Lemon cv. Assam lemon (*Citrus limon* Burm.) quality and soil-leaf nutrient availability affected by different pruning intensities and nutrient management

Arkendu Ghosh^{1,5,*}, K. Dey^{1,5}, N. Bhowmick¹, S. K. Ghosh¹, S. Bandyopadhyay², P. S. Medda³ and A. Ghosh⁴

¹Department of Pomology and Post Harvest Technology,

²Department of Agronomy, ³Department of Plantation Crops and Processing,

⁴Department of Agricultural Statistics, Uttar Banga Krishi Viswavidyalaya, Pundibari, Cooch Behar 736 165, India

⁵Present address: Department of Fruits and Orchard Management, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia 741 252, India

A field experiment was laid out in two factorial randomized block design with four levels of pruning and seven levels of nutrients, consisting recommended dose of fertilizers and different combinations of organic manure (vermicompost), inorganic fertilizer, bio-fertilizer (azotobacter), mycorrhiza (VAM) and their interaction between 2013 and 2015 on 9-year-old lemon plants. Studies revealed that all physicochemical parameters, viz. fruit weight, puncture force, total soluble solid, total sugar, ascorbic acid were highest in (P_3N_4) combination of higher level of pruning. However, the maximum availability of leaf and soil nutrients was recorded in N_4 .

Keywords: Lemon, nutrient management, pruning, soil-leaf nutrient availability, yield and quality.

CITRUS, the most economically important fruit crop in the world, is grown in developed and developing countries and constitutes one of the main sources of vitamin C. There is also an increasing demand for 'high quality fresh citrus' driven by World Health Organization recommendations¹. It accounts for 4% (286.4 thousand ha) of total area under fruit and 3.2% (2835 thousand MT) of total fruit production with a productivity of 9.9 MT ha⁻¹ in India². Assam lemon is one of the important varieties of lemon, extensively grown in the north-eastern parts of India. It is a dwarf cultivar suitable for high density planting³. In northern parts of West Bengal, it is early bearing with three fruiting seasons, viz. April-May, August-September and November-December. The earlier vegetative flushes of the previous season growth generally are more productive⁴. It was observed that the main reason for decline in the productivity of the plant was unbalanced overcrowded orchard which also resulted in high disease-pest infestation. Therefore, pruning is essential to maximize sunlight penetration which not only influences flowering and fruit set but also enhances fruit quality and colour development. As lemon plants bear thrice a year, proper manuring and fertilization have to be resorted for obtaining quality production which depends on healthy and sturdy tree growth⁵. It has been proved that nitrogenous, phosphatic and potassic fertilizers have direct influence on many life processes such as photosynthesis, formation of sugars and starch, fruit development, synthesis of proteins, enhancement of fruit flavour, colour, size, appearance, soluble solids, acidity, vitamin content, taste as well as shelf life^{6,7}. However, continuous use of chemical fertilizers has degraded soil health in terms of fertility and productivity and caused soil pollution. In such a situation, the combined application of organic, inorganic and biofertilizers need to be resorted for avoiding the deleterious effect of chemical fertilizers as well as to improve the physical properties of soil by increasing water holding capacity, total pore space, aggregate stability, erosion resistance, temperature insulation and to maintain better nutrient availability in both soil and leaf. However, information about the response of lemon against pruning and nutrient management in northern parts of West Bengal is lacking. Keeping this in view, the present study was conducted to standardize the impact of pruning intensity and nutrient management in fruit yield and quality of lemon cv. Assam lemon.

Materials and methods

Experimental site

The present study was carried out between 2013 and 2015 on seven-year-old lemon cv. Assam lemon plants. The plant were planted at $3 \text{ m} \times 3 \text{ m}$ spacing at the instructional farm of Uttar Banga Krishi Viswavidyalaya, Pundibari, Cooch Behar, West Bengal, situated at $26^{\circ}19'86''N$ lat. and $89^{\circ}23'53''E$ long. with an altitude of 43 m amsl.

^{*}For correspondence. (e-mail: ghoshranasonai@gmail.com)

Treatment details and experimental design

There were four levels of pruning, namely $P_0 - N_0$ pruning (control), $P_1 - 25$ cm, $P_2 - 50$ cm and $P_3 - 75$ cm pruning from the terminal portion of the shoot respectively. Seven treatments of nutrient management, viz. $N_1 - 100\%$ recommended dose of fertilizer (RDF) (nitrogen at 210 g plant⁻¹, phosphorous at 140 g plant⁻¹, potas-sium at 210 g plant⁻¹), N₂ - vermicompost (20 g plant⁻¹) + azotobacter (18 g plant⁻¹) + vesicular arbuscular mycorrhiza (150 g plant⁻¹), N_3 – vermicompost, N_4 – 75% RDF + vermicompost + azotobacter + vesicular arbuscular mycorrhiza, N₅-75% RDF + vermicompost, N₆-50% RDF + vermicompost + azotobacter + vesicular arbuscular mycorrhiza and $N_7 - 50\%$ RDF + vermicompost were applied alone and in combination with different levels of pruning. The experiment was laid out in two factorial asymmetrical randomized block design (RBD) and 28 treatment combinations (four levels of pruning and seven levels of nutrients) with three replications and six plants were kept in each treatment and two plants per replication.

