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Quantum correlation, such as entanglement, is one of 
the important ingredients in most of the known quan-
tum communication schemes. In this article, we first 
introduce the concept of entangled states and then 
discuss the communication protocols without security, 
both in a two-party and in a multiple-party domain. 
 
Keywords: Entanglement, quantum correlations, quan-
tum communication protocols, quantum dense coding, 
quantum teleportation. 

Introduction 

IN the last twenty years, path-breaking discoveries of 
communication and computational protocols, which 
promise better efficiencies by using quantum mechanics 
than their classical counterparts, have helped to rapidly 
develop the area of quantum information and computa-
tion science1. Pioneering inventions include the classical 
information transfer via quantum states with and without 
security2–7 – quantum key distribution and quantum 
dense-coding protocols, quantum state transfer by using 
finite amount of classical communication8,9, as achieved 
in quantum teleportation and factorization of large inte-
gers into their prime factors (prime factorization pro-
blem) in a polynomial time – Shor’s algorithm10. These 
discoveries have a direct benefit for the society. For  
example, security of all classical cryptograhic schemes is 
based on the fact that some mathematical problems in-
cluding prime factorization cannot be solved by currently 
available algorithms in a classical computer with a poly-
nomial time. Hence, with the help of Shor’s algorithm, 
quantum computer can break securities of all the existing 
classical cryptographic systems like passwords in internet 
banking, national security etc. Interestingly, it was shown 
that cryptography using quantum states can be secure 
even when quantum computer exists4. Success of quan-
tum information science also lies in the fact that most of 
the proposals have already been realized in laboratories 
by using photons11, ions12,13, atoms in a cavity14, atoms in 
optical lattices15, etc. 
 The main ingredient in most of these schemes is the  
entanglement16 shared between two or multiple parties.  
Bipartite entangled states shared between two distantly 

located parties are nowadays routinely achieved in labo-
ratories. However, creation of entangled states, involving 
large number of parties, is still a challenging task. For 
example, maximum number of particles among which  
entanglement have been generated are: fourteen by using 
trapped ions17, ten using photons18 and five with super-
conducting qubits19. It is important to mention here that 
entangling multiple parties is important for better per-
formance of quantum computer and quantum error  
correcting codes1 than the classical ones20–22. 
 In this article, we briefly discuss theoretical aspects of 
entanglement. In particular, we first give the definitions 
of entanglement and review briefly about entanglement 
measures. We then discuss two quantum communication 
protocols23, namely quantum dense coding (DC) and 
quantum teleportation and their recent progress. 

Entangled states 

In this section, we first define entanglement16 for states 
shared between two-parties and then extend it to a multi-
partite domain. Also, we briefly discuss the detection  
methods of entanglement and entanglement measures. 

Definition of entanglement 

Let us consider a situation where two parties, Alice and 
Bob, denoted by A and B respectively, are located in two 
distant locations. Suppose Alice prepares a quantum 
state, |A, belonging to the complex Hilbert space A 
and similarly, Bob prepares |B in B. The joint state 
shared between Alice and Bob in this case is given by 
 

 |AB = |A  |B, (1) 
 
in A  B, which is called the product state. In other 
words, a pure state that can be prepared by Alice and Bob 
using local operations is said to be a product state. 
 A bipartite pure state which is not possible to prepare 
by local operations is called an entangled state16, i.e. a 
state is said to be entangled if 
 

 |AB  |A  |B. (2) 
 
In 2

A  2
B, a good example of an entangled state is the 

singlet state, given by |– = 1/ 2 (|01 – |10), where |0 
and |1 represent eigenvectors of z, with ,  = x, y, z 
being the Pauli spin matrices. In fact, it can be shown that 
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for singlet state |0 and |1 can be any two eigenvectors 
along any directions in a two-dimensional Hilbert space. 
 The above definitions can be generalized to mixed 
states. A bipartite state which can be prepared by Alice 
and Bob by using quantum mechanically allowed local 
operations and classical communication (LOCC) is 
known as a separable state, and can be written as 
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where pi  0, i, i pi = 1, | |i i i
A A A     (i = 1, …, d) 

and similarly | |i i i
B B B     (i = 1, …, d). A state is said 

to be entangled if it cannot be written as convex combina-
tion of the product of local projectors, as given in eq. (3). 
An example of an entangled mixed state is the Werner state, 
introduced by Werner in 1989 (ref. 24). It is given by 
 

 | | (1 ) ,
4W
Ip p        (4) 

