 
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Figure 14. Flow chart of an improved chemical reaction optimization. 
 
 
sequences. BAliBASE 2.0 (ref. 20) contains 167 refer-
ence alignments which consist of 2100 sequences and 
eight reference sets, which can be described as follows: 
(i) Reference set 1 contains a small number of intermedi-
ate sequences. (ii) Reference set 2 contains totally differ-
ent or distinct sequences. (iii) Reference set 3 contains a 
set of divergent sub-families. (iv) Reference set 4 con-
tains extended terminal extension sequences. (v) Refer-
ence set 5 contains large interior insertions or deletions. 
(vi) Reference sets 6–8, contain datasets in which the  
sequences are repeated. Bali score is used to determine 
the quality of algorithm. This score defines the level of 
similarity between manual alignment and resultant 

alignment. Bali score lies between 0 and 1. If the manual 
alignment and resultant alignment are the same then the 
value of Bali score is 1. If both the files are completely 
dissimilar, then the result is 0. A value between 0 and 1 
shows the percentage of similarity match between the 
manual alignment file and output file obtained from the 
proposed or existing approach. 

Experimental study 

In this study, simulation is performed using C program-
ing (Linux platform) and graphs are plotted using 
MATLAB (version 2013). In the performance analysis, 
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Figure 15 a–d. Performance of CRO and improved CRO per generation w.r.t. reference set 1. 
 

 
 

Figure 16 a–d. Performance of CRO and improved CRO per generation w.r.t. reference set 2. 
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Figure 17 a–d. Performance of CRO and improved CRO per generation w.r.t. reference set 3. 
 
first, the obtained fitness score between the improved 
CRO and classical CRO is compared. Then, Bali score of 
improved CRO algorithm is compared with the well-
known existing algorithms. 

Effect of improved operator in CRO 

The CRO algorithm is used in optimization problems for 
interaction of molecules in a chemical reaction to reach a 
low-energy stable state. In traditional CRO, initial popu-
lation is generated randomly, while the improved CRO 
works with an improved initial population. We have used 
pairwise alignment algorithm for finding the initial popu-
lation. To analyse the effect of this proposed initial  
operator on the algorithms, two types of experiments 
have been conducted. Both CRO and improved CRO 
were run. We measured the fitness of each molecule  
according to fitness function. Figures 15–17 show  
experimental results with respect to reference sets 1–3. 

Comparing the proposed method with GAPAM 

To verify the efficiency of the proposed algorithm, we 
have taken all dataset of GAPAM17. In GAPAM, the  

authors keep best Bali score after 20 independent runs. 
But in this study we have taken average of 10 independ-
ent Bali score. We have taken a total of 52 test cases – 18 
from reference set 1, 23 from reference set 2, and 11 from 
reference set 3. These are all taken from Bali base  
version 2.0. We have taken the approximate results of 
other methods reported in GAPAM17. Tables 2–4 provide 
a summary of the experimental results with respect to 
reference sets 1–3. 
 
Performance of improved CRO w.r.t. reference set 1:  
There are several types of datasets in reference set 1, 
which differ in length and number of sequences. To show 
the superiority of the proposed algorithm in terms of Bali 
score, we have compared it with GAPAM, SB-PIMA, 
PRRP, HMMT and other well-known techniques. From 
Table 2, we can see that the proposed algorithm performs 
better in 13 out of 18 test cases, and GAPAM only five 
test cases. We take average solution of all methods w.r.t. 
all datasets of reference set 1. The average solution of the 
proposed method is better than some of the existing  
methods. 
 
Performance of improved CRO w.r.t. reference set 2: 
There are various types of datasets in Bali base  reference 
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Table 2. Experiments on reference 1 datasets of Bali base 2.0 

