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Traffic density is an indicator of congestion and the 
present study explores the use of data-driven tech-
niques for real time estimation and prediction of traf-
fic density. Data-driven techniques require large 
database, which can be achieved only with the help of 
automated sensors. However, the available automated 
sensors developed for western traffic may not work 
for heterogeneous and lane-less traffic. Hence, the 
performance of available automated sensors was 
evaluated first to identify the best inputs to be used 
for the chosen application. Using the selected data, 
implementation was carried out and the results  
obtained were promising, indicating the possibility of  
using the proposed methodology for real time travel-
ler information under such traffic conditions.  
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WITH the fast growing urban population and increasing 
vehicle population, it is becoming difficult to implement 
efficient traffic management for Indian roads. Intelligent 
transportation systems (ITS) is viewed as an option to 
handle some of these issues and is becoming more popu-
lar under this scenario. ITS enable gathering of data and 
providing timely feedback to traffic managers and road-
users based on the real time data. Advanced traveller  
information system (ATIS) is a major functional area of 
ITS and it deals with providing real time traffic informa-
tion to travellers for making informed travel decisions. 
The information provided can include expected travel 
time, congestion condition, locations of incidents, 
weather and road conditions, optimal routes, recom-
mended speeds and lane restrictions. 
 Traffic congestion information is most sought after, 
followed by travel time and travel speed information. 
However, congestion being qualitative in nature, there is 
a need to identify the best measure to quantify it. As per 
the Highway Capacity Manual (HCM)1, traffic density on 
freeways, delays at signalized intersections and walking 
speed for pedestrians are examples of measures of effec-
tiveness that characterize traffic conditions on a facility. 

Of these, traffic density is the primary measure for quan-
tifying congestion on roadways, other than the intersec-
tion areas. Traffic density is the number of vehicles 
occupying a given length of roadway. Density being a 
spatial variable makes it difficult to carry out direct mea-
surements. Aerial photography is the primary approach to 
measure density directly from field, which is very diffi-
cult to implement. Hence, it is usually estimated from 
other location-based parameters such as speed, flow or 
occupancy, making it a challenging research problem. 
This problem of estimation of density from location 
based parameters such as volume and time mean speed 
(TMS) obtained using selected sensors is considered in 
this study. This becomes more challenging under Indian 
conditions, with heterogeneous and lane less-traffic, lead-
ing to high variability and randomness. In addition, these 
traffic conditions make automated data collection diffi-
cult, leading to limited amount of data being available for 
building models. Consequently, there are not many stud-
ies reported on traffic density estimation under Indian 
traffic conditions using data-driven techniques and there-
fore is selected as the demonstration application in the 
present study. 
 Road users, in general, are more interested to know 
what they can expect while making the trip, rather than 
the present scenario, making prediction to future time in-
tervals an important task. Hence, in this study, the traffic 
density is first estimated using speed and volume data 
from sensors. The estimated density values are then pre-
dicted to future time intervals by identifying the evolu-
tion pattern. The density at a future time interval is 
predicted from the density of previous time intervals. 
This density value can be provided to road users in the 
form of sign boards or messages in real time, if the esti-
mation-prediction models are assembled along with a real 
time data collection technique. Thus, the accuracy of the 
final information provided to users depends on the quality 
of input data, and the estimation and prediction tech-
niques used, which are discussed below. 
 The basic requirement of any successful ITS imple-
mentation is good quality real time traffic data. Thus,  
accurate traffic sensors are one of the essential elements 
of ITS implementation. Loop detectors were the most 
widely used detection technology for automated traffic 
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data collection all over the world. The major disadvan-
tage of loop detectors is the intrusive nature that leads to 
installation and maintenance problems, traffic disruption 
and removal of pavement structure. Later, several types 
of non-intrusive traffic sensors were introduced for  
vehicle sensing. Some of the popular technologies  
include video image processing, radio frequency identifi-
cation, bluetooth, infra-red, etc. However, most of these 
traffic sensors were developed for lane-based and homo-
geneous traffic conditions. Accurate and automated real 
time data collection continues to be a major challenge 
under heterogeneous and no-lane disciplined traffic con-
ditions. Hence, there is a need to evaluate the perform-
ance of available traffic sensors before using it for any 
ITS application. The present study thus evaluates avail-
able detection technologies under Indian traffic condi-
tions, before using them for the end application. Four 
popularly used automated sensors are evaluated based on 
statistical analysis and data from sensors that are found to 
be performing well are used for density estimation. 
 Artificial neural networks (ANN) and k-nearest 
neighbour (k-NN), which are popularly used machine 
learning techniques, have been explored for density esti-
mation and prediction in this study. In the density estima-
tion model, speed and volume are given as inputs to the 
model for the corresponding density as output. In the sec-
ond model, the time series of estimated density values of 
previous time intervals is used to determine the density in 
the next time step. Therefore the model will be able to 
predict traffic density for a time interval if provided with 
volume and speed of previous time interval. The data  
required for the model were collected using the best  
performing sensor identified from the evaluation of  
sensors. 