 

which can be shown to be entangled when p > 1/3, with I 
being the identity operator in the four-dimensional Hil-
bert space. The bipartite state space can then be divided 
into two classes – separable and entangled states (Figure 
1). In this article, we will later show that entangled states 
are, in general, useful for several quantum communica-
tion protocols. 
 If one goes beyond the bipartite regime, i.e. if one con-
siders a state shared between N-parties, situated in distant 
laboratories, the characaterization of states, according to 
their entanglement, even for pure states, is not so easy. 
To illustrate this, let us consider a pure tripartite state25, 
shared between Alice (A), Bob (B) and Claire (C) (for 
mixed states, see ref. 26). Suppose each of them prepares 
a quantum state, |i, i = A, B, C, in her/his laboratory. 
The joint state that they share is then given by 
 

 |ABC = |A  |B  |C, (5) 
 

which is a fully separable state (FS). Suppose now that A 
and B share an entangled state, |AB, while they are 
unentangled with C. In this case, the state shared between 
A, B and C are called the biseparable states (BS), denoted 
by (|A:BC = |AB|C). Similarly, one can have bisepa-
rable states, |B:AC and |C:AB, which are respectively, 
products in B : AC and C : AB bipartitions. On the other 
hand, a pure state is genuinely multipartite entangled if it 
is not a product across any bipartitions. For a schematic  
diagram of the set of tripartite states, see Figure 1. Two 
prominent examples of genuine multipartite entangled 
states are the Greenberger-Horne-Zeilinger (GHZ)26 and 
the W (ref. 27) states, given respectively by 
 

 1| (|000 |111 ),
2GHZ       (6) 

 

 1| (|001 |010 |100 ).
3W         (7) 

In a similar fashion, N-party pure states can be divided 
into N classes, namely FS, k-separable (k = 2, 3, …, 
N – 1) and genuine multiparty entangled states28. 
 It is interesting to note here that in case of pure two-
qubit entangled states29, it is always possible to transform 
an entangled state to another ones by LOCC with some 
non-zero probability, i.e. via stochastic local operations 
and classical communication (SLOCC). However, such 
equivalence does not exist in a tripartite or in a multi-
partite scenario. Specifically, there are two SLOCC  
inequivalent classes25, the GHZ30 and W class31 for three-
party pure states. For N > 3, infinite number of inequiva-
lence classes exists25,32. 
 After these definitions, a natural question that arises is 
how to detect these entangled states in the laboratory. 
With the development of quantum information science, 
several entanglement criteria, for both bipartite and mul-
tipartite states, have been proposed16,33. Some methods 
that distinguish entangled states from separable ones are 
based on mathematical tools, like complete positivity, 
majorization etc. Hence, they can only be applied when 
full information about the states, which can be obtained 
via state tomography34,35, are available. Such methods  
include partial transposition36,37, criterion based on von-
Neumann entropy38–41, majorization42, covariance matrix 
crietria43,44 to name a few. On the other hand, there are 
entanglement criteria like entanglement witness45,46, vio-
lation of Bell inequality47 which can be used to identify 
entangled states in the laboratory, even without perform-
ing tomography. See refs 16, 33 for details. 

Entanglement measures 

The next question is to measure the entanglement content 
of a prepared state. For a bipartite pure state, there exists 
a unique measure of entanglement which is the von-
Neumann entropy of local density matrices of a given 
 
 

 
 

Figure 1. (Colour online) Classification of states according to entan-
glement. a, Bipartite states – separable and entangaled states. We can 
also divide the set of states according to dense coding protocol – 
NonDC states represent the set of states which are not useful for dense 
coding protocol while the set of dense codeable states, which is a sub-
set of entangled states, are good for dense coding (see section entan-
gled states). b, Tripartite states86; FS denotes the fully separable states; 
A : BC, B : CA and C : AB denote biseparable states which are products 
in the corresponding bipartitions. The rest of the states belongs to the 
set of genuine multipartite entangled states. 
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state. Hence, for an arbitrary bipartite pure state, |AB, 
entanglement can be quantified as 
 
