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Intrinsically disordered proteins (IDPs) represent a 
class of proteins that lack a persistent folded confor-
mation and exist as dynamic ensembles in their native 
state. Inherent lack of a well-defined structure and 
remarkable structural plasticity have facilitated their 
functioning in a wide range of crucial cellular processes 
such as signalling transduction and cell cycle regula-
tion as well as responsible for their aberrant toxic 
amyloidogenic conformations implicated in a wide 
range of neurodegenerative diseases, cancer, etc. 
Their ubiquitous presence in nature, role in biological 
function and diseases have spurred interest in the bio-
physical and conformational characterization of IDPs. 
Conventional methods of structure determination are 
less feasible owing to structural and spatiotemporal 
heterogeneity of IDPs, which demand the development 
of novel biophysical methods as well as rigorous com-
putational techniques for their characterization. In 
this review, we provide a brief overview of the widely 
used computational techniques probing the rugged 
conformational energy landscape of IDPs, their kinet-
ics of structural transitions and molecular interactions 
key to their functions. Advances in the development of 
calibrated computational approaches for statistical 
representation of highly dynamic structural ensemble 
of IDPs are provided with examples. Challenges in 
modelling this unique class of proteins as well as the 
existing and futuristic avenues are also discussed. 
 
Keywords: Chaperones, free-energy, intrinsically disor-
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Introduction 

PROTEINS, complex biological polymers composed of 
various combinations of less than two dozen naturally oc-
curring amino acids, fulfil myriad functions in biology. 
For over a hundred years, functional integrity of proteins 
has been associated with their ability to fold rapidly into 
unique, three-dimensional structures1. Interestingly, newer 

perspectives developed over the last few decades estab-
lish the existence of a class of polypeptides known as  
intrinsically disordered proteins (IDPs), whose biological 
roles are fundamentally associated to their ability to 
adopt multiple conformations at different physiological 
conditions2–4. In addition, many proteins also have intrin-
sically disordered segments or regions (IDRs) that are 
key to their functions. These IDPs or IDRs are highly ab-
undant in nature and involved in a plethora of biological 
activities. The inherent structural plasticity of IDPs con-
fers them with unique functional modalities in cellular 
processes such as cell–cycle regulation, gene expression, 
protein–protein interactions, etc. Several evidences have 
recognized structural disorders in proteins that act as 
chaperones5–7. A well-characterized example of such a 
protein is the heat shock protein Hsp-33 that functions as 
a chaperone under oxidative stress5. Transitions of this 
protein between ordered and disordered conformations 
are key to its functioning as a chaperone. Promiscuous 
binding nature of IDPs makes them well suited as hubs in 
protein interaction networks, especially those involved in 
cell signalling, as exemplified by the tumour suppressor 
protein, p53 (ref. 8). On the flip side, these characteristics 
also render IDPs more prone to aggregation and associ-
ated diseases. Formation of insoluble and intractable  
aggregates of IDPs highlights their implications in human 
diseases. Examples of such IDPs are amyloid beta (A ) 
and -synuclein involved in neurodegenerative diseases9 
(Alzheimer’s and Parkinson’s diseases respectively), p53 
and HPV associated with cancer10, etc. In the remaining 
text, the term ‘IDP’ will be used to denote both intrinsi-
cally disordered proteins and regions. 
 Owing to their structural complexities and subtle  
dependence on solvent and thermodynamic conditions, 
probing the mechanistic origins of IDP function can pose 
greater challenges than the corresponding studies of well-
defined folded proteins. In recent years, however, large 
strides have been made in biophysical experimental tech-
niques for probing IDP structure and function, most nota-
bly in solution11,12 and solid-state NMR13, small-angle  
X-ray scattering14,15, fluorescence microscopy16,17, cryo-
EM18, fluorescence correlation spectroscopy19,20 and 
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some single-molecule techniques21,22. In Table 1, we have 
listed representative studies that use at least one of these 
methods to characterize physico-chemical characteristics 
of key IDPs. It is important to note, however, that ex-
periments are essentially a ‘top down’ approach to under-
stand IDP behaviour, and often provide only limited 
insights on the specific nature of interactions and the  
resultant physical forces underlying their observed ther-
modynamic, kinetic, structural and thereby functional  
behaviour. In this regard, it has been realized that theo-
retical models and advanced molecular computations can 
provide an alternative ‘bottoms-up’ view, and thereby 
provide a powerful repertoire of complementary methods 
to probe the physical underpinnings of IDP structure and 
function23,24. 
 Conformational energy landscapes of IDPs describing 
their thermodynamic free energy as a function of one or 
more collective variables are typically more rugged in 
comparison to the ‘funnel-shaped’ landscapes adopted by 
landscapes of folded proteins (see Figure 1). Thus, the 
conformational ensembles of IDPs are characterized by 
several thermodynamically equivalent low energy states. 
These states are often separated by relatively small en-
ergy barriers and therefore the landscapes are sometimes 
referred to as ‘glassy’25. However, infrequently, thermo-
dynamically equivalent states may be separated by barri-
ers that exceed thermal levels by more than an order of 
magnitude; such situations may ‘trap’ specific states, and 
may trigger the onset of systemic malfunction or disease 
in biological organisms26,27. Specially designed computa-
tional studies are often necessary to understand the ther-
modynamic and kinetic origins of such ‘traps’ and to 
strategize plausible physico-chemical means to lower the 
barriers and repopulate biologically advantageous con-
formations28–30. 
 In this article, we attempt to provide an overview of 
popular computational techniques used for studying IDP 
conformations, their energy landscapes, kinetics of their 
transformations and their modulation by the surrounding 
environment as well as by nanomaterials and small mole-
cules. The underpinnings of each method are touched 
upon briefly, and the reader is referred to other sources 
for more details31–34. Wherever possible, complementarity 
 