Literature review 

A review of literature in the area of estimation of traffic 
parameters like density showed the use of various tech-
niques such as historic-data based methods, statistical 
methods, machine learning techniques and model based 
techniques as the most commonly used ones. Chang and 
Gazis2 estimated density using Kalman filtering tech-
nique from flow data obtained by aerial photography. 
Coifman3 used loop detector data to estimate density 
based on the conservation of vehicles. In another study, 
Nahi and Trivedi4 estimated density and speed from the 
flow data obtained by aerial photography. Wang et al.5 
estimated traffic flow variables such as flow, space mean 
speed and density using online parameter model estimator 
and discussed the estimator’s tracking ability and sensi-
tivity to various initial conditions. Darwish and Abu 
Bakar6 provide a literature review of traffic density esti-
mation. They classify the techniques into categories – 
infrastructure-based and infrastructure-free and list out 

the advantages and disadvantages of each. Bhaskar et al.7 
developed a data fusion model that integrates data from 
two sources (loop detectors and bluetooth scanners) for 
travel time and density estimation in a seamless and reli-
able manner. 
 Studies reporting traffic parameter prediction mainly 
focussing on data driven approaches are discussed here. 
Zhang and Rice8 used a varying coefficients linear model, 
which varies as a smooth function of departure time, with 
past instantaneous travel time to predict future travel 
time. The principal component analysis and nearest 
neighbour approach were investigated by Rice and Zwet9 
by combining the historical data and the instantaneous 
travel time data. Other methods such as linear regression 
and Kalman filtering are widely used in the area of pre-
diction. Kwon et al.10 estimated travel time on a freeway, 
using flow and occupancy data obtained from loop detec-
tors and predicted to future time steps using linear regres-
sion. Kalman filter method was employed by Chen and 
Chein11 to predict travel time using data obtained from 
probe vehicles. Fabrizi and Ragona12 developed a pattern 
matching method of prediction, which tried to identify 
patterns in the past data that describe the actual traffic 
load and produces forecasts supposing that the trend 
would repeat. Padiath et al.13 compared the performance 
of a historic technique, an ANN-based technique and a 
model based technique to predict traffic density under  
Indian traffic conditions. However, the study used limited 
data collected manually. Ozkurt and Camci14 presented an 
automatic traffic density estimation and vehicle classifi-
cation method using ANN and 94% accuracy was  
reported. Vanajakshi and Rilett15 predicted traffic speed 
ranging from 2 min ahead up to an hour into future using 
ANN and support vector machines and reported that per-
formance of ANN largely depended on the amount of  
data. Li and Chen16 developed a multilayer perception 
neural network model for freeway travel time prediction 
that required inputs such as volume and speed from loop 
detectors, historic travel time, most recently available 
current travel time, rainfall, and information on occur-
rence of accidents. Drakopoulos and Abdulkader17 stud-
ied the neural network training of heterogeneous data and 
proposed data pruning (removal of noisy data) and  
ordered-training (partitioning of data) as effective  
methods to deal with heterogeneous data. 
 k-NN has also been used extensively for similar appli-
cations. Cruz et al.18 studied the problem of processing k-
NN queries in road networks considering traffic condi-
tions and the queries return the k-points of interest that 
could be reached in the minimum amount of time. Zhang 
et al.19 presented a method for short-term urban express-
way flow prediction system with accuracy over 90%  
using k-NN. Lin et al.20 applied k-NN method to form the 
training dataset for local linear wavelet neural network 
instead of taking the whole historical dataset for training 
for short-term prediction of five minutes volume. Xiaoyu 
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et al.21 proposed a two-tier k-NN algorithm combined 
with the actual traffic flow to improve the processing 
speed and the accuracy of the algorithm. Zheng and Su22 
developed a k-NN–LSPC (k-NN–linearly sewing princi-
ple component) for prediction of traffic volume, which 
outperformed eight other algorithms. Hodge et al.23  
addressed the problem of short-term prediction of traffic 
flow through a scalable neural network-based k-NN pre-
dictor. 
 The above reviews show the use of various model-
based and data-driven approaches for estimation and  
prediction of traffic parameters. However, under Indian 
conditions, automated sensors were not available and 
hence prediction problems using data-driven approaches 
such as ANN or k-NN were not attempted exhaustively. 
Based on the literature and based on the availability of a 
good automated database, two data-driven approaches 
namely ANN and k-NN approach were selected for esti-
mation and prediction of traffic density in the present 
study. Another factor on which the accuracy of these  
applications depend, in addition to the choice of correct 
estimation and prediction tool, is the accuracy of input 
data. This is critical while using automated data, which 
are more prone to errors. This issue is more severe under 
Indian conditions because the performance of these auto-
mated sensors has not been evaluated under such traffic 
conditions in the past. The present study evaluated the 
performance of available sensors and the best performing 
ones were used for the end application. A literature  
review in this area was also carried out and is provided  
below. 
 Traffic sensors in general can be classified as location-
based and spatial-based, depending on the placement of 
the sensor and the nature of data being collected. Loca-
tion-based sensors are more popular due to the ease of in-
stallation without any participation requirement from 
vehicles and it can easily collect data of the entire traffic 
population crossing the sensor location. Location-based 
sensors can be intrusive or non-intrusive based on whether 
they need to be placed below the road surface or not.  
Inductive loop detectors, pneumatic road tubes, magne-
tometer and piezo-electric tubes are some of the detectors 
that come under the category of intrusive sensors. Video 
image processing, microwave radar, acoustic, magnetic 
and infrared detectors are the popular non-intrusive sen-
sors. Based on the sensing principle used, location-based 
sensors can be classified as inductive loop, radar-based, 
image processing-based, infra-red-based and so on24. 
Evaluation of various traffic sensors and comparison of 
performance were reported by various agencies from 
western countries, mainly USA25–30. 
 It can be observed that all the above studies were car-
ried out where homogeneous and lane-disciplined traffic 
existed. The traffic in western countries is dominated by 
cars and trucks, but countries like India have to deal with 
a variety of vehicles with wide range of speed and physi-