 E (|AB) = S(A), (8) 
 
where S(.) denotes the von-Neumann entropy38 and 
A = trB(|ABAB|) is the reduced density matrix of 
|AB48. Important to note here that in case of pure states, 
other known quantum correlation measures49,50, which are 
different than entanglement, also reduce to entropy of lo-
cal density matrices, as given in eq. (8). 
 Quantification of entanglement for bipartite mixed 
states has also been carried out by using entanglement 
measure for pure states. Entanglement of an arbitrary 
state, AB can then be defined as 
 

 FE (AB) = min (| |),i i i
i

p   E  (9) 

 
where the minimization is performed over all possible 
pure state decomposition of AB = | |.i i ii p    It is 
known as entanglement of formation (EoF)51. However, 
there are infinite number of such decompositions exist for 
AB, and hence it is, in general, not easy to compute. 
 In 1998, William K. Wootters52 provided a compact 
form of this measure for two-qubit states, which has  
become extremely important for studying several physical 
systems like spin models, ultracold atoms in optical  
lattices53,54. In case of two-qubit states, eq. (9) reduces to 
 

 
21 1( ) ,

2F AB
Ch

   
 
 

E  (10) 

 
 with h(x) = –xlog2x – (1 – x)log2(1 – x). (11) 
 
Here C = max{0, 1 – 2 – 3 – 4} is known as the con-
currence with 2

i , i = 1, …, 4 being the eigenvalues of 
matrix AB AB  in decreasing order, and AB  = (y  y) 

*
AB (y  y) with a complex conjugation in *

AB  being 
taken in computational basis. Such closed form of EoF is 
still missing for states in higher dimensions. 
 In higher dimensions, one of the computationally simple 
bipartite entanglement measure is logarithmic negate-
vity55, which is the only available tool to study many-
body Hamiltonians with higher spins. Other important  
entanglement measures include relative entropy of entan-
glement56 based on geometry of state space, distillable 
entanglement57, originated from a physical process under 
LOCC, known as distillation or purification of states. 
 With the development of entanglement theory, the  
basic properties that an entanglement measure, E , 
should satisfy are also proposed58. They are as follows 
 
(a) For a given state, AB, E (AB)  0 and vanishes if 

AB is separable. 

(b) If AB transforms to an ensemble { , }i
i ABp   by 

LOCC, then 
 

 ( ) ( ),i
AB i AB

i
p E E  (12) 

 

ensuring non-increasing nature of entanglement using 
LOCC, known as monotonicity property of entanglement. 
 Most of the known entanglement measures, mentioned 
above as well as in the literature satisfy the above two 
properties. Apart from these two requirements, other 
properties are also recommended which an entanglement 
measure should follow in an asymptotic regime, i.e. when 
n copies of AB are considered. 
 Although there exists a considerable number of bipar-
tite entanglement measures, only few multipartite entan-
glement measures are known, among which, only a 
fraction of them can be computed even for pure states. 
Based on geometry of quantum states, we introduce a 
genuine multipartite entanglement measure, known as 
generalized geometric measure59,60. For an N-party pure 
state, 

1 ...| ,
NA A   it is defined as 

 

 
1 1 1

2
... ... ...(| ) max(1 | | | ),

N N NA A A A A A      G  (13) 
 

where maximization is taken over the set of non-
genuinely multiparty entangled states. For example, in 
case of three-party, one has to maximize over the set of 
biseparable states. 
 By performing maximization over the set of FS states, 
one gets another multipartite entanglement measure, 
known as geometric measure of entanglement (GM)61,62. 
Interestingly, the former can be expressed in terms of 
Schmidt coefficients of different bipartitions of 

1 ...| ,
NA A   

thereby enormously simplifying the computation for arbi-
trary pure states in any dimension60. It is then given by 
 

 
1

2
... : 1 2(| ) 1 max{ | , ,..., ,

NA A A B NA B A A A    G   
 

       },A B    (14) 
 
with A:B being the maximal Schmidt coefficient in each 
possible bipartition of A : B of 

1 ...| .
NA A   In contrast, the 

GM does not have a closed form, and hence it is not easy 
to compute for arbitrary multipartite states. Note here that 
changing the set in maximization of eq. (13) leads to  
different entanglement measures, characterizing different 
sets of multipartite states. It can be shown that these 
geometric measures are also entanglement monotones, 
i.e. cannot increase under LOCC. We have also recently 
extended GGM to multipartite mixed states and have  
obtained a closed form of GGM for several classes of 
mixed states63. 
 Apart from these entanglement measures based on  
geometry of state spaces, a concept of monogamy for 
quantum correlations64 has also been applied to obtain 
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multipartite computable measures. For multipartite  
entanglement measures, see refs 16, 32, 65. 