 

Table 1. Representative experimental techniques used for characterizing  
 IDPs; the list provided is non-exhaustive 

Experimental technique Reference 
 

NMR spectroscopy 124–128 
Small angle X-ray scattering 129–134 
Single molecule spectroscopy 135–141 
Fluorescence techniques 142–144 
Atomic force microscopy 145, 146 
Cryo-electron microscopy 147–149 
X-ray diffraction 150, 151 

with experimental observations has been highlighted.  
Future challenges and the way forward have been  
discussed. Though not exhaustive, we hope to provide the 
reader a useful insight into the exciting world of IDPs, 
and possibly motivate theory and computational bio-
physicists to invest their interest. 

Computational techniques 

Molecular dynamics simulations 

With the rapid evolution and advancement of technology, 
computational methods are proving indispensable in  
understanding the physics and chemistry of complex  
biomolecular systems. Of the myriad of computational 
techniques, molecular dynamics (MD) simulations is 
widely used to gain molecular-level insights into struc-
tural, dynamical and thermodynamic properties of  
macromolecular systems. The rapidly increasing compu-
tational power over the years has allowed harnessing MD 
simulations to delve into the intricacies of biological 
processes such as protein folding and misfolding, protein 
denaturation, protein aggregation, membrane dynamics, 
 
 

 
 