cal properties using any space in the roadway without fol-
lowing lane discipline. So, all these sensors reported to be 
performing well under homogeneous and lane-disciplined 
traffic may not perform equally well in a heterogeneous 
and no-lane disciplined condition. Therefore, the objec-
tive of the present study is to perform a similar evaluation 
under Indian conditions. The choice of sensors for the 
evaluation was based on findings from earlier studies as 
well as popularity in terms of field installations around 
the world. As most studies used just one or two measures 
such as correlation coefficient and per cent error for 
quantifying and comparing the performance of sensors, a  
detailed evaluation of four sensors for three different  
parameters using five statistical measures was adopted in 
the present study. The evaluation was carried out by 
comparing the sensor reported values and ground truth 
values thereby finding the strength and weakness of each 
detector. 

Methodology 

The adopted methodology for the present study can be 
highlighted as: 
 
– Selection of best sensor for density estimation from 

available sensors. 
– Data collection using the selected sensor. 
– Development of estimation–prediction models using 

data mining. 
– Performance evaluation. 

Selection of best sensor for density estimation from  
the available sensors 

The basic requirement of any of the ITS applications is an 
automated traffic sensor for capturing real-time traffic  
data. The sensors which are proven to be performing well 
in homogeneous traffic may not perform well in hetero-
geneous traffic because of presence of multiple classes of 
vehicles moving in a no-lane disciplined manner. Hence, 
the sensors need to be evaluated before using the data for 
any ITS applications under Indian traffic conditions. The 
study will analyse two different variables namely volume 
and speed from these sensors, which are the primary  
input for estimation–prediction model. The ground truth 
data collected manually were compared with the sensor 
reported numbers for accuracy. The data from the sensor 
which performs well will be used in the end application. 
Four types of automated sensors namely Smartsensor 
HD31, Traficam Collect-R32, TRAZER33 and TIRTL34 
were evaluated. All these sensors are location-based and 
provide classified vehicle count, speed, lane occupancy 
etc. Though these sensors are based on advanced tech-
nologies such as image processing, infra-red and radar 
and reported good performance under ideal conditions, 
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the performance of these sensors in Indian traffic condi-
tion needs to be addressed and is attempted. 
 The performance of the selected sensors was evaluated 
by comparing the sensor reported values with the corre-
sponding actual or ground truth values. Total count and 
speed were evaluated using the statistical measures for 
each one-minute interval. Each of the statistical measures 
has advantages and disadvantages and a single measure 
may not be able to represent the performance completely. 
Hence, the evaluations in this study used five different 
statistical measures namely mean absolute error 
(MAE)35,36, mean absolute percentage error (MAPE)37,38, 
correlation coefficient39, GEH statistic40, and Theil’s  
inequality coefficient, U41. U can be split into three  
components Um, Us and Uc which indicate the nature of  
difference between two sets of data. Um is the bias pro-
portion, which indicates the proportion of the inequality 
contributed to a systematic tendency towards wrong (over 
or under counting) estimation of the true value. Us is the 
variance proportion, which indicates the proportion of  
the inequality attributed to unequal variances between the 
detector’s reported values and true values. Uc is the co-
variance proportion, which indicates the proportion of the 
inequality that is unsystematic. Sample results obtained 
are discussed below. 
 
Volume analyses: Volume, which is defined as the num-
