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We present the dynamics of a most generic uncharged 
dissipative parity, even Galilean fluid, to the first  
derivative order. The construction is embedded in a 
symmetry broken phase of one higher dimensional  
relativistic system, namely the null fluid. Both the null 
fluid and the Galilean fluid have identical symmetries, 
thermodynamics and constitutive relations to all order 
in derivative expansion. Finally, we present the num-
ber of transport coefficients for most generic charged  
Galilean fluid and Galilean Superfluid. 
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A generic fluid system 

Fluid is a low energy effective description of any field 
theory and is characterized by low energy or long wave-
length fluctuations of fields around thermodynamic equi-
librium. Dynamics of fluid is given by conservation of 
energy-momentum tensor and currents associated with 
additional symmetries. A fluid configuration is given by 
fluid variables typically chosen to be normalized velocity, 
temperature and chemical potentials (conjugate to con-
served charges). The length scales over which the fluid 
variables vary are large compared to the mean path of the 
system. Thus, fluid energy-momentum tensor and cur-
rents admit an expansion, in terms of derivatives of fluid 
variables, known as constitutive relations. The coeffi-
cients appearing in the expansion of energy-momentum 
tensor are the transport coefficients. These coefficients 
are properties of individual fluids that depend on their 
microscopic constitution and motion. Finally, the fluid 
flow has to obey the physical constraint: the second law 
of thermodynamics, which states that there should be a 
local entropy current associated the flow, whose diver-
gence should always be positive definite along the flow. 
This determines the most generic physical transport of a 
fluid. For relativistic and non-relativistic fluid dynamics, 
we refer to previous papers1,2 and all references therein. 

Galilean fluids 

This article aims at studying non-relativistic or more gen-
erically Galilean fluids and write down complete set of 

constitutive equations for it. One usual method to get the 
non-relativistic fluid is to take c   limit of a generic 
relativistic fluid3,4. There are multiple ways to take this 
limit, hence, the final system one ends up with is not 
unique. Here we take a more axiomatic approach5,6, we 
construct the most generic fluid whose flow is consistent 
with Galilean symmetry. Certainly, the fluid flow has to 
respect the second law of thermodynamics. A (d + 1)  
dimensional Galilean fluid is described by two thermo-
dynamic variables and a spatial velocity vector and these 
variables characterize the Galilean densities and currents 
{, i, , i; tij} where (i = 1, 2, …, d). The currents and 
densities are functions of fluid variables and can be writ-
ten in derivative expansions. Galilean thermodynamics is 
given by 
 
  + P = m + TS, d = TdS + md, (1) 
 
where  is energy density,  is mass density, T is tem-
perature and m is mass chemical potential. The other two 
thermodynamic quantities, pressure P and entropy S are 
considered as functions of (T, m). The currents satisfy 
following Galilean ward identities (conservation laws) 
 
 t + ii = 0, t + ii = 0, tj + itij = 0, (2) 
 
where the first equation is the energy conservation equa-
tion, the second one is the continuity equation and the 
third one is the Euler equation. We will see below, how 
we can get back these relations from our construction. 
 Before we go ahead to present our construction, let us 
recall why is the study of non-relativistic or Galilean  
fluid interesting. Non-relativistic system can be thought 
of as an effective low energy description of an underlying 
relativistic theory. They are expected to be realized in the 
low energy physics experiments. In the context of super-
fluids, for low-energy systems such as liquid helium and 
ultra-cold atomic gases, a Galilean framework is more 
accurate. Hence, if we have a Galilean fluid description, 
it would be easier to understand the properties of realistic 
systems. In the next section, we present the construction 
of the most generic first order (in derivative expansion) 
dissipative parity even Galilean fluid. 