Figure 1. Schematic descriptions of conformational energy land-
scapes of (a) folded and (b) intrinsically disordered proteins (IDPs), as 
function of representative collective variables (CV). Folded proteins 
have funnel-shaped landscapes with a unique global minimum corre-
sponding to the natively folded state. IDPs have a more rugged land-
scape characterized by multiple equivalent minima separated by 
barriers. 
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protein–protein interactions, proteins–nucleic acid inter-
actions, influence of solvent environments, enzymatic 
processes, effects of biomimetic crowding, etc.35–50. This 
method is also, capable of complementing experimental 
measurements over fairly wide time and length scales. 
 MD simulations are used to study macroscopic behav-
iour by means of numerical integration of classical  
equations of motion of a microscopic many-body system. 
It involves sampling of the phase space of a system in 
terms of position and velocities of the constituting parti-
cles. Temporal evolution of these quantities often referred 
to as the ‘trajectory’ of the system, can be processed to 
obtain macroscopic properties using principles of statisti-
cal mechanics. The positional coordinates and velocities 
of the particles are derived from Newton’s second law of 
motion, wherein the force acting on a particle at a given 
time point is equal to the product of its mass and accel-
eration. The force on each particle i, is derived as the 
negative gradient of the potential, Ui, imposed on it by 
the rest of the system. The interaction potentials are  
described empirically. The potential function, commonly 
known as ‘force fields’, is a parametric description of  
interaction energy as a function of inter-atomic distance, 
and is used to obtain the force acting on each particle at 
every time point. The numerical integration of forces then 
provide velocities and positions, and thereby a descrip-
tion of phase space of the system31–32. 
 It is now increasingly becoming possible to use all-
atom unbiased MD simulations to explore simple biologi-
cal macromolecules in microseconds time regime51–53, or 
further54. It has been extensively used to study the highly 
polymorphic IDPs and thereby complement biophysical 
characterizations and help overcome the limitations of 
several experimental observations. Edward O’Brien et al. 
used all-atom MD simulations to study the thermodynam-
ics of lactam congener, A1–40 [D23–K28] in order to in-
terpret the origins of the enhanced rate of fibril formation  
observed in experiments55. They simulated the wild type 
(WT) A dimer, a monomer, with lactam bridge (A10–35-
lactam [D23–K28]) and monomer and dimers with har-
monically constrained D23-K28 salt bridge (A10–35 
[D23–K28]), to understand the origin of enhanced rate of 
fibril formation. Their results suggested that the reduction 
in entropy of lactam congener with constrained salt 
bridge [D23–K28] as well as enthalpic effects, contribute 
to the reduction in free energy barrier to nucleation and 
growth of A1–40-lactam [D23–K28] fibril as compared to 
WT. Zhu et al.56 probed the mechanism of dimerization 
as well as structural features of the most stable dimers of 
the full-length A1–42 peptide using classical MD simula-
tions. Their simulations reaffirmed structural features of 
dimers as observed in experiments as well as identified 
several key structural properties of peptides. Extensive 
all-atom MD simulations were used to identify and  
understand the molecular determinants of relative pro-
pensities of IDPs to aggregate57. The results showed that 

the overall protein hydrophobicity, a property defined by 
the hydration-free energy of protein, predominates the 
aggregation propensities of proteins in aqueous environ-
ment and had a remarkable correlation with experimen-
tally observed aggregation propensities. However, owing 
to multiple minima, sometimes separated by high kinetic 
barriers, unbiased MD techniques can fall short of the 
sampling requirements in IDPs. Hence, several enhanced 
MD protocols have been designed to enable crossing the 
energetic barriers and explore a large conformational 
space within finite computational times. 
 Replica exchange molecular dynamics (REMD)33 is a 
parallel tempering method that samples multiple replicas 
of a system concurrently over a range of different tem-
peratures. Coordinates of the replicas are periodically  
exchanged between ensembles, and the exchanges are 
governed by Metropolis criterion that is defined as 
 
 (exchange) exp( );P E    0,E   (1) 
 