ber of vehicles passing a point during a given time inter-
val, is analysed per minute in this study. Ground truth 
values were measured manually from videos. The peak 
and off-peak traffic conditions were analysed separately. 
The peak hours were considered as 8–11 am and off-peak 
hours were considered as 11 am–3 pm. Since TIRTL can 
give per vehicle data, analysis was also conducted on in-
dividual identification of vehicles. Each vehicle reported 
by the sensor was manually identified in the video and 
the number of missed and false identifications was found 
out. Table 1 shows the results obtained for volume analysis. 
 
Speed analyses: Analyses similar to volume were car-
ried out for speed values. Ground truth speed values were 
collected using laser gun42 and the values were averaged 
over one minute interval for comparing with the corre-
sponding data given by the sensors (except TIRTL). 
Analysis period considered was around 30 min. To evalu-
ate TIRTL, the individual speed of each vehicle identified 
by the sensor was compared with speed measured in the 
field using laser gun for the corresponding vehicle. This 
involved matching of individual vehicles’ speeds. Table 1 
shows the results obtained for speed analysis with the 
best fit values for each of these measures. 
 For volume evaluation, it can be seen that, in terms of 
both MAE and MAPE, Trazer and TIRTL have less error 
and Smartsensor and Traficam showed bigger errors. 
Considering correlation coefficient r, Smartsensor, 
TIRTL and Trazer have linear relationship between actual 

and sensor reported values, with Trazer having values 
more close to 1 showing stronger relations. Traficam 
showed a wide range of values between –0.44 and 0.86, 
indicating linear inverse relationship between sensor and 
ground truth values in certain cases. In GEH statistic, 
TIRTL has values more close to zero showing less error. 
Others have values in the range of 1 and 4. The U values 
of Trazer and TIRTL are less than 0.1, indicating better 
performance. Uc values are also reasonable for both these 
devices. Even though the error in the other two sensors is 
similar, Uc is higher in Traficam, showing the best pro-
portioning of error with Uc values close to 1. The system-
atic error in Smartsensor is higher in peak conditions, 
which can be interpreted as sensor not being able to  
perform well with increased number of vehicles. Overall, 
it can be concluded that TRAZER and TIRTL perform 
better in terms of volume out of the four sensors ana-
lysed. However, when TIRTL was tested under non-ideal 
conditions such as near an intersection, the accuracy re-
duced. The portable TIRTL near an intersection was able 
to get total volume with accuracy of 90–95% in an hour, 
whereas under free flow conditions it was above 98%. 
 For speed evaluation, it can be seen that TIRTL and 
Smartsensor follow closely with ground truth values. The 
other two sensors, Traficam and Trazer had a wide range 
of values between 10 and 30 in case of MAE and 15 to 50 
in case of MAPE. None of the sensors showed any linear 
positive relations permanently, as the results were mixed 
in nature. The range of speed values was small, as the 
considered time interval was only 30 min and hence cor-
relation could not be considered as a good statistical 
measure for evaluating speed within such a small range. 
The GEH statistic showed better result for Smartsensor 
and TIRTL compared to the other two sensors. The 
Theil’s inequality coefficient, U also showed better result 
for Smartsensor and TIRTL compared to other two sen-
sors. Trazer and Traficam had U values ranging between 
0.1 and 0.7, whereas the other two had values less than  
1 and 0.1 respectively, with co-variance proportion Uc 
closer to 1. Overall, it can be concluded that Smartsensor 
and TIRTL are better options for speed detection under 
Indian scenario. However, TIRTL, the infra-red sensor 
had better performance while considering volume as well 
as speed and was selected for the present study. 

