
SCIENTIFIC CORRESPONDENCE

CURRENT SCIENCE, VOL. 112, NO. 5, 10 MARCH 2017 906

Compiler bootstrapping and cross-compilation

Bootstrapping and cross-compilation are
two classic and important concepts in
compiler construction. Bootstrapping is
the process of implementing a compiler
in the language that it is supposed to
compile. Alternatively, cross-compilation
is the process where a compiler executes
on one computer architecture and gener-
ates target programs to be executed on
another computer architecture. This note
compares and contrasts the two concepts.
 Let us assume that a new computer ar-
chitecture has been developed. Software
has to be developed for this new com-
puter architecture. However, before any
other software program is written for this
new computer architecture, language
processors like assemblers and compilers
have to be developed. The problem may
be defined formally as follows. Let M
and N represent an existing computer
architecture and a new computer archi-
tecture respectively. Let HLL be a
machine-independent high-level lan-
guage. Also, let M.ML, N.AL and N.ML
represent the machine language of M, as-
sembly language of N and machine lan-
guage of N respectively. The objective is
to develop a compiler for HLL targeting
N, i.e. a compiler that translates HLL in-
to N.ML. This problem may be solved by
either bootstrapping or cross-compi-
lation. However, both approaches have
their own merits and demerits.
 The problem can be solved using boot-
strapping ideally in two steps. In the first
step, a compiler HLL N.ML

N.ALC to translate
HLL into N.ML is implemented in N.AL.
(Note that XY

ZC represents a compiler
that translates a source language X to a
target language Y, and is implemented in
a language Z.) We assume that an as-
sembler for N has been already hand-
coded in the machine language. This is a
realistic assumption as implementing a
compiler in a machine language will be
quite forbidding. The compiler HLL N.ML

N.ALC
will be good enough to produce target
programs for N. However, the compiler
will be difficult to modify or debug in
future because it is implemented in an
assembly language. So, in the second
step, a compiler HLL N.ML

HLLC is implemen-
ted. Since the second compiler is imple-
mented in HLL itself, it will have
the desired properties of HLL. The two
steps are represented in Figure 1 using
T-diagrams1.

 An alternative approach is to use
cross-compilation with M being the host
computer architecture and N being the
target computer architecture. An existing
compiler HLL M.ML

M.MLC can be retargeted to
N by modifying its back-end, i.e. the
code optimization and code generation
phases. The compiler HLL N.ML

HLLC thus
obtained will execute on M but create
programs that can be executed on N
(Figure 2).
 In the bootstrapping approach, the
source language is the same as the lan-
guage of implementation for the second
compiler, which is called a self-hosting

or self-compiling compiler. This allows
the compiler developer to use the sophis-
ticated features of the programing
language to implement the compiler.
Moreover, the compiler developer need
not worry about the possibility of bugs in
a compiler written by others. Bootstrap-
ping is also a comprehensive test of the
programing language. The bootstrapping
approach makes the new computer archi-
tecture self-sufficient in the sense that no
other computer architecture will be
needed in future to develop software for
the new computer architecture. However,
any change in the definition of the source

Figure 1. The bootstrapping approach. In step I, a compiler for HLL targeting N is written in
the assembly language of N and assembled using a hand-coded assembler. Thus, a working com-
piler is obtained. In step II, the compiler is rewritten in HLL and compiled using the compiler
obtained in step I. The result of step II is a self-hosting compiler. Note that a T represents an
assembler or a compiler in either source or executable form. The labels on the left arm, right arm
and foot of a T give the source language, target language and language of implementation of the
assembler or the compiler respectively. An assembler or a compiler in its executable form can be
used to translate the source form of a compiler to its executable form. A T representing the
executable-form of a compiler has a triangle below it representing the computer architecture on
which the compiler runs.

Figure 2. The cross-compilation approach. A compiler for HLL targeting N is written in HLL
and compiled using the native compiler on M. A cross-compiler is thus obtained. The cross-
compiler runs on M, but generates code for N. The label at the foot of a T representing the
executable form of a compiler should be same as the machine language of the computer architec-
ture represented by the triangle below it.

