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In an electrocardiogram (ECG), the heartbeat feature 
QRS is an important parameter for analysis in any 
heartbeat classification automated diagnosis system. 
In this communication the method which we have 
proposed is by using the counter which is used in par-
allel. The first level is detection of heartbeats, which 
uses hashing of ECG features. In the second level, the 
profiler profiles a person’s regular and irregular ECG 
characteristic behaviour. The proposed method works 
on data related with ECG, instead of particular fea-
tures of ECG. Because of parallel processing, data 
storage unit requirements and the processing time are 
less. The dependent values in the proposed method 
vary according to the changes in the ECG waveform. 
Such type of analysis is suitable for detection of heart 
disease. The most significant application of such char-
acteristic plotting is to generate an alert signal for ir-
regular ECG behaviour in a person. Such automated 
system will be useful in remote areas where a cardi-
ologist may not be easily available. 
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THE determination and separation of QRS waveform be-
tween regular and irregular waveforms are particularly 
important clinical criteria for patient diagnosis. Over the 
last few decades, several techniques have been proposed 
to determine these waveforms1–3. For instance, Senhadji 
et al.4 compared the performance of three different wave-
lets to determine the beats which are hidden in the wave-
form. In this paper, we propose a method for ECG 
waveform separation by using derivative of lower order 
in which Gaussian function was used5. Many more meth-
ods have been proposed which concentrated on spectral6,7 
or wavelet features8,9, related with superimposed fea-
tures10,11 and spatial context12,13 and to differentiate the 
heartbeats signal14–19. Pan and Tompkins14 first proposed 
the method of determination of heartbeat in real time in 
processor. Ning and Selesnick20 proposed that the loca-
tion of the true peak can be determined which has the 
largest magnitude within its 200 ms time window. The 

ECG feature extractor provided by LabVIEW Biomedical 
toolkit detects QRS waves21. It was reported that for QRS 
determination, valley points before and after R-wave are 
sufficient22. It was also reported that the preprocessed 
ECG signal is converted into a train of pulses using the IF 
sampler23. Once the process of beat determination is 
complete, the correct beat discrimination process of 
heartbeats takes place. Methods such as detection of any 
symbol, repeated pattern which is going to repeat, network 
based on neurons, and vector machines have been sug-
gested for heartbeat discrimination24–26. Learning meth-
ods based on training data from the sample which result 
in new mapping based on information which is processed 
has been discussed earlier27. de Chazal et al.28 discrimi-
nated the beats by studying the distance between the two 
R-peaks, ECG waveform. Christov et al.29 proposed com-
parison of ECG features for beat classification in time 
and frequency domain. Haseena et al.30 discussed a com-
bination of neuron and fuzzy for discrimination of heart-
beats. 
 We have used arrhythmia database of the Massachu-
setts Institute of Technology–Beth Israel Hospital (MIT–
BIH) to test the efficiency of the proposed technique3. All 
ECG data used here are sampled at 360 Hz, and the reso-
lution of each is 8 bits/sample, therefore the bit rate of 
these data is 2880 bps. The method was run for both 
regular and irregular heartbeats. 
 High-frequency noise was removed using the simple 
time constant equation in which the window is moved 
from one R-peak to the next, while the low-frequency 
noise was removed using the frequency-domain transfor-
mation31. 
 The proposed method depends more on a series of data 
of ECG waveform rather than any specific feature of the 
ECG waveform. The basic concept is to partition the  
input ECG signals into series of 0–1 strings. The next 
step is to select a string of L bytes. The start and end lim-
its of this binary information are selected so that when 
long binary strings are repeated, they should lie on the 
same start and end limits. For this, the start and end limits 
are selected based on R-peak. Between these two repeated 
start and end points, the minimum value of binary data 
bits Q and S points starting from the middle R-peak to the 
left and right are determined for repeated occurrence 
within a fixed time duration. Hereafter, the data bits  
between Q and S points will be called as signature which 
is W bytes. L is varying as it depends on the start and end 
points of the R-peak, which basically works on R–R  
interval. Similarly, W is not fixed because it depends on 
the location of Q and S points. For the process to work in 
real-time QRS detection and classification, we used the 
storage elements which are arranged in parallel. There-
fore in order to avoid the repeated number of counting in 
a memory elements string was hashed to a certain value. 
Two steps of hashing have been done in two phases. 
Phase 1 hash was first generated by the string. This hash 