Null reduction 

Null reduction is a technique to obtain a Galilean system 
from a given Poincaré system. It is based on a simple fact 
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that there is a Galilean subalgebra inside Poincaré alge-
bra. Let us begin with a relativistic system in (d + 2)  
dimensions defined on a manifold M with coordinates 
(xM, M = 0, 1, …, d + 1). The system respects Poincaré 
symmetry generated by generators PM and MMN. Next we 
define null coordinates: (x = x0  xd + 1, xi; i = 1, 2, …, d). 
The generators of the Poincaré algebra that commute with 
the null momentum: {P–, P+, Pi, Mi j, Mi+} generate the 
Galilean algebra in (d + 1) dimensions, with P– as the 
Casimir. Thus, when a Poincaré system is evolved at con-
stant x–, the subsystem has Galilean invariance. Given a 
relativistic system in (d + 2), reducing it over a null direc-
tion x–, we get a Galilean system in (d + 1) dimensions 
with x+  t as time co-ordinate and xi as spatial coordi-
nates. We want to construct a fluid compatible with Gali-
lean symmetry (via null reduction). Such a fluid is termed 
Galilean fluid. A point to be noted is that certain terms 
compatible with symmetry, might be suppressed in the non-
relativistic c   limit. Hence, the Galilean fluid that we 
construct shall certainly include all non-relativistic fluids 
that one may obtain via taking the limit. 
 It has been shown that performing null reduction of a 
relativistic fluid7 does not give most generic non-relati-
vistic fluid, even the thermodynamics of the latter is 
highly restricted8,9. It is not so striking in hindsight as 
null reduction takes care of symmetry but need not yield 
the required conserved charges. So, a different relativistic 
system is needed to get the generic Galilean fluid through 
reduction, one which will retain the right number of con-
served charges (and corresponding chemical potentials) 
after reduction. 
 Such a system has been constructed9,10 and we name it 
as ‘null fluid’. The final proposal is: null fluid is an em-
bedding of a Galilean fluid into a spacetime of one higher 
dimension. It is a nicer covariant boost-invariant lan-
guage for Galilean fluids. The mapping between the two 
is trivial and works exactly to all orders in derivative  
expansion. They have identical symmetries, thermo-
dynamics, constitutive relations and partition functions. 
 The construction follows naturally from covariant lan-
guage of null reduction. First we define a null back-
ground as a (d + 2) spacetime manifold that admits metric 
GMN and a covariantly constant null killing vector VM. A 
null theory is a field theory on the null background for 
fields that are conserved along VM. Null theories are  
demanded to be invariant under V-preserving diffeomor-
phisms and satisfy the corresponding ward identities as 
field equations of motion. A null fluid is a null theory con-
sistently defined on this background with appropriately 
chosen field variables. Null reduction of null fluids along 
V gives the Galilean fluid. One immediate consequence is 
that the isometry direction V is a background field and 
has to be taken into account while writing the constitutive 
relations of the parent null fluid. This introduces effects 
not captured by reduction of a relativistic fluid. In fact, as 
mentioned in the proposal, examining the conserved 

charges, field content, Banerjee10 demonstrated that null 
fluids are in exact correspondence with Galilean fluids. 
 This article will go through the formalism developed 
earlier9,10 and use it to obtain uncharged Galilean fluid 
dynamics to the first derivative order. The construction 
goes as follows: (i) first we construct a special relativistic 
system, namely the null fluid and (ii) upon null reduction 
of null fluid, we get the Galilean fluid of our interest. 

Uncharged null fluids 

We first construct the dynamics of a uncharged (d + 2) 
dimensional null fluid on a null background specified by 
(GMN, VM). The dynamics is given by (d + 2) conservation 
of energy–momentum tensor equations: MTMN = 0. To 
solve these equations, we need to express TMN in terms of 
(d + 2) number of variables. A natural choice for these 
variables is a null velocity u normalized as u.u = 0 and 
u.V = –1 and two scalar thermodynamic variables: tem-
perature T and mass potential m. 
 The most generic constitutive relation in terms of the 
fluid and background data can be written as 
 
 TMN = uMuN + 2u(MVN) + GMN 
       + 2E(MVN) + 2R(MuN) + MN. (3) 
 
Here, , ,  are functions of (T, m). Other quantities 
EM, RM, MN contain the higher order corrections in fluid 
variables and are projected orthogonal to V and u. Terms 
proportional to VMVN in TMN leave the conservation equa-
tion invariant and hence are not included. Thermodynam-
ics is obtained by studying a fluid at equilibrium, a fluid 
configuration independent of time. Equilibrium is charac-
terized by existence of a time-like killing vector, say K. 
The demand is that there should be a scalar equilibrium 
partition function W (or free energy), constructed only 
out of the background data and that dictates dynamics of 
the system2 
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In the spirit of fluid dynamics, W admits derivative  
expansion in the background data. Hence, essentially, the 
equilibrium fluid configuration is fixed by background to 
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The integration is over spatial section and we have ex-
panded the differential of the function P in terms of two 
other scalars S and R. By varying this free energy func-
tional, we get the following equilibrium stress tensor 
 
