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Estimation of major crop yield rates at the district 
level using calibration estimation technique is re-
ported here when auxiliary information is available at 
the unit level only for the selected villages within each 
district and when the sampling design under consid-
eration is two-stage equal probability without replace-
ment. An estimator was developed for the complex 
sampling design under consideration using the cali-
bration approach. Through evaluation using real data 
collected from a pilot survey, we found that the pro-
posed calibration estimator performs better than the 
usual design-based Horvitz–Thompson estimator un-
der two-stage sampling design. 
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ONE of the most dependable methods to generate reliable 
estimates of the population parameters is sample survey. 
A typical survey objective is to estimate descriptive 
population parameters and analytical parameters, on the 
basis of a sample selected from a population of interest. 
The calibration estimation approach of Deville and Särn-
dal1, where the sampling weights are adjusted to make 
certain estimators match known population totals, is 
commonly used in survey sampling for increasing the  
efficiency of the design-based survey estimates. The gen-
eralized regression estimator is an example of a calibra-
tion estimator. Calibration consists of adjusting the 
weights such that estimates of the auxiliary variable(s) 
satisfy known totals (also referred to as control totals).  
 Deville and Särndal1 estimated a finite population total 
in the presence of univariate or multivariate auxiliary in-
formation. Théberge2 extended the calibration technique 
to estimate population parameters other than totals and 
means, and developed the technique when there is no so-
lution to the calibration equation. He developed a method 
to compute a calibration estimator that used an arbitrary 
distance measure. For every distance measure there is a 
corresponding set of calibrated weights and a calibration 
estimator1. Calibration is also used to achieve consis-
tency. The basic design-consistent Horvitz–Thompson3 
(HT) estimator is the most natural estimator to use if 
there is no auxiliary information available at the estima-
tion stage. It weights data with the inverses of the inclu-
sion probabilities of the sampled units. Such a weight is 

called a sampling weight. The properties of the HT esti-
mator can be improved by following calibration estima-
tion technique when auxiliary information is available. 
This procedure adjusts the sampling weights by multipli-
ers known as calibration factors that make the estimates 
agree with known totals. The resulting weights are called 
calibration weights and the resulting estimates will be  
design-consistent with smaller sampling variance than the 
HT estimator. 
 Suppose we are interested in computing the total value 
of variable Y. Let us assume that the whole population 
U = {1,…, k,…, N} consists of N elements. From this 
population we draw at random sample s of size n without 
replacement. Let i denote the first-order inclusion prob-
ability, i.e. i = pr (i  s) and di = (1/i), the sampling 
weight defined as the inverse of the inclusion probability 
for unit i. Let ij = pr (i and j  s). Our objective is to esti-
mate the population total of variable y which is given as 
 

 
1

.
N

i
i

Y y


  (1) 

 
Classical estimator of the population total (eq. (1)) is the 
HT estimator, which is given by the following formula 
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Its variance under the sampling design is given as 
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Now let us suppose that values of the auxiliary variable x, 
i.e. {xi, i = 1,…, N} are available and 1 ,N

i iX x   the 
population total is known.  
 Ideally we would like 1 .n

i i id x X   Sometimes this is 
not true. The idea behind calibration estimators is to find 
weights wi, i = 1,…, n, close to di, based on a distance 
function, such that 1 .n

i i iw x X   
 A simple case considered by Deville and Särndal1 is 
the minimization of chi-square-type distance function 
given by  
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subject to the constraint equation 1 ;n

i i iw x X   where qi 
are suitably chosen weights called tuning parameter. 
 The weight wi is then obtained as  
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Substituting the value of wi in calibrator estimator 
c 1
ˆ ,n

i i iY w y   only gives 
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Written in this form, we see that ĉY  is same as the linear 
GREG estimator4.  
 In fact, the GREG estimator is a special case of the 
calibration estimator when the chosen distance function is 
the chi-square distance1. In the GREG approach the pre-
dicted values are generated using an assisting model, 
whereas in calibration approach they do not depend on 
any assumption about the assisting model, an assumed re-
lationship (linear, nonlinear, generalized linear, mixed, 
and so on) between study variable and auxiliary variable5. 
 The variance of the calibration estimator is given as 
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The estimator of variance of the proposed calibration es-
timator is given as 
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i i ie y x   and ( ).ij i j ij      
 Calibration estimators of unistage sampling designs 
have been proposed by many researchers5–13, but no cali-
bration estimator was developed for the case of multi-
stage sampling designs which are generally used for 
large- to medium-scale surveys. Aditya et al.14 developed 
calibration estimators of the population total under multi-
stage sampling design assuming positive correlation be-
tween the study variable and auxiliary variable, and 
availability of auxiliary information at cluster level (i.e. 
all primary stage units; psus). They developed higher-
order calibration estimators for precise estimation of vari-
ance under two-stage sampling design14. Here we report 