RESEARCH COMMUNICATIONS 
 

CURRENT SCIENCE, VOL. 112, NO. 9, 10 MAY 2017 1916 

value was used as a signature for processing. The m  
independent hash values which have to be indexed into m  
arrays have been developed by this signature. Consider-
ing the memory address of the storage element is n bits, it 
means that each storage element is having 2n memory  
locations. Each indexed array location is incremented. 
During the process, parallel counters are used. The 
counter which crosses the fixed value of count is detected 
as a QRS waveform. The cardiac profile is plotted against 
time duration of the suspected QRS waveform (in the 
form of number of samples) and the number of counts the 
suspected QRS waveform has repeated. 
 In phase 1, the window length is R–R interval, as 
shown in Figure 1. Every R–R interval length is processed. 
On every cycle of clock, one R–R interval string is shifted 
and a new byte for the packet stream of two consecutive 
R–R intervals is taken to form a next packet stream, i.e. 
boundaries (in bytes). From this R-peak, the Q and S 
points are detected. The minimum value of binary to the 
left and right is detected. This minimum value is taken as 
Q and S points. This results in binary string and can be 
taken as a signature, and can act as a hash value in phase 
1. This signature is of W bytes. The next signature is con-
sidered to be part of the next L bytes. Figure 1 shows the 
function blocks of phase 1. 
 Phase 1 hash value is taken to generate the hash value 
for phase 2, which is of size m as shown in Figure 1. Sim-
ilar operation is performed for phase 2. The array i is  
indexed by the hash value. Figure 1 also shows the work-
ing of phase 2. The counters (black locations in Figure 1) 
are incremented. The independent value of hash is calcu-
lated after calculating the final result for phase 1. Sam-
ples between points Q and S act as an independent hash 
value, i.e. m and it works till the last R-peak. Table 1 
shows the number of discrete values. This sample acts as 
a hash value for phase 2, then binary addition is  
performed. Resultant value of binary addition acts as a 
memory address location for the array i. 
 If any counting unit crosses the fixed limit, the binary 
series is considered as a worm, i.e. QRS waveform. Sys-
tem setting is discussed as follows: 
 
 L  288–432: L is a notation and it depends on the 

start and end limits. 
 W  12–28: W is a notation of the position of points Q 

and S. 
 l = 8: is in bits to check the limit in phase 1. 
 m  12–21: width of second phase of hashing. 
 12: addition of sample between points Q and S. 
 k: limit of counting unit to reach the fixed value. 
 HR: limit of counter value to be reached. 
 
Based on the contents of the counter as shown in Table 2, 
a Gaussian curve is obtained, where irregularity lies on 
the end of the curve, as also discussed by Faezipour  
et al.24. 

 For phase 3, the waveforms of different classes of 
heartbeat or groups of different classes of heartbeat are 
taken from the database of MIT–BIH to determine the  
qualitative features of the respective classes as discussed 
above, so that the system can be fine-tuned for any parti-
cular class. We tuned our system for classifying the 
waveform of ten arrhythmia classes: NORM, LBBB, 
RBBB, VPC, APC, NORM-RBBB, NORM-VPC, 
NORM-APC, LBBB-VPC and RBBB-APC. The paired 
features for a particular class found in phase 2 will now 
act as a hash function for classification of ECG waveform 
of a particular class in phase 3. As a number of data tables 
are used to identify the heartbeats, these data have been 
compressed (useful information between the paired fea-
tures) to a single integer data value. The hash result 
would be the signature of phase 3. As a result, phase 3 
has several hash functions which will now act as a signa-
ture for classification (paired features) obtained from 
phase 2 by the waveform of different classes of heartbeat. 
The MIT–BIH arrhythmia database can be applied as a 
signature and the counter used in parallel gives the result 
of the repeated hash value. We have selected the addition 
of the paired features as our primary hash function in 
phase 3. To obtain the integer hash value we round-off 
our results. Now the ECG waveform to classify the heart-
beat is chosen. The profile curve for the respective hash 
function of phase 1 is plotted. If no anomalies lie on the 
tail(s), then we conclude that the ECG waveform belongs 
to normal class. On the other hand, if anomalies are found 
at the end of the curve, we conclude that the waveform has 
abnormal ECG beats and is forwarded to phase 3 for fur-
ther processing. Then the profile curve for the respective 
hash function of phase 3 is plotted. Graph is plotted with 
memory location in x-axis and its content in y-axis. The 
graph will result in a inverted single bell-shaped curve or 
in a inverted double bell-shaped curve. Single curve 
means a single heartbeat class is present and double curve 
means that more than one class of heartbeat case is pre-
sent. Therefore, if any of the first four hash functions of 
phase 3 result in a bell-shaped (single) profile curve, then  
 

 
 

Figure 1. System design concept for phases 1 and 2. 