        = 1,      E < 0, (2) 
 
where  = 1/kBT, kB is the Boltzmann constant and T is 
the temperature. Rapid exchange of replicas helps over-
come free energy barriers in the conformational land-
scape. This technique has been widely used as an 
explorative tool to characterize the rugged energy land-
scapes of IDPs58–66. Sgourakis et al.67 used REMD based 
methods to distinguish the conformational ensembles of 
two A variants (A1–40 and A1–42) which are key play-
ers in the pathogenesis of Alzheimer’s disease (AD). En-
hanced sampling of the conformational space of A 
peptides revealed that the structural ensemble of A1–42 is 
far more diverse than A1–40. They also identified struc-
tured regions primarily in the C-terminus of A1–42 that 
may be responsible for higher propensity of this peptide 
to form amyloid. Another study exploited REMD to pro-
vide insights into the equilibrium structure of A1–40 
dimer by sampling the various transient peptide confor-
mations and modes of organization to form the dimer58. 
Das et al.66, using extensive atomistic REMD, studied the 
protective cross-interaction of experimentally revealed 
A2T variant of A1–42 monomer and the wild type (WT). 
On comparison with WT homo-dimer, they found an 
overall weakening of a set of transient, intrachain con-
tacts formed between the central and C-terminal hydro-
phobic residues of the heterodimer. Importantly, the A2T  
N-terminus, particularly residue F4, was observed to un-
dergo hydrophobic burial owing to its persistent tertiary 
and quaternary interactions with hydrophobic residues of 
the central and C-terminus. They further remarked that 
the atypical behaviour of N-terminus in A2T heterodimer 
might have consequences in the aggregation of peptide, 
which was consistent with experiments. However, this 
method has its own drawbacks: REMD cannot substan-
tially enhance sampling for large biomolecular systems, 
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which require a huge number of replicas to bridge the 
temperature range sampling the ensemble. Further, this 
method is not useful if high temperature does not facili-
tate the conformational transition of interest. In addition, 
temporal properties cannot be calculated since this  
method introduces discontinuity during swapping of rep-
licas. 
 Accelerated molecular dynamics (AMD)34 is an en-
hanced sampling method that introduces suitable biases 
into potential energy function in order to enable barrier 
crossings. A boost energy, Eb, and an acceleration para-
meter, , is applied to the original potential, V(r), of the 
system of reference such that the system evolves in a 
modified potential, V*(r), which can be written as 
 
 V*(r) = V(r),   V(r)  Eb, (3) 
 
 V*(r) = V(r) + V(r),   V(r) < Eb, (4) 
 
where the ‘bias potential’ V(r) is obtained as 
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The introduction of bias potential preserves the landscape 
of the underlying original potential energy wells while  
allowing the wells to be sufficiently and accurately  
sampled. 
 AMD has been used effectively to investigate dynami-
cal transitions in the natively unstructured Tau protein, 
whose misfolded and aggregated forms form neurofibril-
lary tangles implicated in AD and other neurodegenera-
tive diseases68. In this study, AMD, in agreement with 
experimental data, revealed strong structural propensity 
of four homologous sequences in repeat domains to form 
turns and highlighted the potential of this specific con-
formational transition as an inhibitory mechanism against 
pathological transformation. Our previous studies have 
implemented AMD to sample the conformational space of 
full-length A peptide, which has been further used to 
understand the correlations with the structure and dynam-
ics of surrounding water molecules69–70. 
 The probability of finding a molecular system in one 
state or another depends on the free-energy difference  
between two states. According to the principles of statistical 
mechanics, free energy difference between two states can 
be computed from the averages of ensembles of atomic-
level configurations of the system, which can be gener-
ated from MD or MC simulation strategies. Free-energy 
calculations are quite useful for calculating biophysical 
properties of biomolecules such as protein–protein and 
protein-ligand binding free affinities, partition coeffi-
cients, etc. One of the techniques used to calculate  
free-energy difference between two states of a molecular 
system separated by an energy barrier is umbrella sam-
pling71, where multiple biased simulations are performed 