Quantum communication protocols 

In the last decade, several quantum communication pro-
tocols involving two or multiple parties were proposed. 
In this section, we mainly concentrate on communication 
schemes which do not involve any security issue. We also 
briefly discuss the recent theoretical progress of these 
protocols in a multipartite domain. 

Quantum dense coding: transmission of classical  
information via quantum channel 

In our daily life, classical information transfer plays an 
important role, ranging from television, internet, to  
national security. Here we consider a scenario where  
a sender, Alice, wants to send two classical bits66 to a  
receiver, Bob. In this scenario, if Alice and Bob do not 
share any entangled states, Alice requires four dimen-
sions or 4 distinguishable objects to send two bits. For 
example, suppose Alice wants to send to Bob whether it 
is raining in Allahabad or not, as well as whether P. V. 
Sindhu wins today’s badminton match or not. Therefore, 
the information that she is going to send is as follows: 
 

(a) In Allahabad, it is raining and P. V. Sindhu wins the 
match (00). 

(b) It is not raining and P. V. Sindhu wins (01). 
(c) It is raining and P. V. Sindhu does not win today’s 

match (10). 
(d) Lastly, neither it is raining nor P. V. Sindhu wins (11). 
 

In the first parenthesis, we show the corresponding  
encoding of information in two bits. To encode two bits 
of classical information, one can use different distin-
guishable objects, e.g. four different colours of balls, four 
distingushable wave patterns, etc. Classically, the proto-
col goes as follows: After knowing the message, Alice 
sends, for e.g. one of the four balls to Bob. Bob decodes 
the information by looking at the colour of the ball. 
 In contrast, we now show that if Alice and Bob a priori 
share an entangled state, Alice requires only two dimen-
sions to encode two bits of classical information. Before 
describing the protocol, one should emphasize that in this 
scenario, classical communication between the sender 
and receiver is forbidden, while use of quantum channel 
between them is allowed and hence quantum channels are 
free resources. We will come back to this point in the 
case of transfer of qubits which naturally has different 
free resource. 
 Initially, suppose that Alice and Bob share a singlet 
state | – = 1/ 2  (|01 – |10). 
 

Step 1 (encoding): Depending on the message, Alice 
performs unitary operations, {I, z, x, y} on her part. 

For example, if she wants to send the first message, she 
performs nothing while in case of sending 2nd option  
described above, she performs z on her qubit. By per-
forming single qubit operations by Alice, the joint state 
between Alice and Bob transforms as follows (table  
below shows the resulting state up to global phase with 
the corresponding unitary operators). 
 
Unitary operators States in AB 
I | – = 1/ 2 (|01 – |10) 
z | + = 1/ 2 (|01 + |10) 
x | – = 1/ 2 (|00 – |11) 
y | + = 1/ 2 (|00 + |11). (15) 
 

Note here that all the above states, {| , | }, possess 
same amount of entanglement, by using eq. (8). They are 
known as the maximally entangled states or Bell states, 
and the corresponding basis is called the Bell basis. 
Moreover, we notice that these four states are local uni-
tarily connected. It can be shown that if entanglement of 
two states are equal, they surely are connected by local 
unitary operations. 
 

Step 2 (sending): After unitary operations, Alice sends 
her qubit to Bob via noiseless quantum channel. 
 

Step 3 (decoding): At this point, Bob has both the 
qubits and since the states are orthonormal to each other, 
Bob can distinguish them by global operations and hence 
can decode the message. (see Figure 4 for a schematic 
representation of dense coding.) 
 