SCIENTIFIC CORRESPONDENCE

CURRENT SCIENCE, VOL. 112, NO. 5, 10 MARCH 2017 907

language will require modifications in
the code of the self-hosting compiler.
Another requirement is that the source
language should be suitable and ad-
vanced enough for writing the compiler2.
Bootstrapping may distort the design of a
programing language that is not other-
wise meant to implement compilers or
similar programs. Additionally, the boot-
strapping approach requires much time
and effort, and is hence prescribed only
for computer architectures which will be
used for software development.
 Alternatively, the cross-compilation
approach requires less time and effort.
An existing compiler can be retargeted to
the new computer architecture by modi-
fying its back-end. It is particularly suit-
able if the new computer architecture is a
smartphone, an embedded device or any
other battery-powered programable de-
vice. Such devices typically have severe
processing, memory and power con-
straints. Using the cross-compilation
approach, software for the device can be

developed on another computer architec-
ture and copied onto the device. This
leads to a lifelong dependence of the de-
vice on the other computer architecture.
However, it is not a major issue as such
devices are not used for software devel-
opment. A cross-compiler running on a
personal computer and generating target
code for a battery-powered programable
device can employ a large range of code
optimization techniques, while a native
compiler running on such a device may
at most afford to perform peephole opti-
mization because of its various con-
straints.
 It is interesting to note that the final
compilers in both the approaches can be
represented as HLL N.ML

HLLC when in their
source forms. However, in their executa-
ble forms, they become HLL N.ML

N.MLC in the
bootstrapping approach (Figure 1) and

HLL N.ML
M.MLC in the cross-compilation

approach (Figure 2).
 Although the concepts of bootstrap-
ping and cross-compilation have been

known for a long time, they are still in
use. Efficient use of these concepts is
often helpful in programing language
design and compiler construction.

1. Bratman, H., Commun. ACM, 1961, 4, 142.
2. Lecarme, O. and Peyrolle-Thomas, M.-C.,

Software: Pract. Experience, 1978, 8, 149–
170.

Received 25 March 2016; accepted 12
November 2016

TWINKLE GUPTA

SANYA YADAV
PINAKI CHAKRABORTY*

Division of Computer Engineering,
Netaji Subhas Institute of Technology,
New Delhi 110 078, India
*For correspondence.
e-mail: pinaki_chakraborty_163@yahoo.
com

Prominent precursory signatures observed in soil and water radon
data at multi-parametric geophysical observatory, Ghuttu for Mw 7.8
Nepal earthquake

A devastating earthquake (M 7.8) oc-
curred in the central part of the Nepal
Himalaya on 25 April 2015 at
06:11:26.27 (UTC). USGS reported the
epicentre location at 28.147N and
84.708E, and focal depth 15 km. The
earthquake strongly hit Nepal causing
over 7500 deaths and widespread de-
struction. A historical temple of 19th
century was reduced to ruins within a
few seconds. More than 55 causalities
were reported in the adjoining parts of
India, mainly to the south and east of
Nepal. The earthquake was followed by
65 aftershocks within a period of three
days after the main event. Among these
the strongest aftershocks, i.e. M 6.7 oc-
curred on 26 April at 07:09:08 (UTC)
and M 6.6 occurred on 25 April at
06:45:20 (UTC). The moment tensor
solution of the main shock suggests
thrust fault mechanism with strike 293
and dip 7 (USGS GCMT solution). It
caused unilateral rupture of 100  80 km2
towards east and south from the hypo-
centre and a maximum slip of 5 m. The

dislocation mainly occurred on the Main
Himalayan Thrust (MHT), which is a
low-angle northerly-dipping boundary
between the Indian and Eurasian tectonic
plates.
 In this communication, we report ob-
servation of anomalous radon gas emis-
sion measured in a borehole at India’s
first multi-parametric geophysical obser-
vatory (MPGO) located at Ghuttu,
Garhwal Himalaya, established by the
Wadia Institute of Himalayan Geology
(WIHG), Dehradun. MPGO is located in
the central part of the seismic gap be-
tween the epicentre of the 1905 Kangra
earthquake (M 7.8) and 1934 Bihar–
Nepal earthquake (M 8.2) immediately to
the south of the Main Central Thrust
(MCT) within the High Himalayan Seis-
mic Belt (HHSB). The recent Nepal
earthquake occurred 636 km to the east
of MPGO (Figure 1). The spatial extent
of the so-called seismic gap is slightly
reduced towards the west due to occur-
rence of the recent M 7.8 earthquake.
The observatory is equipped with simul-

taneously operated multiple geophysical
equipments that can measure radon,
magnetic, gravity, seismic, GPS and
water level data. The facility also has
rain gauge, temperature (atmospheric and
underground) and atmospheric pressure
observations1.
 The linkage of radon emanation varia-
tion with earthquake mechanism reported
in many previous studies has prompted
the inclusion of radon variation as one of
the parameters at MPGO, Ghuttu for
earthquake precursory research. Radon is
the disintegration product of radioactive
uranium and thorium, which was obser-
ved for the first time as an earthquake
precursor during the great Tashkent
earthquake of 1966 (ref. 2). The radon
emanation is likely to vary in the crust
during earthquake preparation and occur-
rence period based on the well-accepted
dilatancy–diffusion model of earthquake
generation mechanism3. The model holds
some promise for short-term earthquake
prediction using radon measurement4.
However, nonlinear dynamic behaviour