by applying restraints to a chosen set of configurations. 
These configurations are chosen such that they sample a 
region of a specific reaction coordinate. However, free-
energy is only obtained as a function of the chosen reac-
tion coordinate. The use of another reaction coordinate to 
link the end states may lead to a different free-energy  
difference, indicating the dependence of this method on 
the chosen reaction coordinate72. Lenkul and Bevan  
employed umbrella sampling simulations to study the 
thermodynamics of A peptide dissociation from the core 
of a model protofibril at physiological temperature73.  
Another known method for free energy calculations is 
Adaptive Biasing Force (ABF)74. ABF is a method of 
thermodynamic integration in which the mean force along 
a chosen reaction coordinate, , is used to estimate the 
energy barriers between two states. The gradient of the 
free energy is then obtained from the average force F as 
 

 d ( ) .
d
A F 



    (6) 

 
In our previous work dealing with the study of A self-
association on a single-walled carbon nanotube (SWCNT), 
we implemented ABF method to evaluate the growth  
potential of A oligomers immobilized on the surface of 
the nanotube. Although the intrinsic propensity of A to 
self-assemble is highly impaired by adsorption on nano-
surface, the oligomeric units showed high degrees of sur-
face immobilization. Free-energy calculations revealed 
that though immobilized oligomers are capable of growth, 
there is a shift in monomer–oligomer equilibrium as com-
pared to free states. 
 It is important to keep in mind that a large number of 
MD simulation work on IDPs are carried out using fully 
atomistic force fields, where every atom is parametrized 
separately. However, this requires the integration of mo-
tion for each atom which inherently makes the sampling 
of phase space computationally expensive. While atom-
istic simulations are indispensable for eliciting detailed 
structural features of IDPs and their aggregates, it can be 
advantageous, in specific situations, to use a coarse-
grained description of the force field. A coarse grained 
potential is essentially a description of interactions where 
the degrees of freedom of individual atoms are not con-
sidered independently, but a chemical group is described 
as a spherical mass with an overall charge. Coarse-
grained simulations use longer time steps and are capable 
of sampling systems of much larger dimensions than  
atomistic force fields, and are therefore useful in investi-
gating higher ordered growth in IDP aggregation75–82. A  
recent work by Kurcinski et al.83 utilized a coarse-grained 
approach to characterize the various modes of complex 
formation and interactions of the IDP, phosphorylated 
kinase-inducible domain (pKID) and its interacting  
domain KIX. Sieradzan et al.84 combined coarse graining 
and REMD sampling to investigate the process of  
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complex assembly and inter-protein interactions of a 
homotetrameric  (BBAT1) protein. They found that 
the association into a tetramer precedes the folding of in-
dividual protein chains, facilitating the folding process 
and stabilization of the complex. Coarse graining has also 
shown promising results in modelling intermediates of 
aggregation, following different aggregation pathways as 
well as exploring long-time scales of the aggregation 
process that cannot be captured via atomistic simulations. 
Using coarse-grained simulations of peptide self-
assembly, Ranganathan et al.85 presented a physical ra-
tionale for self-assembly of peptides/proteins into ordered 
aggregates and supramolecular structures as well as  
diversity in the self-assembled structures. By varying the 
inherent physical properties like polymer flexibility and 
interaction strengths, they identified and elucidated prop-
erties such as aggregate diversity and polymorphism  
associated with biological self-assemblies. As a general 
rule, coarse graining smoothens out the ruggedness of the 
underlying energy landscapes and may lead to inaccurate 
calculations of the thermodynamic properties of the  
system, and therefore must be used judiciously vis-à-vis  
pertinent biophysical questions. 

