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In this mini review, we give a glimpse of a branch of 
geometric analysis known as shape optimization pro-
blems. We introduce isoperimetric problems as a spe-
cial class of shape optimization problems. We include 
a brief history of the isoperimetric problems and give 
a brief survey of the kind of shape optimization prob-
lems that we (with our collaborators) have worked on. 
We discuss the key ideas used in proving these results 
in the Euclidean case. Without getting into the techni-
calities, we mention how we generalized the results 
which were known in the Euclidean case to other 
geometric spaces. We also describe how we extended 
these results from the linear setting to a non-linear 
one. We describe briefly the difficulties faced in prov-
ing these generalized versions and how we overcame 
these difficulties. 
 
Keywords: Comparison principles, isoperimetric prob-
lems, moving plane method, maximum principles. 

Introduction 

AS mentioned in Anisa and Aithal1, the following ques-
tions arise naturally from what we see around us. Why 
are soap bubbles that float in air approximately spherical? 
Why does a herd of reindeer form a round shape when at-
tacked by wolves? Of all the geometric objects having a 
certain property, which ones have the greatest area or 
volume; and of all objects having a certain property, 
which ones have the least perimeter or surface area? 
These problems have been stimulating mathematical 
thought for a long time now. 
 Mathematicians have been trying to answer the above 
questions and this has led to a branch of mathematical 
analysis known as ‘shape optimization problems’. A typi-
cal shape optimization problem is, as the name suggests, 
to find a shape which is optimal in the sense that it mini-
mizes a certain cost functional while satisfying given 
constraints. Mathematically speaking, it is to find a do-
main  that minimizes a functional J(), possibly subject 
to a constraint of the form G() = 0. In other words, it 
involves minimizing a functional J() over a family  of 
admissible domains . That is, the goal is to find a  
domain *   such that 
 

 J(*) = min ( ).J





 

In many cases, the functional being minimized depends 
on the solution of a given partial differential equation  
defined on a varying domain. 
 Isoperimetric problems form a special class of shape 
optimization problems. A typical isoperimetric problem is 
to enclose a given area A > 0 with a shortest possible 
curve. Here, J() = ‘perimeter’ of  and G() = (‘area’ 
of ) – A. The definitions of ‘perimeter’ and ‘area’  
depend on the ambient mathematical space. The classical 
isoperimetric theorem asserts that, in the Euclidean plane, 
the unique solution is a circle. This property of the circle 
is expressed in the form of an inequality called the iso-
perimetric inequality which is stated as follows: For any 
piecewise smooth simple closed curve C in a plane with 
arc-length l and enclosing area A > 0, we have 
 
 2  4A, 
 
and equality holds if and only if C is a circle of radius 

/ .A   To read more about the isoperimetric inequality, 
see Anisa and Aithal1. 
 The first proof of the classical isoperimetric problem, 
as is recalled in Ritoré2, is believed to be due to  
Zenodorus, who had written a treatise on isoperimetric 
figures. This treatise is lost but is known through the fifth 
book of the Mathematical collection by Pappus of Alex-
andria. He proved that among all polygons enclosing a 
given area, the regular ones have the least possible 
length. This implies the isoperimetric problem using the 
standard approximation argument. Since then, many 
proofs have been given, some of them incomplete,  
although employing interesting and fruitful ideas. With-
out even trying to be exhaustive, the list of mathemati-
cians that have considered the classical isoperimetric 
problem include Euler, the Bernoulli brothers, Gauss, 
Steiner, Weierstrass, Schwarz, Levy and Schmidt. 
 Pappus shares some of the ideas of Book V by describ-
ing how bees construct honeycombs. His conclusion 
about honeycombs and the aims of his work are verbatim 
as follows: ‘Bees, then, know just this fact which is use-
ful to them, that the hexagon is greater than the square 
and the triangle and will hold more honey for the same  
expenditure of material in constructing each. But we, 
claiming a greater share in wisdom than the bees, will in-
vestigate a somewhat wider problem, namely that, of all 
equilateral and equiangular plane figures having an equal 
perimeter, that which has the greater number of angles is 
always the greater, and the greatest of them all is the  
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circle having its perimeter equal to them.’ This also finds 
a mention in Kiranyaz et al.3. 
 There are many other results similar to the isoperimet-
ric inequalities wherein extrema are sought for various 
quantities of physical significance such as the energy func-
tional or the eigenvalues of a differential equation. They 
are shown to be extremal for a circular or spherical  
domain. The Faber–Krahn Theorem4–6 is an example of 
such a result. It states as follows: Let 1() denote the 
first Dirichlet eigenvalue of the Laplacian on a bounded 
domain  in n. Then 1()  1(B), where B is a ball in 
n such that Vol(B) = Vol(), and equality holds if and 
only if  = B. Please see Anisa and Aithal1 for many im-
portant references on this topic. There is a plethora of ex-
amples of problems of this type wherein one tries to find 
the extremum of eigenvalues of elliptic operators. See 
Henrot7 for more details. Henrot7 also describes tools to 
solve these problems and talks about many open prob-
lems in this field. 
 Most histories of the isoperimetric problem begin with 
its legendary origin in what is called the Problem of 
Queen Dido. Her problem (or at least one of them) was to 
enclose an optimal portion of land using a leather thong 
fashioned from ox-hide. If Dido’s was the true original 
isoperimetric problem, then what is needed is a solution 
not on the plane but on a curved surface. For the history 
of consideration of the isoperimetric problem on curved 
surfaces, refer Anisa and Aithal1. A survey up to the year 
1978 of the isoperimetric problem on general Riemannian 
manifolds available in Ossermen8 gives more detailed 
historic facts and is about developments in the theory of 
isoperimetric inequalities. This survey recounts many 
sharpened forms, various geometric versions, generaliza-
tions, and applications of this inequality. Again, see the 
introduction section of Anisa and Aithal1 for other gen-
eral references. 
 In this article, we define two standard functionals asso-
ciated to the Laplacian. We will then discuss the shape 
optimization problems related to these functionals. We 
start with the results known in the Euclidean case and de-
scribe the key ideas involved in the proof. We then state 
its generalizations to other geometric spaces. We also de-
scribe how these results extend from the linear problems, 
viz. problems (1) and (2), to non-linear ones, i.e. from 
these problems involving the Laplacian to more general 
problems involving the p-Laplacian. Please see eq. (3) for 
the definition of the p-Laplacian. Notice that, for p = 2, 
the p-Laplacian is nothing but the Laplacian. We will de-
scribe briefly the difficulties faced in proving these general-
ized versions and how we overcame these difficulties. 