 ( )

(0) 2 .MN M N M N MN
eqT RV V EV V PG    

 
Here, ( ).M M M

mV TK V   We also get two thermody-
namic relations 
 
 E + P = Rm + ST, dE = TdS + mdR. 
 
The above relations can be viewed as the first law of 
thermodynamics and Euler’s relation obeyed by the null 
fluid if we identify P as its pressure, S as entropy density 
and R as its mass density. It is clear that the thermo-
dynamics of the (d + 2) dimensional null fluid is identical 
to that of a (d + 1) dimensional Galilean fluid given in 
equation (1). It is worthwhile to mention that one gets 
similar relations by demanding that the null fluid carries a 
local entropy current 
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( N contains generic higher order corrections) that satis-
fies the second law of thermodynamics, i.e. MSM  0 for 
a physical flow and the equality holds for equilibrium 
flow. At ideal order, thermodynamics gives SM = SuM. 

Null fluid at first order 

Next, we briefly sketch the construction of null fluid to 
first derivative order. Here, we only present the entropy 
current analysis. The stress tensor of eq. (3) and entropy 
current of eq. (3) picks following corrections 
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where PMN = GMN + VMuN + uMVN is the projector into the 
space orthogonal to V and u and 
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The divergence of the entropy current at this order takes 
the following form 
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Imposing non-negativity of the above expressions yields 
e = v = v = 0; ,   0; e  0. Thus the uncharged null 
fluid is characterized by three dissipative transport coef-
ficients at first derivative order. The inequality con-
straints are peculiar to Entropy law analysis; the equality 
constraints are obtained by equilibrium analysis as well. 
In the next section, we show how we get the Galilean flu-
id from this system. 

Galilean fluids through null reduction 

To get the Galilean fluid, we have to reduce the null fluid 
along the null direction V of the manifold. But as V is null 
and hence transverse to itself, to decompose the manifold 
properly, we need to specify another vector T: 
d + 2 = SV  T  d. The split is now well defined as 
d has vectors orthogonal to both V and T. The choice of 
T is arbitrary, hence the theory admits freedom under  
redefinition of T. Next, we define A null vector V  is  
defined using T and V: ( ).M M M

mV TT V   The  
energy–momentum tensor can be decomposed as 
 
 ( ) ( ) ( )2 2MN M N M N M NT V V V V j V       

      ( )2 .M N MNj V t    (4) 
 
Comparing with its null fluid counterpart we see that the 
null velocity u is mapped to V  and R, E are mapped to , 
. The mappings for ,Mj  ,Mj  tMN are also one to one 
and details can be found in Banerjee et al.10. 

Galilean equations of motion 

To get the Galilean ward identities in their usual form, we 
make a specific coordinate choice, xM = X–, t, xi: V = –, 
T = t and the background metric is 
 
 2d 2 (d d )(d d d ) d d .i i i j

i t i ijs e t a x x B t B x g x x
       

 
where, the fields , ai, Bi, Bt, gi j depend on (t, xi}. 
 This is like a fluid rest frame as 0.iV   In this frame 
The (d + 2) equations of motion of null fluid reduce to 
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Here   is the covariant derivative for metric connection 
of d. These are respectively equations for conservation 
of mass, energy and momentum for a Galilean fluid given 
in eq. (2) on generic background gij seen by a noninertial 
frame with acceleration i and vorticity i j. Here MV  is 
interpreted as the frame velocity, i and i j are deriva-
tives of MV  and are interpreted as acceleration and vor-
ticity of the frame respectively. Thus we see that the null 
reduction of null fluids equations of motion gives us the 
Galilean ward identities. 