Monte Carlo methods 

Monte Carlo (MC) method, frequently used for sampling 
biomolecular systems, work by exploring the energy 
landscape by probing random conformations in the phase 
space. Briefly, a MC simulation commences from an ini-
tial configuration followed by a random move that gener-
ates a new configuration. This move is accepted or 
rejected based on an ‘acceptance criterion’ that ensures 
that the conformations are sampled from a statistical me-
chanical ensemble distribution with a correct weight. An 
important condition to be followed in MC simulations is, 
that an ergodic scheme must be used which means that 
any state of the system must be accessible from any other 
state in the conformational space in a finite number of 
MC moves. On accumulation of a large number of con-
formations from a stochastic simulation, statistical  
mechanical principles are used to calculate thermodynamic 
properties of the system. However, as MC does not involve 
solving Newton’s equations of motion, no dynamical in-
formation can be obtained from MC simulation. Since it 
lacks an objective definition of time, no temporal evolution 
of a property can be calculated for a system. Detailed de-
scriptions of MC techniques are found in several reports 
over the last few decades86,87. We, would like point out that 
MC simulations of proteins in explicit water are not effi-
cient as stochastic moves causing drastic changes in the in-
ternal coordinates of the protein without simultaneously 
moving the solvent molecules, result in a high rejection 
probability due to possible steric hindrances86. Thus, MC 
methods are more popular in combination with coarse 
grained descriptions of potential functions. 

Kinetic approaches 

Despite rapid advances, there is a large possibility that 
the conformational sampling of complex biomolecules 
may remain incomplete by even the most efficient MD 
and MC methods. This is especially true of those IDPs 
whose conformational changes and aggregation involve 
crossing several large kinetic barriers. In this direction, 
several researchers have attempted to develop phenome-
nological models designed to reproduce the experimentally 
observed rates of conformational transformation and  
aggregation. An early mathematical model proposed by 
Lomakin et al. posited that amyloid growth must require 
a nucleation facilitated by A micelles, followed by irre-
versible fibrillar elongation88. Adopting the nucleation-
polymerization hypothesis, Pallitto and Murphy incorpo-
rated experimental data from dynamic light scattering, 
fluorescence, size exclusion chromatography as well as 
cytotoxicity assays to develop kinetic master equations 
yielding the rates of filament initiation, elongation and 
fibrillar growth89. The concentration dependence of kinet-
ics of the nucleated polymerization process in amyloido-
genesis, especially under supercritical concentrations, 
were further modelled by Powers and Powers90. A more 
recent two-state model of IDP kinetics embodies a key 
pathogenic structural transition in amyloid aggregation 
from a coil-like state to a -sheet rich state. By employ-
ing distinct rates of polymerization and depolymerization 
based on the conformational state of the peptide, this 
model explains experimentally observed phenomena of 
amyloid self-assembly such as concentration-dependence 
of growth velocities, fibril length heterogeneity and  
intermittent nature of fibril growth91. 
 Another quantitative approach for obtaining the rates 
of conformational transitions in IDPs and amyloidogenic 
proteins, harnesses the energy landscape methods  
pioneered by Wales et al.92. These methods first produce 
a database of stationary points for the system using global 
optimization techniques, and then employ discrete path 
sampling methods to connect minima and transition states 
in the energy landscape93–96. The repertoire of these  
methods has been developed over the last decade to over-
come the limitations of thermodynamic sampling methods 
such as MD and MC simulations. A combination of these 
methods have been used to describe the kinetics of assem-
bly process of the shortest known amyloid sequences97, as 
well as key fragments of prion protein and A peptide98. 
Interestingly, these methods have also yielded the most 
stable oligomeric size and conformations of full-length 
A peptide in its toxic, membrane-spanning state99. 

Challenges and opportunities 

Owing to the lack of global free-energy ‘native’ states 
and the ruggedness in conformational landscapes, studies 



Women in Science – New Frontiers of Research 
 

CURRENT SCIENCE, VOL. 112, NO. 7, 10 APRIL 2017 1449 

of IDPs present a more greater challenge than corre-
sponding studies involving folded and functional pro-
teins. The realization that a ‘bottoms-up’ view of 
underpinning interactions and the structural, thermody-
namic, kinetic and assembly aspects of IDP behaviour 
can be obtained from theoretical and computational 
methods, has opened up a plethora of possibilities in IDP 
research. Herein, a brief overview of some of the key but 
persistent challenges and new opportunities is presented. 