This was the original protocol of quantum dense coding 
(DC), proposed by C. H. Bennett and S. J. Wiesner in 
1992 and four years later, it was realized by using  
photons7. Since, it is not possible to prepare a pure state 
due to noisy environments, it is interesting to find the 
amount of information that can be sent, when Alice and 
 

 
 

Figure 2. (Colour online) Schematic depiction of quantum dense  
coding protocol. 
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Bob share an arbitrary quantum state67–70. The capacity of 
DC, denoted by  of a shared state, AB, can be shown to 
be given by 
 

 (AB) = log2dA + S(B) – S(AB), (16) 
 

where dA is the dimension of Alice’s Hilbert space and B 
is the reduced density matrix of receiver’s or Bob’s side. 
The formula reveals that all bipartite pure entangled 
states are useful for DC, since S(AB) = 0 for pure states. 
According to DC capacity, one can classify the set of 
states as we have done in ref. 70 (Figure 1). A state, AB, 
is useful for dense coding (or is called dense-codeable) 
when S(B) – S(AB) > 0. Therefore, the quantum advan-
tage of DC can be defined as adv = max[0, S(B) – 
S(AB)]. In contrast to pure entangled states, there exist 
mixed states, e.g. Werner state which does not give quan-
tum advantage in DC protocol even when it is entangled69. 
 One of the main aims in any communication protocol is 
to establish a facility by which information can be trans-
ferred between several senders and several receivers. 
Similar to this spirit, one can consider a DC network, in-
volving many parties. Towards this aim, we have proven 
that when the state shared between N senders and a single 
receiver is 

1 2
... ,

NA A A B  the capacity of DC between N send-
ers, A1, A2, …, AN, and a single receiver, B is given by 
 

1 2 1 2 1 22( ... ) log ... ( ) ( ... ),
N N NA A A B A A A B A A A Bd d d S S      

 (17) 
 

where 
1 2

...
NA A Ad d d  are the dimensions of N senders’ Hil-

bert space. 
 The proof of the capacities requires maximization over 
encoding and decoding processes. The latter is simplified 
by using Holevo bound71–75 on maximal mutual informa-
tion70. Hence, optimizing Holevo bound over unitaries 
and probabilities lead to the capacities, given in eqs (16) 
and (17). 
 Let us now move to a scenario where there are N send-
ers and two recievers which are far apart. The receivers 
cannot use global operations to decode the message sent 
by Alice and hence Holevo bound cannot be applied to 
obtain the capacity. However, when the operations are re-
stricted to LOCC, we found a Holevo-like bound which we 
call the local Holevo bound76,77. In the two-receivers 
case, local Holevo bound comes as a remedy for studying 
the capacity. In 2004, we obtained an upper bound on the 
capacity of DC with two receivers69 by using this local 
bound. This protocol is called distributed DC (see Figure 
3 for such a network). It can be shown that the maximum 
capacity in this case by using multipartite entangled states 
can be achieved by the GHZ state, given in eq. (6). Such 
analysis also helps us to classify multipartite entangled 
mixed states according to their usefulness in DC protocols. 
 Let us now replace the noiseless quantum channel (step 
2) for sending the qubit from Alice to Bob to a noisy one 
which will be more realistic from the experimental point 

of view. Therefore, it is important to modify the capa-
cities for noisy quantum channels which are used after 
encodings (unitary operations) by the senders. In ref. 78, 
DC capacities of noisy channels are partially solved for 
several senders and a single receiver. Recently, we have 
established a connection between capacities of DC, for 
both noiseless and noisy channels, and shared multipartite 
entanglement79. We showed that one-to-one correspon-
dence between entanglement and DC capacities which 
exists for pure bipartite states is no more valid in a multi-
partite setting. 
 The consequence of noise on upper bound of DC  
capacities of a network involving several senders and two 
receivers has also recently been found by us80. However, 
finding the capacities of DC between several senders and 
several receivers, i.e. in a network are still an open task, 
both in noiseless and noisy scenarios. 
 Another type of communication protocol which one 
can consider is as follows: suppose that a protocol  
involves many senders, say, reporters of a newspaper. 
They send their information individually to a single  
receiver, i.e. the editor of the newspaper. Suppose that all of 
them share an arbitrary multipartite mixed state. Let us 
concentrate on three parties, A (a receiver), and B and C as 
senders. If A wants to perform DC with B and C indi-
vidually, we have shown that quantum advantage can  
only be obtained either between A and B or between A 
and C – exclusion principle of quantum DC81,82. Specifi-
cally, we have proven that for a given tripartite state, ABC 
in d  d  d, we have 
 