Dataset  SAGA SB-PIMA DIALI RBT-GA CLUSTAL X PRRP HMMT GAPAM ICROMSA 
 

2trx  0.87 0.85 0.734 0.982 0.87 0.87 0.739 0.986 0.921 
1idy  0.548 0.000 0.000 0.997 0.515 0.37 0.353 0.989 0.912 
1havA  0.448 0.259 0.000 0.792 0.48 0.52 0.194 0.879 0.897 
1r69  0.475 0.675 0.675 0.9 0.675 0.675 0.000 0.965 0.905 
1tvxA  0.448 0.241 0.000 0.891 0.552 0.207 0.276 0.92 0.856 
1tgxA  0.773 0.678 0.63 0.835 0.727 0.695 0.622 0.878 0.902 
1ubi  0.492 0.129 0.000 0.795 0.482 0.056 0.053 0.767 0.839 
2myr  0.825 0.727 0.84 0.675 0.904 0.582 0.443 0.822 0.867 
1csy  0.154 0.000 0.000 0.735 0.154 0.35 0.000 0.764 0.813 
1aboA  0.489 0.391 0.384 0.812 0.65 0.256 0.724 0.796 0.823 
3grs  0.282 0.183 0.350 0.755 0.192 0.363 0.141 0.746 0.793 
1uky  0.476 0.256 0.216 0.625 0.656 0.351 0.395 0.808 0.861 
2hsdA  0.498 0.39 0.262 0.745 0.484 0.404 0.423 0.796 0.837 
1pamA  0.623 0.393 0.576 0.66 0.761 0.711 0.53 0.86 0.898 
1lvl  0.726 0.62 0.783 0.567 0.746 0.772 0.539 0.781 0.802 
Kinase  0.867 0.755 0.692 0.712 0.848 0.896 0.749 0.799 0.888 
4enl  0.739 0.096 0.122 0.812 0.375 0.668 0.213 0.896 0.911 
1cpt  0.776 0.184 0.425 0.584 0.66 0.821 0.388 0.875 0.902 
1sbp  0.374 0.043 0.043 0.778 0.217 0.231 0.214 0.765 0.787 
1ajsA  0.311 0.000 0.000 0.892 0.324 0.227 0.242 0.899 0.944 
1ped  0.835 0.651 0.773 0.78 0.834 0.881 0.696 0.912 0.923 
2pia  0.763 0.73 0.612 0.730 0.752 0.767 0.647 0.826 0.859 
1wit  0.694 0.469 0.724 0.825 0.557 0.76 0.641 0.851 0.869 
Average score 0.586 0.379 0.384 0.777 0.583 0.541 0.401 0.851 0.869 

 
 
 

Table 3. Experiments on reference 2 datasets of Bali base 2.0 

Dataset MSA-GA w/prealign  CLUSTAL W MSA-GA SAGA GAPAM ICROMSA 
 

1gpb 0.948 0.947 0.868 0.982 0.983 0.891 
1tvxA 0.209 0.042 0.295 0.278 0.316 0.392 
1krn 0.895 0.895 0.908 0.993 0.960 0.966 
1taq 0.826 0.826 0.525 0.931 0.945 0.956 
1ad2 0.845 0.773 0.821 0.917 0.956 0.974 
2myr 0.302 0.296 0.212 0.285 0.317 0.529 
1ycc 0.653 0.643 0.650 0.837 0.845 0.923 
1fieA 0.942 0.932 0.843 0.947 0.963 0.859 
1uky 0.405 0.392 0.443 0.672 0.402 0.592 
1ldg 0.922 0.880 0.895 0.989 0.963 0.965 
1idy 0.438 0.500 0.427 0.342 0.565 0.683 
1sesA 0.913 0.913 0.620 0.954 0.982 0.943 
1ar5A 0.946 0.946 0.812 0.971 0.974 0.933 
2fxb 0.985 0.985 0.941 0.951 0.970 0.984 
1amk 0.959 0.945 0.965 0.997 0.998 0.949 
Kinase 0.488 0.479 0.295 0.862 0.487 0.522 
1ped 0.687 0.592 0.501 0.746 0.498 0.693 
3cyr 0.789 0.767 0.772 0.908 0.911 0.929 
Average score 0.730 0.708 0.651 0.809 0.726 0.815 

 
 
set 2. To show the superiority of proposed algorithm in 
terms of Bali score, we have compared it with some well-
known technique. As seen in Table 3, the proposed algo-
rithm performs better in 19 out of 23 test cases, and 
GAPAM in only four cases. After experimental analysis, 
we have seen that the proposed method does not produce 
best solution in all cases, but in some cases it is close to 
the best solution. Average score of the proposed method 

with respect to all test cases is also better than other  
existing method. 
 