RESEARCH COMMUNICATIONS 
 

CURRENT SCIENCE, VOL. 112, NO. 9, 10 MAY 2017 1917 

Table 1. Result of QRS detection system when tested on MIT–BIH arrhythmia dataset 103 (10 s long)  
 using the proposed algorithm 

R-peak MIT–BIH R-peak R-peak  QRS duration Sum of 
time sample index index calculated R–R interval (no. of samples) Q–S array 
 

0   21    0 0.736111 20 3584 
0.736111  265  265 0.863889 18 3446 
1.6  575  576 0.836111 19 3567 
2.436111  876  877 0.844444 18 3411 
3.280556 1180 1181 0.836111 18 3688 
4.11667 1482 1482 0.897212 18 3516 
5.013887 1795 1802 0.897111 20 3942 
5.911111 2127 2128 0.897333 18 3379 
6.788889 2444 2444 0.836111 20 3664 
7.625 2744 2745 0.830556 19 3599 
8.455556 3044 3044 0.841667 20 3767 
9.297222 3347 3347 0.833333 20 3963 
10.13056 3647 3647 0.883315 22 4161 

Q and S are the points of the QRS complex in the ECG waveform. 
 
 

Table 2. Storage unit content for profiling when tested on MIT–BIH arrhythmia database (15 min long each) 

 Datasets 
 

  232 100 200 
 

No. of samples Counts of No. of samples Counts of No. of samples Counts of 
between Q and S points sample between Q and S points sample between Q and S points sample 
 

 8 4 4 1 4 2 
 9 1 5 1 7 2 
10 5 6 1 8 1 
11 13 7 1 9 8 
12 11 8 6 10 11 
13 15 9 3 11 13 
14 8 10 4 12 11 
15 22 11 3 13 14 
16 10 12 2 14 10 
17 8 13 2 15 25 
18 16 14 46 16 12 
19 29 15 303 17 6 
20 33 16 309 18 10 
21 44 17 200 19 25 
22 245 18 97 20 16 
23 341 19 65 21 23 
24 43 20 56 22 75 
25 11 21 25 23 190 
26 2 22 6 24 270 
27 1 23 5 25 277 
28 7 25 1 26 138 
29 79 29 1 27 41 
30 1   28 28 
     29 205 
     30 1 

 
 
that waveform belongs to the heartbeat class LBBB or 
RBBB or VPC or APC respectively for which the particu-
lar hash function has resulted in a bell-shaped curve. 
Similarly, bell-shaped (double) profile curve for the next 
five hash functions of phase 3 results in the heartbeat 
class NORM-RBBB or NORM-VPC or NORM-APC or 
LBBB-VPC or RBBB-APC respectively. 

 We run our algorithm for data of first 15 min of MIT–
BIH database. Irregular beats are generated at the end of 
the curve. Figure 2 shows how the contents of the memory 
elements get distributed for the datasets. 
 Normal distribution curve will result if we make a plot 
between count value and its content, i.e. count value plot-
ted on the x-axis and number of times that count value is 



RESEARCH COMMUNICATIONS 
 

CURRENT SCIENCE, VOL. 112, NO. 9, 10 MAY 2017 1918 

Table 3. Results of area of the curve laying outside the Gaussian curve when tested on MIT–BIH arrhythmia  
 database (15 min long each) 

 MIT–BIH Total no. counts 
Dataset abnormal (%) of the samples ( )b

x aA y x   Our abnormal (%) Error (%) 
 

103 0 1046 0 0 0 
100 0.675 1138 7 0.615 0.06 
200 19.34 1413 287 20.31 0.97 
232 15.79  949 148 15.59 0.20 
105 2.09 1305 12 0.919 1.17 
112 0 1260 0 0 0 
Avg. 6.3158   6.239 0.4 

 
Table 4. Comparison of beat classification approaches on signal from  
 MIT–BIH arrhythmia database 

    No. of 
Reference Algorithm Se (%) Sp (%) features 
 

28 de Chazal et al. 77.7 98.8 15 
29 Christov et al. 94.77 99.08 15 
17 Iliev et al. 95.7 99.46 3 
26 Besrour et al. 98.38 94.87 10–15 
30 Haseena et al.      DER = 97.54 6 
Proposed    –         DER = 99.57 1 
algorithm  

 
 

 
 

Figure 2. Distribution of counter contents for MIT–BIH arrhythmia 
database readings. 

repeated is plotted on the y-axis (Figure 2). Any value 
which is not zero and lies after the Gaussian curve repre-
sents the irregular beats. To cross-check the results we 
calculated the area under the curve lying outside the 
Gaussian curve, and the results are shown in Table 3. 
Equation (1) gives the area under the curve for abnormal 
regions. 
 
 Area   
 

 
End point

Start point
Content of counter lying outside Gaussian curve.  