Sampling accuracy 

Current generation force field parameters developed for 
amino acids that are used in most MD, and in some MC 
and kinetic methods, are benchmarked against experi-
ments via structural data available for natively folded 
proteins100,101. Thus, an underlying assumption in their 
usage in IDP studies is, that the parameters are equally 
effective in sampling the conformational space of pro-
teins prone to rapid fluctuations. However, given the 
sparse amount of ensemble information for IDPs that are 
available experimentally, benchmarking the sampling  
accuracy is challenging. Yet, some progress in weighing 
the relative accuracy of various force fields has been 
made, particularly for the archetypal A, in conjunction 
with data from solution of NMR studies102. 

IDP interactions on surfaces 

In the last few decades, growth of nanotechnology has 
encouraged several new ventures in drug development. 
Protein surface interactions have been capturing increas-
ing attention owing to their ubiquitous occurrence in bio-
logical processes and a wide range of applications in 
bioengineering and nanotechnology30,103–105. Understand-
ing protein-surface interactions is key to the development 
of new strategies in the field of nanomedicine, biomate-
rial sciences and nanobiotechnology. The physico-
chemical properties of the surfaces and the nature of their 
interactions may have an altering effect on the structural 
stability and activities of biomolecules30,103,104,106,107. 
Computational modelling and simulations can help to  
unravel the mechanisms of protein surface binding, the 
determinants of binding specificity as well as thermody-
namics adsorption. Molecular level information obtained 
from computational studies has the potential to leverage 
experimental efforts in drug development. Harnessing the 
power of theoretical methods such as atomistic MD simu-
lations as well as quantum mechanical (QM) calculations, 
we elucidated the interactions of A monomer on the sur-
face of a SWCNT as well as provided insights into the ef-
fects of surface geometry on the interactions with 
biomolecules30,108. MD simulations have been extensively 
used to study the binding and interactions of IDPs with 
surfaces of various biomimetic membrane models as well 

as membrane permeation phenomenon. A recent study 
employed MD simulations combined with experimental 
techniques to study the role of cholesterol in the aggrega-
tion of islet amyloid polypeptide (IAPP), an IDP linked to 
type-2 diabetes mellitus (T2DM), and the related mem-
brane disruption109. It demonstrated that the presence of 
cholesterol has a modulatory effect on the IAPP-evoked 
membrane disruption. 
 It is evident that the interaction of IDPs with surfaces 
has a complex dependence on their physical and chemical 
characteristics. Consequently, IDP adsorption as well as 
its potential toxic effects may, in principle, be modulated 
via properties of the interaction surfaces. Thus, further 
computational research on IDP-surface interactions in 
conjunction with suitable experiments, should have high 
significance in terms of understanding IDP behaviour on 
biological surfaces such as cellular membranes, as well in 
controlling aspects such as toxicity and function. 

Devices and detection 

Computational approaches have also been utilized in the 
proof-of-concept design of biomolecular sensors. The 
bottoms-up approach of computational methods to under-
stand the atomistic-level interactions in biomolecules is 
capable of contributing immensely to the process of  
designing high-performance biomaterials for applications in 
biosensors with diagnostic applications or point-of-care 
assessment. Surface immobilized biomolecular probes or 
lab-on-a-chip devices are revolutionizing many areas of 
biomedical research such as genomics, proteomics,  
immunology and pathology. The adsorption of the bio-
molecule to the surface plays a key role in these applica-
tions and hence needs to be engineered to build a 
successful device. For example, the orientation of ligand 
molecules, which have specific binding sites that need to 
be accessible to the target molecules, is crucial for the 
proper functioning of a biosensor. MD simulations have 
proved their merit by providing atomic level information 
in biomolecular adsorption studies110,111. Such insights 
could be applied to control and manipulate the orientation 
of biomolecules in experiments that can maximize the ef-
ficiency of biosensors. Our recent work has demonstrated 
the detectability of A oligomeric states adsorbed to 
SWCNT in an ionic solution upon application of optimal 
electric currents108. The results encourage the develop-
ment of carbon nanomaterial based electrical sensors for 
the detection of small A oligomers. 
 The use of fluorescent dyes such as Congo red and 
Thioflavin T (ThT) for characterizing amyloid aggregates 
to diagnose amyloid diseases and for the development of 
therapeutics is well established112. From a biomedical 
standpoint, it is essential to obtain a molecular level  
understanding of the binding events in order to design 
better dyes for diagnosis. Theoretical studies have been 
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used to delve deeper into the various interactions and 
binding modes of the routinely used fluorescent dye, 
ThT, to protofibrillar models of A 113,114. 