Data collection 

The collection of data required for the estimation-
prediction models was achieved with the help of best per-
forming sensor among the available sensors. Volume, 
speed and traffic density data were required for training 
and validation of these models. Volume is the number of 
vehicles passing a point on a roadway in unit time. Time 
mean speed (TMS) is defined as the arithmetic average of 
individual vehicle speeds passing a point on a roadway.  
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Table 1. Evaluation of different sensors for volume and speed 

 MAE MAPE r GEH U Um Us Uc 
 

Best fit 0 0 1 0 0 0 0 1 
Volume (peak condition) 
 Smartsensor 07.45–26.86 24.80–30.63 0.54–0.93 1.45–3.09 0.16–0.27 0.10–0.56 0.00–0.43 0.08–0.90 
 Trazer 02.19–07.40 06.04–13.55 0.72–0.99 0.37–1.04 0.04–0.09 0.01–0.73 0.00–0.16 0.22–0.82 
 Traficam 09.90–33.67 14.47–53.88 –0.44–0.86 1.19–4.02 0.08–0.27 0.03–0.11 0.00–0.05 0.86–0.96 
 TIRTL 01.53–02.68 02.42–04.87 0.98–0.99 0.198–0.353 0.02–0.03 0.17–0.45 0.01–0.09 0.54–0.75 
 
Volume (off-peak condition) 
 Smartsensor 06.77–14.53 17.17–37.02 0.40–0.90 1.06–2.30 0.10–0.22 0.21–0.59 0.08–0.31 0.30–0.63 
 Trazer 02.44–09.00 04.63–14.37 0.76–0.98 0.41–1.19 0.03–0.09 0.02–0.71 0.00–0.24 0.30–0.81 
 Traficam 12.97–20.00 25.65–43.32 –0.64–0.24 1.15–2.75 0.15–0.22 0.00–0.07 0.00–0.01 0.92–0.98 
 TIRTL 01.40–01.43 02.29–02.42 0.98–0.98 0.181–0.186 0.02–0.02 0.15–0.44 0.02–0.09 0.54–0.75 
 
Speed 
 Smartsensor 03.07–05.19 05.57–09.63 –0.21–0.83 0.42–0.72 0.04–0.06 0.00–0.46 0.00–0.17 0.52–0.95 
 Trazer 08.43–20.32 19.19–42.01 –0.35–0.69 1.37–3.41 0.14–0.74 0.57–0.79 0.01–0.15 0.14–0.41 
 Traficam 08.50–28.15 16.46–51.89 –0.40–0.31 1.18–4.46 0.10–0.67 0.04–0.94 0.00–0.16 0.05–0.80 
 TIRTL 01.10–01.27 02.94–04.14 0.98–0.99 0.18–0.22 0.01–0.02 0.00–0.05 0.00–0.01 0.85–0.99 

 
 
Traffic density is the number of vehicles occupying a 
given length of roadway. Of these, volume and speed can 
be obtained from location-based sensors and traffic density 
has to be obtained indirectly for validating the results. 
 For performance evaluation, sensors were installed 
along Rajiv Gandhi Salai, a three lane urban road in 
Chennai, India. This road is a representative Indian road 
with heterogeneous and lane-less traffic conditions, i.e. 
different class of vehicles like two-wheelers, three-
wheelers, passenger cars, bus and trucks use the road 
space without any segregation. Smartsensor HD and  
Traficam Collect-R were installed at the second foot-over 
bridge near Indira Nagar railway station facing south-
bound and northbound traffic respectively. The videos for 
Trazer were collected using IP camera located at third 
foot-over bridge near Thiruvanmiyur railway station, at a 
distance of 730 m from the previous location, facing 
northbound traffic. TIRTL was installed near Perungudi 
toll gate, 6 km from Trazer location facing southbound 
traffic. Figure 1 shows a Google map image highlighting 
these points. 