 (1) 
 
Table 3 shows the performance of the proposed algorithm 
(regular and irregular beats). Point (16,309) in Figure 2  b  
shows that sample value 16 has the count value 309 in a 
ECG waveform of data number 100. So our result shows 
which beats are regular and which are irregular in the 
Gaussian curve. 
 Table 4 shows a comparison of the methods used for 
classification. Table 5 shows the five statistical indices 
used for comparison: sensitivity (Se), positive predictive 
value (PPV), specificity (Sp), negative predictive value 
(NPV) and total classification accuracy (TCA/DER). 
These are defined in eqs (2)–(6) below 
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Table 5. Performance evaluation of our cardiac profiling scheme for heartbeat classification on  
 MIT–BIH arrhythmia database (15 min long each) 

 MIT–BIH Detected  MIT–BIH Detected 
Dataset total beats total beats ( )b

x aA y x   abnormal beats abnormal beats 
 

103 1046 1046 0 0 0 
100 1138 1138 7 8 7 
200 1413 1413 287 273 287 
232 949 949 148 150 148 
105 1305 1305 12 27 12 
112 1260 1260 0 0 0 
 

Dataset TP FN TN FP Se (%) PPV (%) Sp (%) NPV (%) 
 

103 1046  0  0  0 100 100 100 100 
100 1130  0  7  1 100  99  87 100 
200 1112 14 287  0 98.75 100 100 95.34 
232  799  0 148  2 100 99.75 98.66 100 
105 1278  0  12 15 100 98.83 44.44 100 
112 1260  0   0  0 100 100 100 100 
Avg.     99.79 99.59 88.35 99.22 

 
 
Where TP, true positive; FN, false negative; FP, false 
positive; TN, true negative. 
 We proposed a method for detecting regular and ir-
regular heartbeats in any individual. The method works 
on binary data information instead of any fixed value of 
features. Therefore any changes in amplitude and time do 
not affect the efficiency of the proposed method. We 
have set our system for classifying the waveform of ten 
arrhythmia classes. The output results in a Gaussian 
curve for a particular person, indicating the presence of 
irregular beats. The most important characteristic of the 
proposed method is that it is independent of gender (male 
or female) and age (young or old) and physical condition 
of any individual (walking, running, sleeping, etc.) be-
cause it uses binary data as information instead of any 
fixed value of the ECG waveform. The proposed method 
can be used as an alerting system as it detects irregular 
heartbeats in the ECG waveform. Such automated system 
will be useful in remote areas where a cardiologist may 
not be easily available and also for those who cannot af-
ford expensive cardiac treatment. 
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Determination of competition coefficients constitutes a 
vital part in the competition-based Lotka–Volterra-
type population dynamics models. Various models 
have been proposed for the same, some of which were 
instinctive formulations, while some others were  

derived from dynamical and equilibrium relations 
pertaining to population dynamics. In this work, a 
new instinctive formulation to determine the competi-
tion coefficient has been proposed based on various 
parameters that determine the intensity of interspecific 
competition like the availability of resources, relative 
importance of a particular resource for a species,  
energy expenditure per resource utilization, etc. 
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THE study of interspecific competition amongst species 
has been one of the most prevalent concerns in the field 
of ecology, since the conception of competition. Most of 
the early evidence was forged on the basis of observa-
tional cues and limited laboratory experimentation (that 
too under constrained circumstances), rather than on-the-
field studies1. This led to the questioning of the very 
principle of competition being a major force in popula-
tion dynamics, especially in the 1960s–80s, resulting in a 
surge of experiments to prove or disprove the idea. 
 Most of the attacks were invalidated, but not without 
the amendment of the original theory of competition1. 
Schoener1 reviewed about 164 experiments and discussed 
the results, which showed that interspecific competition 
occurred consistently in different habitat types and also at 
varied trophic levels as predicted by the theory. However, 
these experiments were designed to minimize the effect 
of predation, and thus did not account for the predatory 
effect. Later, Sih et al.2 and Gurevitch et al.3 analysed 
numerous experiments which had taken both predation 
and competition into account. This analysis demonstrated 
predation as a stronger effect, but nevertheless confirmed 
competition as a powerful factor in the interactions of 
multiple species2. Even today, numerous experiments4,5 
and simulations6 demonstrate the importance of inter-
specific and intraspecific competition in modelling the 
dynamics of populations and their evolution. 
 The equations for interspecific competition, as sug-
gested by Volterra7 and later expounded by Lotka and 
Gause8, which form the basis of our discussion, are of the 
general linear form (for n species) 
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where n is the total number of interacting species, Ni the 
population size of species i, Ki the carrying capacity of 
species i, ij the competition coefficient of species i due 
to species j and ri is the intrinsic growth rate of species i. 
Here, the competition coefficient is a key phenomenol-
ogical measure of the interspecific interaction and serves 
an important part in the modelling of actual dynamics. 
(Note that nonlinear forms of these models also exist.) 