the calibration estimator when auxiliary information is 
available at the secondary stage unit (ssu) level only for 
the selected psus.  
 We have considered the simple case where information 
on only one auxiliary variable is available. Let the popu-
lation of elements U = {1,…, k,…, NI} be partitioned into 
clusters (i.e. psus), U1, U2,…, Ui,…, .

INU  The size of Ui 
is denoted as Ni. We have  
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At stage one, a sample of psus, sI, of size nI is selected 
from UI according to the design pI(.) with the inclusion 
probabilities Ii and Ii j at the psu level. Given that the 
psu Ui is selected at the first stage, a sample si of size ni 
units is drawn from Ui according to some specified de-
sign pi(.) with inclusion probabilities k/i and kl/i. For the 
second stage sampling we assume the invariance and in-
dependence property. The whole sample of elements and 
its size are then respectively 
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 The inclusion probabilities at the first stage are given 
as 
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 The inclusion probabilities for the second stage are 
given as 
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Let the study variable be yk, which is observed for k  s. 
The parameter to estimate is the population mean 
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In the present situation, auxiliary information is available 
for ssu for the selected psus only, i.e. the auxiliary infor-
mation xk is known for all elements k  s, while the cor-
rect value of 1(1/ ) iN

i kkN x  is available for each sampled 
psu, and correlation between the study variable and auxil-
iary variable is assumed to be positive.  
 The simple HT estimator of the population mean in this 
case will be 
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The proposed calibration estimator of the population 
mean in this case is given as 
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where *

kw  is the calibrated weight corresponding to the 
design weight ak/i. Here, we minimize the chi-square-type 
distance function using Lagrangian multiplier technique 
as described in the earlier cases and obtain the calibrated 
weight. We minimize 
 

 
2*

/ *
*

/1 1 1

( ) , such that .
i i in n N

k k i
k k k

k i kk k k

w a w x x
a q  


    

 
Hence the calibrated weight is obtained as 
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After considering * 1,kq   the estimator becomes 
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The above estimator takes the form of a ratio estimator 
under this condition. Under an equal probability without 
replacement design (SRSWOR) at both the stages, it re-
duces to 
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It can be seen that the calibration estimator takes the form 
of a simple ratio estimator under two-stage sampling  
design15,16. The approximate variance of the proposed es-
timator is obtained by first-order Taylor series lineariza-
tion technique17 as 
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The approximate form of the estimator of variance of the 
calibration estimator is 
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Table 1. Correlation between crop yield (study variable) and seed  
  rate (auxiliary variable) for paddy and wheat 

District Paddy Wheat 
 

Barabanki 0.31 0.13 
Bareilly 0.18 0.14 
Bulandshahar 0.07 0.09 

 
 

Table 2. Observed values in three districts for kharif paddy and rabi wheat for the agricultural year 2013–14 

 Paddy Wheat 
 

 Average area  Production Average seed rate Average area Production Average seed rate 
District  (ha) (kg) (kg/ha) (ha) (kg) (kg/ha) 
 

Barabanki 0.88 1,059,107 Barabanki 0.88 1,059,107 Barabanki 
Bareilly 0.97   893,828 Bareilly 0.97   893,828 Bareilly 
Bulandshahar 0.98   794,642 Bulandshahar 0.98   794,642 Bulandshahar 

 
 

Table 3. Comparison of calibration estimator with Horvitz–Thomson estimator for yield (kg/ha) 