The energy functional and the first Dirichlet  
eigenvalue of the Laplacian 

Let f = div(f ) be the Laplace Beltrami operator on a 
Riemannian manifold (M, g). Let B0 and B1 be open (geo-

desic) balls in (M, g) such that 0 1.B B  Let 1 0: \ .B B   
Consider the following equations 
 

 –u = 1 in ,  u = 0 on  ; (1) 
 

and 
 

 –u = u in ,  u = 0 on . (2) 
 
Please refer to Aubin9 (Theorem 4.4, p. 102) for a proof 
of the following theorem. 
 

Theorem 1. The eigenvalues of the (positive) Laplacian 
– are strictly positive. The eigenfunctions correspond-
ing to the first eigenvalue 1(), are proportional to each 
other (i.e. the eigenspace is of dimension 1). They belong 
to   ( )  and they are either strictly positive or strictly 
negative. Moreover, 
 

 2 2
2 1

1 0( ) ( )( ) inf{|| || | ( ) and || || 1}.L LH           
 
Let y1: = y1() denote the unique solution of problem (1), 
corresponding to 1: = 1(), characterized by 
 

 2
1 10 on  and d 1.y y x



    

 

For M = n, the Euclidean space of dimension n, 
Hersch10, Ramm-Shivakumar11 (for n = 2) and Kesavan12 
(for general n) proved the following: 
 
Theorem 2. If u is a solution of (1), the energy func-
tional 
 

 
1 0

2

\

|| || d ,
B B

u x  

 
attains its minimum if and only if B0 and B1 are concentric. 
 
Theorem 3. The first eigenvalue 1() of problem (2) 
attains its maximum if and only if the balls are concen-
tric. 

Key steps in the proof 

The shape calculus and the moving plane method are the 
key steps that are used to prove these theorems. 

Shape calculus 

Under the action of a suitable vector field V, a domain  
in the admissible family  gets transformed to another 
domain in the same family. Let t denote the one para-
meter family of diffeomorphisms corresponding to this 
vector field V. Let t := t()  . Let y1(t):= y1(t), 

1
ty := y1(t)  t and 1(t) := 1(t). The shape calculus 

deals with the study of the behaviour of the following 
maps: t  y1(t), t  1 ,ty  and t  1(t). 
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 We have the following results. Please refer to Soko-
lowski and Zolesio13, and Anisa and Aithal14 for proofs. 
 
Proposition 1. The map t  (1(t), 1 )ty  is a  1-curve in 
  (H2()  1

0H ()) from a neighbourhood of 0 in . 
 
Proposition 2. The map t  y1(t)| is differentiable in 
H1() at t = 0 and the derivative 1y  satisfies 
 

 

2
1 1 1

1
1

( ,  )  ( ),

 | ( , ).

y y g y V in H
yy g V n
n

    

    


. 

 
Here, n denotes the smooth outward unit normal to . 
 
Proposition 3. 1 ( )y    . 
 
Proposition 4 (Hadamard perturbation formula). Let n 
denote the smooth outward unit normal to . Then, 
 

 
2

1
1 ( , )d .y g V n S

n




        

 
Since 1 is invariant under isometries of , it is enough 
to consider the family of domains  = B1\ 0B  where B1 is 
static and is centred at the origin while the centre of B0 is 
free to move along the positive x1 axis. Since 1(t) is a 
differentiable and even function, we get 1(0) 0.   That 
is, the configuration where the balls are concentric serves 
as a critical point for 1(t). 