 (AB) + (AC)  2log2d, (18) 
 

where AB and AC are reduced states of ABC. The proof 
can be done by using strong sub-additivity property of  
 

 
 

Figure 3. (Colour online) Quantum DC network, involving 8 parties, 
6 senders and 2 receivers. Initially they share a 8-party entangled state 
which is shown by dashed lines. After encoding, i.e. unitary operations, 
A1, A2, A3 and A4 send their qubits to B1, depicted as black solid line 
while the rest of the senders send their qubits to B2 (pink solid lines). 
Finally, B1 and B2 perform LOCC to decode the message (solid arrows). 
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von Neumann entropy1 and by eq. (16). The above rela-
tion can easily be generalized to an N-party system. In 
particular, for an N-party state, at most only a single  
reduced density matrix can have quantum advantage in 
DC. 

Quantum teleportation: transfer of qubits 

We now consider a protocol where Alice wants to send an 
unknown qubit, | =  |0 +  |1 (with  and  being  
arbitrary complex numbers and ||2 + | |2 = 1) to Bob8. 
Unlike DC protocol, Alice can send as much classical  
information as possible to Bob, although use of quantum 
channels is not allowed. 
 Before presenting the protocol, let us suppose that  
Alice and Bob share an unentangled state. In this case, 
one can show that to send an unknown qubit, Alice  
requires infinite amount of classical communication. 
 On the other hand, suppose that Alice and Bob share a 
singlet state, |–, and Alice wants to send | to Bob. 
Hence she posses two qubits – one part of a singlet and 
an unknown qubit. We describe the teleportation protocol 
in the following steps which is pictorially depicted in 
Figure 4. 
 
Step 1 (measurement): Alice performs a measurement 
in the Bell basis, {| , | }, on both her qubits. 
 
Step 2 (classical communication): Alice informs the 
measurement outcome to Bob. This means that Alice 
communicates two bits of classical information to Bob. 
 
Step 3 (unitary operations/decoding): Depending on the 
measurement outcome, Bob performs an unitary opera-
tion on his qubit, shown in the table of Figure 4. He  
finally recovers the exact unknown state. 
 
 
 

 
 

Figure 4. (Colour online) Quantum teleportation protocol. 

 Therefore, the above protocol shows that an unknown 
qubit can be transferred only by using two bits of classi-
cal communication if an entangled state is initially shared 
between two parties and an infinite amount of resource is 
reduced by using entanglement compared to the protocol 
with states having vanishing entanglement. 
 There are two important points – if Alice does not 
communicate classically, Bob’s state is in a maximally 
mixed state, having no information about the unknown 
qubit. It implies that signalling with a speed faster than 
light does not take place in this protocol. The second 
point is that there is no violation of quantum no-cloning 
theorem which states that unknown quantum states  
cannot be cloned83. Such violation is avoided, since the  
measurement performed by Alice destroys the original 
unknown qubit that she initially posses. Therefore, there 
is not a single time instance when two copies of the  
unknown qubit are with one of them. 
 Quantum teleportation clearly showed the advantage of 
entangled states. After its discovery, several experimental 
groups around the world have reported its implementation 
by using different physical systems. It was shown that 
when Alice and Bob share an arbitrary mixed two-qubit 
entangled state, quantum state transfer is possible with 
higher efficiencies than the scheme with a shared unen-
tangled state84,85. Addressing the question of quantum  
teleportation-like schemes in a multipartite situation is 
not easy and only limited number of attempts have been 
made23. When the protocol involves four parties, we have 
found that genuine multipartite entanglement measure 
and multipartite quantum teleportation capacities do not 
have any simple relation59. 

Conclusion 

This review contains the basic definitions of entangle-
ment of shared bipartite as well as multipartite states. We 
then discuss two path-breaking discoveries in quamtum 
communication which essentially revolutinize communi-
cation protocols – quantum dense coding and quantum  
teleportation. We briefly report recent advancements  
of these two communication protocols, including some of 
our works in these directions. 
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