Galilean boosts 

We have already noticed that the above construction has a 
T-redefinition invariance. This is the same as Galilean 
boosts invariance of the Galilean theory. To see this, let 
us consider a T-redefinition parametrized by a vector PM. 
Under this transformation, MV  transforms as 
 

 21+ ,
2

M M M MV V P P V    

 
where P  is the projected part of P. This is indeed the 
right transformation for frame velocity under Galilean 
boosts. Thus, the T-redefinition freedom translates to in-
variance under Galilean boosts. As the construction of 
null fluid does not even introduce a T-vector, it is inher-
ently invariant under Galilean boosts. So, the fluid  
obtained from it also enjoys this much required invari-
ance. 
 In the last section, the Galilean fluid that we have pre-
sented, is in particular fluid rest frame, where the fluid 
velocity is zero. For the generic case, a T-redefinition  
parametrized by P u   is performed. The quantities 
transform in the following way 
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u  is the projected part of u and is readily interpreted as 
the velocity of Galilean fluid. These equations show how 
various quantities transform under Galilean boosts. 

The entropy current 

We can also reduce the second law equation as 
 

 1 ( ( ) ( )) 0,i i
t i s ii sg s e a j e j

g
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where in a generic fluid frame, we have the Galilean  
entropy current as 1/ ( ) / ( )i i i i i

s mj s u T j T j       and 
scalar entropy functional as 1/ ( ) ( / )ms T P T      

.    It is easy to see that s = S, the thermodynamic 
entropy, at ideal order. 
 One can also perform similar reduction to first deriva-
tive order. Here, we present the results in so-called ‘mass 
frame’: 0.ij   The various first order quantities of eq. 
(4) get following form 
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where, ,   0; e  0. This defines the generic first  
order uncharged Galilean fluid on a generic background. 
e is the thermal conductivity which is constrained to be 
negative definite. ,  are respectively bulk and shear 
viscosities, constrained to be positive definite. These are 
the age-old results of first order non-relativistic fluid  
dynamics. 
 Thus, we have seen that starting from the null fluid and 
following the null reduction procedure we get the thermo-
dynamics and dynamics of the Galilean fluid. We have 
also seen how various quantities transform under Galilean 
boosts and also obtained the entropy current. This  
mapping is essentially trivial. 

Summary and discussion 

We have presented the total number of transport coeffi-
cients for most generic, parity even uncharged Galilean 
fluid, charged Galilean fluid and Galilean superfluid to 
first order in derivative expansion. This analysis includes 
and extends the non-relativistic dissipative hydrodynam-
ics studied in Landau-Lifshitz1 for uncharged fluids and 
superfluids. As we see, there are three different kinds of 
transports: hydrostatic (HS) transport, that vanishes at 
equilibrium, non-hydrostatic (non-HS) transport, that 
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does not vanish at equilibrium and dissipative (DS) trans-
port, that vanishes at equilibrium and contributes in  
entropy production. Both HS and non-HS transports are 
non-dissipative in nature. The complete structure of the 
constitutive relations even in the presence of parity odd 
effects for all these three systems has been reported  
earlier10,11. We summarize the results in the Table 1. 
 Let us end this article with two important points: 
 (1) The equilibrium analysis on null fluid already uses 
a preferred frame, hence T is fixed. At equilibrium, the 
field contents of null fluids and Galilean fluids are ex-
actly the same and they are in exact correspondence. The 
partition function analysis is identical. (This is a direct 
consequence of the fact that variations of W for a null flu-
id were demanded to preserve V isometry.) 
 (2) Our analysis gives us the most generic Galilean flu-
id, i.e. a fluid flow consistent with most generic Galilean 
isometry. The usual non-relativistic fluid, that comes 
from c   limit of a relativistic system is certainly a 
part of our construction. But, it may not be the most  
generic system that we have constructed. For example, 
the number of transport for uncharged Galilean fluid and 

non-relativistic fluid is the same, whereas for other  
systems, we do not know the counting for non-relativistic 
fluids. It would be interesting to understand how this 
physical non-relativistic systems sit in our construction. 
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Table 1. Classification of transport coefficients for Galilean systems 

Transport Galilean fluid Galilean fluid Galilean 
coefficients (uncharged) (charged) superfluid 
 

HS 0 0  3 
Non-HS 0 1 13 
DS 3 5 22 
Total 3 6 38 

 