The moving plane method 

Let B0 be centred at q(t) := (t, 0, 0, …, 0)  n. Let H be 
a hyperplane passing through q(t) and orthogonal to the 
x1-axis, that is, the line joining the centers of B1 and B0. 
Then, whenever t > 0, that is, when B0 and B1 are not 
concentric, H is a hyperplane of interior reflection. That 
is, H divides  into two unequal components such that 
the reflection of the smaller one, call it , about H is 
completely contained in the larger component. See 
Harrell et al.15 for more shape optimization problems 
where a hyperplane of interior reflection plays an impor-
tant role. Using the celebrated moving plane method 
which involves a reflection technique16–18, we split the  
integrand in the Hadamard perturbation formula into two 
parts as 
 

 
2

1
1 ( , )dy g V n S

n




        

 

  
0

2 2
1 1( ) ( ) ( , )d .x

x B

y yx x g V n S
n n 

                 




 

Here, x denotes the reflection of x about the hyperplane H. 
 We observe that the inner product of V and n has a 
constant sign almost everywhere on B0  . Now, as in 
Kesavan12, using the strong maximum principle and the 
Hopf lemma from Protter19, we prove that 1( ) 0t   for 
t > 0. This proves Theorem 3. The proof of Theorem 2 is 
similar and easier to arrive at. 

Generalizations 

Space forms: Consider the unit sphere nS   
11 2

1 2 1 1{( ,  ,..., ) | 1}nn
n iix x x x
 

   with induced Rie-
mannian metric , from the Euclidean space n+1. Also 
consider the hyperbolic space 
 

1 2 2
1 2 1 1 1

1
: ( ,  ,...,  ) | 1 and 0 ,

n
n n

n i n n
i

x x x x x x
  



       
  

   

 
with the Riemannian metric induced from the quadratic 
form (x, y) := 1 11 ,n

i i n ni x y x y 
  where x = (x1, x2,…, 

xn+1) and y = (y1, y2, …, yn+1). 
 The Euclidean space n, the unit sphere Sn, and the hy-
perbolic space n defined above constitute what are 
called as the space forms (complete simply connected 
Riemannian manifolds of constant sectional curvature). 
Theorems (2) and (3) are true on the space forms as well 
(see Anisa and Aithal14). 
 Rank one symmetric spaces of the non-compact type: 
We generalize these results now from the space forms to 
what are called as rank one symmetric spaces of the non-
compact type20. Consider the division algebra of the qua-
ternions  and the octonions . Consider the hyperbolic 
spaces of dimension n over the following division alge-
bras: , ,  and . Here,  and  respectively denote 
the usual real and complex fields. In the case of the  
octonions, we only consider n = 2 and the corresponding 
hyperbolic space is called the Cayley plane. These exam-
ples constitute a class of Riemannian manifolds referred 
to as rank one symmetric spaces of the non-compact type. 
 p-Laplacian: We describe how the above results extend 
from the linear problems, viz. eqs (1) and (2), to non-
linear ones, i.e, from problems involving the Laplacian to 
more general problems involving the p-Laplacian. The p-
Laplacian (p) operator is defined as 
 

 2: div(|| || ) (1 ).p
pu u u p        (3) 

 

We will describe briefly the difficulties faced in proving 
these generalized versions and how we overcame these 
difficulties. 

Generalization to space-forms 

We developed shape calculus for general Riemannian 
manifolds14. The moving plane method works here as it 
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does in the Euclidean case, because reflection in a hyper-
plane is an isometry in any space form, and so it com-
mutes with the Laplacian. 

Generalization to rank one symmetric spaces of the 
non-compact type 

In a joint work with Vemuri20, we considered this case. 
Since all non-compact rank-one symmetric spaces are 
what are called Damek–Ricci spaces (refer to Anisa and 
Vemuri20 for a definition of Damek–Ricci spaces), we 
considered a special geometric configuration of balls in a 
Damek–Ricci harmonic space wherein the isometry group 
is doubly transitive. Therefore, it suffices to consider the 
family of domains in which the centres of B0 and B1 are 
on certain one-dimensional ‘axis’. If for a simply con-
nected Riemannian manifold, every hyperplane reflection 
commutes with the Laplacian, then it must have constant 
sectional curvature. Therefore, the moving plane method 
does not work. But a careful analysis of the proofs  
reveals that the commutativity of the Laplacian and  
reflection is needed only on a class of appropriately radial 
functions. A more elegant way is to work with isometries 
of the symmetric space, viz. the geodesic symmetries 
with respect to a point. 

Generalization to a non-linear operator, namely,  
the p-Laplacian 

In a joint work with Rajesh Mahadevan21, we follow the 
same line of ideas as before. We studied the sign of the 
shape derivative using the moving plane method. Then, 
we developed and used various comparison principles in-
stead of maximum principles. Carrying out this pro-
gramme involved several technical difficulties. In the 
process, we obtained some interesting new side results 
like: (a) the Hadamard perturbation formula for the en-
ergy functional for the Dirichlet p-Laplacian; (b) the exis-
tence and uniqueness result for a nonlinear partial 
differential equation; and (c) some extensions of known 
comparison results for nonlinear partial differential equa-
tions with non-vanishing boundary conditions. 
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