Estimation and prediction of traffic density 

The present study uses data mining approaches – k-NN 
and ANN for estimation and prediction of density from 
speed and volume obtained from automated sensor. For 
estimation of traffic density, the flow and speed were  
selected as inputs to get the corresponding density as the 
output. In order to predict density values to future time 
intervals, the previous several estimated density values 
were used as input. Figures 2 and 3 show the framework 
used for density estimation and prediction respectively. 
Machine learning-based data mining approaches used for 
estimation and prediction are detailed below. 

Data mining approaches 

The basis of data mining is a process of using tools to ex-
tract useful knowledge from large datasets43. Machine 
learning techniques namely, k-NN and ANN were  
selected as tools for data mining in this study, based on 
acceptable performance of the same reported in earlier 
studies. 
 
k-Nearest neighbour algorithm43: k-NN is one of the sim-
plest machine learning algorithms, most widely used for 
classification. It is a non-parametric and supervised algo-
rithm, which classifies a new unclassified record by com-
paring it to ‘similar’ records in the training data set. The 
most common method of defining ‘similarity’ is based on 
the Euclidean distance between the records in the feature 
space. In this study, the k-NN regression method was uti-
lized, where the output was not a pre-defined class, but a 
continuous value. 
 In the density estimation process carried out in this 
study, the k-NN algorithm was trained with flow and  
speed provided as inputs to predict the output variable, 
the density. This is explained with the help of Figure 4. 
The triangles in the figure are the training data points  
positioned in the two-dimensional feature space based on 
their flow and speed values. Each training data point has 
a corresponding density value. When a new test input is 
provided (indicated by solid circle), based on its speed 
and flow values, it occupies a position in the same feature 
space. Next, the algorithm calculates the distance  
between the new test data point and each of the training 
data points. It identifies the k nearest neighbours, in terms 
of Euclidean distance. For example, if k = 3, the output 
density for the new test record would be calculated as the 
average of densities of the three triangles shown within
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Figure 1. Location of sensors. a, Map; b, Satellite. (Source: Google maps.) 
 
 

 
 

Figure 2. Framework for the estimation of traffic density. 
 
 

 
 

Figure 3. Framework for prediction of traffic density. 
 
 

 
 

Figure 4. Demonstration of k-NN algorithm. 

the dashed circle, as these are the three closest neigh-
bours. Let s1, s2 and s3 be the speeds; v1, v2 and v3 the 
flows; and d1, d2 and d3 are the density of data points in-
dicated by these triangles. For the test data point (red  
circle), let the speed be s and flow be v, which are pro-
vided as input and it is required to estimate the corre-
sponding density d. Then the Euclidean distances are 
given by eq. (1): 
 

 2 2
1 1 1( ) ( ) ,P s s v v     

 

 2 2
2 2 2( ) ( ) ,P s s v v     

 

 2 2
3 3 3( ) ( ) .P s s v v     (1) 

 
Since triangles 1, 2 and 3 are the closest neighbours, any 
distance Pi, i  1, 2 and 3, will only be greater than P1, P2 
and P3. The estimated density for the new record would 
be calculated as a simple arithmetic average as given in 
eq. (2). The number of nearest neighbours considered in 
this case was 3 (i.e. k = 3), based on a sensitivity analysis. 
 

 1 2 3 .
3

d d d
d

 
  (2) 

 
In the second application of k-NN algorithm discussed in 
this article, the density of the current time step is to be 
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predicted based on densities of the previous n time steps, 
which are provided as inputs to train the algorithm. This 
implies that the training set records would be positioned 
in an n-dimensional feature space. Here, the k-NN algo-
rithm looks for training samples in the historic data that 
have similar previous n densities as that of the test re-
cord. The value of n was selected based on an entropy 
analysis and the value of k was identified in this case 
based on sensitivity analysis which was 10. 
 