 Paddy Wheat 
 

District HTy  SE caly  SE HTy  SE caly  SE 
 

Barabanki 3853.39 1.31 3638.87 0.80 3791.89 3.23 5136.72 0.43 
Bareilly 3128.14 3.24 3447.18 0.45 4158.57 3.42 4117.82 0.47 
Bulandshahar 4037.01 1.08 4701.51 0.79 4686.76 2.49 3601.40 0.90 
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 Data on crop yield, crop area and seed rate of paddy in 
kharif and wheat in rabi season for the agricultural year 
2013–14 collected from selected farmers in three districts 
of Uttar Pradesh (UP), viz. Barabanki, Bareilly and Bu-
landshahar were used for the empirical study. This is a 
part of the data collected from the pilot survey carried out 
for estimation of seed, feed and wastage ratios of the ma-
jor food grain crops by the Division of Sample Survey of 
ICAR-Indian Agricultural Statistics Research Institute, 
New Delhi. The sampling design adopted for data collec-
tion is that of stratified two-stage random sampling with 
district as stratum, village as psu and farmers growing 
food-grain crops and having livestock as ssu. In a district, 
a sample of 20 villages was allocated to different 
tehsils/blocks in proportion to the number of villages and 
selected by simple random sampling without replacement 

(SRSWOR): If any selected village was found to be in-
habited, it was substituted with another village falling in 
the same tehsil/block.  
 Table 1 provides the observed values of total produc-
tion (kg) in the three districts for rice in kharif and wheat 
in rabi season. The correlation between crop yield and 
yield rate was found to be positive in all the six cases 
(Table 2). However, no assumption about the assisting 
model between the study variable and auxiliary variable 
was made for the calibration approach. Necessary compu-
tations required for the estimation were made using the R 
software.  
 The value of the population-level seed rate was kept 
fixed throughout the empirical study as 25 kg/ha for rice 
and 100 kg/ha for wheat in all the three districts. 
 For each crop, estimates of calibration cal( )y  and HT 

HT( )y  estimators were generated from the given data. 
Coefficient of variation (CV) of both the estimators was 
also worked out. Table 3 provides results obtained from 
the above calculations. 
 A close perusal of Table 3 shows that the estimate of 
paddy yield using HT estimator lies between 3127.39 and 
4037.01 kg/ha at the district level along with the %CV 
varying between 1.08 and maximum 3.24, whereas  
the yield estimates generated using the proposed calibra-
tion ratio-type estimator lie between 3638.87 and 
4701.51 kg/ha with %CV varying between 0.45–0.80 at 
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the district level. There was significant improvement in 
the estimators by the use of auxiliary information through 
calibration estimation technique for estimation of rice 
yield. In Bareilly district, there was maximum improve-
ment in %CV of the calibration ratio-type estimator 

cal( )y  over the simple HT estimator HT( )y  for estimation 
of paddy yield when the sampling design under consid-
eration was two-stage equal probability without replace-
ment sampling design at each stage of selection. Further, 
the yield estimates of wheat crop varied from 3797.89 to 
4686.76 kg/ha in case of HT estimator, whereas it varied 
from 3601.40 to 5136.72 kg/ha in case of the proposed 
calibration ratio-type estimator. The %CV varied from 
2.49 to 3.42 in case of the HT estimator and it varied 
from 0.43 to 0.90 in case of the proposed calibration  
ratio-type estimator. So for estimation of wheat yield in 
the above-mentioned districts of UP, it can be seen that 
calibration ratio-type estimator of crop yield performs 
better that the usual HT estimator with respect to im-
provement in %CV under two-stage equal probability 
without replacement sampling design. 
 It can be concluded that for estimation of crop yield, 
the proposed estimator is more efficient than the HT es-
timator with respect to %CV under two-stage equal prob-
ability without replacement sampling design. Further, it 
can be concluded that no prior assumptions are made 
about the assisting model for formation of estimators with 
the help of auxillary informations, calibration estimation 
technique can be treated as a better alternative. 
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Estimation of carrying capacity of  
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To avoid the environmental pollution caused by live-
stock manure and provide rational layout of livestock 
farm, we estimated the livestock manure phosphorus 
load by the excretion coefficient method and have  
developed a livestock manure nutrient distribution 
model. The livestock manure phosphorus was distrib-
uted to farmlands using this model and spatial analy-
sis technology. The carrying capacity of livestock 
farms was calculated based on the maximum livestock 
manure phosphorus carrying capacity of farmlands 
and expressed in pig for the Shangjie town, China. 
The results showed that the maximum, minimum,  
average and total livestock manure phosphorus carry-
ing capacity of farmlands was about 55.97, 0.74, 12.21 
and 13,382.90 kg respectively, and the total load of 