Drug design 

Since the identification of IDPs more than two decades 
ago and the essential roles that they play in a broad range 
of critical cellular functions, ‘unstructural biology’ has 
paved its way into the mainstream of molecular and cell 
biology115–117. Additionally, IDPs are implicated in a 
number of human diseases such as cancer, neurodegen-
erative and cardiovascular disorders8. Given the preva-
lence of IDPs in human diseases, they are attractive 
therapeutic targets; however, rational drug designing for 
IDPs is still in its infancy. With the steadily improving 
knowledge of structural and dynamical behaviour of IDPs 
characterized by experiments as well as computational 
methods, IDPs are now considered ‘druggable’118, and 
hence drug development is a new frontier being explored 
in this domain. In this regard, it is crucial to study and es-
tablish the mechanisms of molecular recognition between 
small molecules and IDPs that can guide rational drug de-
sign endeavours. Conformational sampling is being in-
creasingly exploited to gain insights into the structural 
diversity and dynamical aspects of IDPs as well as 
mechanisms of interactions with other proteins119,120. The 
feasibility of small molecule inhibition of IDPs is demon-
strated in the case of oncoprotein c-Myc, which is a po-
tential cancer drug target121. Extensive REMD simulation 
studies have helped to build the conformational ensemble 
of c-Myc and explore its interactions and binding mecha-
nism with an experimentally reported small molecule in-
hibitor122,123. Such computational investigations have 
important implications in rational ligand design efforts 
targeting IDPs, and can be used for in-silico designs of 
therapeutics aimed at several debilitating diseases. 

Conclusions 

The requirement of disorder in some proteins as a corner-
stone of their biological function is beginning to emerge 
as a new paradigm. This realization has fuelled vast ex-
perimental research with several biophysical and bio-
chemical methods. Yet, experimental limitations in 
capturing the complex details of conformational fluctua-
tions can hinder the understanding of the functional be-
haviour of this subclass of protein molecules generally 
referred to as IDPs. Fortunately, advanced computations, 
which are based on modelling the interactions at the 
atomic level, emerge as powerful complementary tech-
niques in this area of research. These methods can be use-
ful in directly capturing the conformational energy 
landscapes, and thereby unearthing thermodynamic and 
kinetic properties underlying the complex IDP behaviour 

in realistic environments. While several challenges re-
main, particularly in terms of accuracy and scales of 
thermodynamic sampling in appropriate media, it is en-
couraging to note how rapid advances in these methods 
have been harnessed appropriately to gain major insights 
into the structural, self-assembly and functional proper-
ties of IDPs. Further, computational methods are being 
increasingly used to predict as well as propose ways to 
alter key properties of IDPs, paving way for several ap-
plications ranging from drug discovery to sensor design. 
In conjunction with appropriate experimental data, ad-
vanced computational methods therefore provide un-
precedented possibilities in the scope of IDP research. 
The aim of this article has been to provide a short but 
meaningful glimpse of this exciting field, and it is hoped 
that it will motivate computational biophysicists to pur-
sue the key challenges that emerge in this field. 
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