Artificial neural network: ANN is a popular machine 
learning tool inspired by biological nervous system and is 
composed of units operating in parallel. Neural networks 
can be trained to perform a particular function by adjust-
ing the weights of the connections between units. Each of 
these processing units is known as neurons. Neural net-
works are trained to adjust the weights of these neurons 
so that a particular input leads to a specific target. In each 
neuron, scalar input p is transmitted through a connection 
that multiplies it by the scalar weight w and then added 
by a bias value b, to form the result wp + b. This sum is 
the input for the transfer function f which gives an output 
f (wp + b). The basic idea is to get the best set of values 
for variables w and b in order to minimize the error  
between the actual output and the predicted value. The 
output of neurons in each layer will be the input to the 
neurons in the subsequent layers. The transfer function f 
can be hardlim, sigmoid, purelin, etc. based on the re-
quirement. After passing through all the connected neu-
rons, it should be able to produce the desired target. 
 There are generally four steps in ANN training using 
MATLAB and are explained below: 
 
 Data assembling: Two sets of data are required for 

training – inputs and targets. The available data set 
was divided into two different subsets – training data 
set and testing data set. The main difference between 
these two data sets is that training data is used in 
training the neural network and the test data set is 
used for finding the performance and accuracy of the 
trained model. 

 Network architecture and initialization of weights: 
Feed-forward networks often have one or more hidden 
layers of sigmoid neurons followed by an output layer 
of linear neurons. The number of hidden layers and 
neurons can be defined while creating the network. 
Weights are randomly initialized and as the training 
progresses, weights will change their magnitude to 
obtain the best relation. 

 Training the network: Training was done using the  
inbuilt function in MATLAB. This function uses 
back-propagation algorithm, which automatically re-
calculates and minimizes the error at the end of every 
iteration. Minimization is done by updating the net-
work weights and biases in the direction in which the 
performance function decreases most rapidly. Train-

ing continues till one of the stopping criteria is 
reached, which may be the maximum number of vali-
dation checks, number of iterations, or performance in 
terms of mean squared error. 

 Simulation: Another set of data set (testing data)  
is provided to the trained network for predicting the 
corresponding output. The outputs can be compared 
with actual data for finding the performance of net-
work. 

 
Combining kNN with ANN: Along with testing ANN 
and k-NN individually, a model which is a fusion of two 
techniques was also attempted. The fusion methodology 
adopted is as follows: The volume and speed are provided 
as inputs to the k-NN algorithm. k-NN is required to  
determine the first k (taken as 100 in this study) nearest 
neighbours of the new input record, which in turn would 
form the training dataset for the ANN. Once ANN is 
trained, it can now predict a value of density for the orig-
inal record. The flow chart of the fusion model is shown 
in Figure 5. 

Implementation and results 

The performance evaluation of sensors showed that infra-
red-based sensor, TIRTL outperformed all the other sen-
sors in terms of volume and speed. Hence, the data 
required for the present application were collected using 
this sensor. Volume, speed and occupancy were collected 
and densities were calculated from the occupancy using 
the standard occupancy-density relation44 
 

 %occ ,
v d

k
L L




 (3) 

 
where %occ is the percentage of time detector being  
occupied by vehicles, Lv the vehicle length, and Ld is the  
detector length. In this study, Lv was obtained from the 
infrared sensor, which provided axle-to-axle length of 
every vehicle identified and Ld is the standard sensor 
length of the infrared sensor, which was 0.15 m. 
 The sensor works continuously for 24 h all days and 
stores data. One week’s data was used for training the 
machine learning algorithms and the next week’s data 
was used for validation. Figures 6 and 7 show the cumu-
lative flows and average speed aggregated at 5 min inter-
vals for a sample day. 
 
 

 
 

Figure 5. Model for combining ANN with k-NN. 
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Figure 6. Flow (at 5 min intervals) for different hours of the day. 
 
 

 
 

Figure 7. Speed (averaged at 5 min intervals) for different hours of the day. 
 
 The implementation of ANN was carried out in 
MATLAB using back-propagation algorithm for train-
ing45. For k-NN, the algorithm was implemented using an 
open source programing language and software environ-
ment for statistical computing, namely R46. The package 
for fast nearest neighbour (FNN) search algorithm in R 
was utilized47. To evaluate the performance of the algo-
rithm, the results obtained were compared with the actual 
value of the output variable. The error was quantified  
using MAPE. 