Performance of improved CRO w.r.t. reference set 3: 
There are many datasets in reference set 3, which is more 
divergent. Hence residue identities of these datasets are 
low. Here, we have considered 11 datasets. Table 4 
shows that the proposed method is better than other 
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Table 4. Experiments on reference 3 datasets of Bali base 2.0 

Dataset  CLUSTAL X DIALI HMMT RBT-GA PRRP SAGA SB-PIMA GAPAM ICROMSA 
 

1uky  0.130 0.139 0.037 0.35 0.139 0.269 0.083 0.468 0.533 
2myr  0.538 0.272 0.101 0.33 0.646 0.494 0.278 0.813 0.747 
1ubi  0.146 0.000 0.366 0.31 0.415 0.585 0.000 0.386 0.527 
1pamA  0.678 0.683 0.169 0.525 0.683 0.579 0.546 0.835 0.821 
1ped  0.627 0.641 0.172 0.425 0.679 0.646 0.450 0.775 0.839 
1ajsA  0.163 0.000 0.006 0.18 0.128 0.186 0.000 0.311 0.417 
4enl  0.547 0.050 0.050 0.68 0.736 0.672 0.393 0.8 0.763 
kinase  0.720 0.650 0.478 0.697 0.783 0.758 0.541 0.828 0.819 
1idy  0.273 0.000 0.227 0.546 0.000 0.364 0.000 0.601 0.623 
1wit  0.565 0.500 0.323 0.78 0.742 0.484 0.645 0.758 0.741 
1r69  0.524 0.524 0.000 0.374 0.905 0.524 0.000 0.709 0.817 
Average score  0.446 0.314 0.175 0.472 0.532 0.506 0.267 0.662 0.695 

 
 

Table 5. Statistical analysis for the proposed method and other existing methods 

    Proposed method 
Method W+ W– P is notable (if P < 0.025) 
 

GAPAM (in reference set 1) 13 5 0.03502 No 
CLUSTAL-W 15 3 0.002943 Yes 
SAGA (in reference set 1) 13 5 0.0000523 Yes 
MSA-GA W/prealign 14 4 0.000283 Yes 
MSA-GA 17 1 0.000329 Yes 
GAPAM (in reference sets 2 and 3) 25 9 1.02e–1 Yes 
RBT-GA 30 4 4.1 e–9 Yes 
SB-PIMA 34 0 3.5 e–2 Yes 
HMMT 34 0 2.1 e–3 Yes 
DIALI 34 0 7.39 e–8 Yes 
SAGA(in reference sets 2 and 3) 33 1 4.35 e–6 Yes 
CLUSTAL(X) 34 0 1.21 e–3 Yes 
PRRP 33 1 0.00002745 Yes 

W+, Differences above zero means positive rank; W–, Differences below zero means negative rank; P, Probability. 
 

 
methods in five test cases: SAGA in one case, RBT-GA 
in one case, and GAPAM in four test cases. We have cal-
culated average score with respect to all datasets of refer-
ence set 3. The average score of the proposed method is 
better than some of the existing methods taken from 
GAPAM17. 
 
Statistical performance of the proposed method: We can 
judge the performance between two different techniques 
using statistical method. For a comparison between two 
methods, we have taken Wilcox signed-rank test21. Table 
5 shows statistical results between the proposed method 
and other methods, where W = (W+ or W –) is the sum of 
the ranks which is based on the difference between two 
test variables. We have considered a null hypothesis. Due 
to property of null hypothesis, when hypothesis is re-
jected then there is a significant difference between two 
samples. We have also considered 2.5% level of signifi-
cance. If the value of P is less than 0.025, then the null 
hypothesis is rejected. It means that we can measure the  
difference between the performances of the executed  
algorithms, otherwise the difference is not measurable. 
We have computed Bali score of the proposed method 

and compared it with existing methods. We find that the 
proposed method preformed better than MSA-GA, MSA-
GA w/prealign and CLUSTAL W for reference set 1. 
There is also a significant difference for the reference sets 
2 and 3. We have found that in a single case there is no 
notable difference with GAPAM in reference set 1. From 
this observation, we can conclude that the proposed 
method is statistically better than other existing algo-
rithms. 

Conclusion 

In the present study, we have proposed an improved CRO 
algorithm for the MSA problem. The initialization pro-
cess of CRO has been improved for maintaining the  
diversity of the solution. In the experimental analysis, 
benchmark datasets were considered from Bali base 2.0, 
and the corresponding Bali score was taken which repre-
sents the performance of the proposed approach. For the 
sake of comparison, the proposed approach is compared 
with several existing approaches such as PRRP, 
CLUSTAL X, DIALIGN, HMMT, SB-PIMA, SAGA, 
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RBT-GA and GAPAM. Simulation results confirm the 
superiority of the proposed work over others. This im-
plies that the proposed approach can solve the MSA prob-
lem in an effective manner. 
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