Estimation of traffic density 

The available data set were divided into two subsets – 
training data set and testing data set. Four days data were 
taken as the training data set, and testing data set was  
selected as the same days of next week. The training set 
had speed and flow data at every 5 min interval as input 
and the corresponding actual density, obtained from the 
occupancy values, as the target variable. Once the net-
work was trained, testing was carried out. Figure 8 shows 
the comparison between actual density and density esti-
mated by each of the algorithms for a sample day. 
 From Figure 8, it can be observed that the estimated 
value of density is in line with actual density. MAPE val-
ues obtained are shown in Figure 9 for the four testing 
days. Though all the methods gave MAPE in the range of 
1.5–4.5%, it can be observed that the performance of the 
ANN algorithm is comparatively better. The results of  
the combined ANN–k-NN model do not show any  

improvement in performance. This may indicate that giv-
ing larger training data set is more important for ANN’s 
performance than giving a reduced set of best inputs. 
 Analysis was also carried out to check the performance 
of the models during peak and off-peak periods of the day 
separately and is shown in Figure 10. It can be observed 
from this figure that the k-NN model performed poorly 
during peak hours when compared to its performance dur-
ing off-peak hours. The ANN model and the combined 
model, on the other hand, gave equally good performance 
even during peak hours. 

Prediction of traffic density 

The available data set were divided into two subsets – 
training data set and testing data set. Four days data were 
taken as the training data set, and testing data set was  
selected as the same days of next week. The training set 
had traffic density data of previous time intervals at every 
5 min interval as input and the corresponding actual den-
sity as the target variable. To find out the optimum num-
ber of previous densities, n, the approximate entropy 
(ApEn) technique was used. ApEn is a technique used to 
quantify the amount of regularity and unpredictability of 
fluctuations in data over time48. ApEn obtained for the 
training data with respect to the number of previous den-
sities is shown in Figure 11. It can be observed that the 
uncertainty in prediction is negligible if the densities of 
the previous four or more intervals were used as input. 
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Figure 8. Sample comparison of actual and estimated density. 
 
 

 
 

Figure 9. MAPE for density estimation. 
 
 

 
 

Figure 10. MAPE for peak versus off-peak periods for density estimation. 
 
 

 
 

Figure 11. ApEn versus number of previous densities. 
 
 
Hence, in this study, previous four time intervals density 
are taken as input (which is equivalent to previous 
20 min) to predict the density in the next time intervals. 
The scheme was implemented and a sample result  
obtained is shown in Figure 12. 

 It can be observed that all the methods are able to cap-
ture the trend in the actual data. Errors were quantified 
for all test days and a bar plot of MAPE is shown in Fig-
ure 13. It can be seen that the performance of all the me-
thods is comparable in this case. MAPE is in the range of 
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Figure 12. Sample comparison of actual and predicted density. 
 

 
 

Figure 13. Bar plot of MAPE for density prediction. 
 
 

 
 

Figure 14. MAPE for peak versus off-peak periods for density pre-
diction. 
 

10–12% for all test cases, with ANN showing slightly 
better performance than the other two. Comparison of 
performance during peak and off-peak periods separately 
was also carried out and the results obtained are shown in 
Figure 14. From the results, it can be seen that the per-
formance of k-NN and ANN is comparable with no sig-
nificant difference in MAPE for the two periods. The 
combined model performed better during the off-peak pe-
riods. However, during peak periods, the accuracy of the 
combined model is seen to be lower. 

Conclusions 

The present study first evaluated available automated 
traffic sensors to identify the input data set to be used for 
the estimation and prediction problem. Four different 
sensors namely, Smartsensor, Trazer, Traficam Collect-R 
and TIRTL were compared based on one-minute interval 
analysis of traffic volume, and average speed. TIRTL 

outperformed the other sensors in terms of volume and 
speed and was used for the estimation–prediction process. 
 Two machine learning techniques namely ANN and  
k-NN were used in model development. A fusion model, 
which used the output from k-NN as a training set for 
ANN was also evaluated. The density estimation model 
used speed and volume as inputs. This produced MAPE 
in the range of about 1.5–4.5% using 5 min interval data. 
In the density prediction model, estimated density from 
previous time steps was used to predict future values and 
the MAPE obtained was in the range of 10–12%. The 
performance of all three approaches was comparable, 
with ANN showing a slight advantage over the other two. 
Combining k-NN and ANN did not show any significant 
improvement in performance. This may be due to reduc-
tion in training set in the combined approach, indicating 
that for better performance of ANN, more training data is 
important than providing significant input. 
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