Application of treatments

All pruning levels were done on 21 November 2013, after harvesting of Mrig bahar. Nitrogenous fertilizer was applied in two split doses. First, half dose of nitrogen and full dose of phosphorus, potassium and vermicompost were applied in February 2014 and the remaining half of nitrogen was applied in April 2014. Azotobacter and vesicular arbuscular mycorrhiza were applied in December 2013, after harvesting of Mrig bahar.

Observation and methods of estimation

All quality parameters were recorded at three distinct seasons, viz. Ambe, Mrig and Hasth bahar respectively. After harvesting of each bahar, thirty fruits were taken for each treatment, washed in running tap water and the necessary physicochemical analysis was done.

Fruit weight

Fruit weight was measured using an electronic (digital) balance (Mettler Toledo PB153-L) and expressed in gram (g).

Fruit length and breadth

Fruit length and breadth were measured using digital slide caliper and expressed in centimeters (cm).

Fruit colour

Fruit colour were recorded using Royal Horticulture Society mini colour chart (fifth edition, 2007).

Specific gravity

Specific gravity was calculated by the formula of water displacement method (water volume/weight of the fruit).

Juice percentage

For calculating the juice content, fruit juice was extracted with the help of a glass squeezer, then strained and its volume measured using a measuring cylinder. The juice content was expressed in percentage (%) with respect of fruit weight.

Puncture force of fruit

Puncture force of fruit was measured with the help of texture analyzer (Model: TA-XT plus, Stable Micro System Limited, Surrey, UK) equipped with a 50-N load cell fitted with a cylindrical probe (2 mm and a trigger force of 5 g).

Peel thickness

Peel thickness of fruits was determined with a digital slide caliper (expressed in mm).

Total soluble solids (TSS)

TSS content of fruit was recorded with a hand refractometer (expressed in ${}^{\circ}\text{Brix})^{8}$.

Total sugar and reducing sugar

Total sugar and reducing sugar content were estimated $(in \%)^8$.

Titrable acidity

The acidity of the fruit juice was estimated (in %)⁹.

Ascorbic acid

Ascorbic acid content of fruits was measured colorimetrically by UV/VIS spectrometer (Perkin Elmer, Lambda 25) (expressed as mg per 100 g fruit pulp)⁹.

Leaf nutrient analysis

For leaf nutrient analysis, six-month-old leaves were taken for sampling. From each tree about 40 leaves with no apparent insect or any other physical damage were collected, packed in polythene bags, labelled and carried to the laboratory. The leaves were washed carefully with detergent and distilled water to remove dust and contaminants, air-dried in the shade for a couple of days followed by oven drying at 70°C, ground to fine powder and stored in air-tight plastic bottles at room temperature before digestion for nutrient analysis¹⁰. Total leaf nitrogen (in percentage) was estimated using oven-dried and ground leaf sample in CHNSO Elementer (Model no. Vario EL III). Total phosphorus (in percentage) content of leaves was estimated by aminonaphtholsulphonic acid (ANSA) reagent following the method of Fiske and Row¹¹, using UV-VIS spectrometer (Perkin Elmer) at 660 nm. Total potassium (%) content of leaves was estimated using flame photometer (Systronics, Model 128) following Jackson¹².

Soil nutrient analysis

Composite soil samples from the entire experimental field were collected from 0 to 60 cm depth, as 60-80% of root activity in citrus crops is confined to first 60 cm top soil¹³. Samples were air-dried at room temperature and passed through a 2 mm sieve and homogenized¹⁴. Available nitrogen (kg/ha) was determined by alkaline KMNO4 method developed by Subbiah and Asija¹⁵ using Kel plus-Distill Em. Auto Analyzer¹⁶; phosphorus (kg/ha) content was determined by extracting the soil with a mixture of 0.03 M NH₄F and 0.025 M HCl for 5 min (ref. 17) followed by calorimetric measurement of phosphorus by UV/VIS spectrometer (Perkin Elmer, Lambda 25)¹⁸ and potassium (kg/ha) was determined by extracting the soils with neutral normal NH₄ acetate extract and then the content was measured using a flame photometer following Black¹⁸.

Statistical analysis

Analysis of variance (one-way classified data) for each parameter was performed using ProcGlm of statistical analysis system (SAS) software (version 9.3). Mean separation for different treatments and parameters was performed using least significant different (LSD) test ($P \le 0.05$). Normality of residuals assuming analysis of variance (ANOVA) was tested using Kolmogrov-Smirnov, Shapiro-Wilk, Cramer-Von Mises and Anderson Darling procedures using Proc-Univariate procedure of SAS (version 9.3).

Results and discussion

Fruit weight

Observations recorded on fruit weight under different treatments and their combinations (Tables 1 and 2) show significant difference under different pruning and nutrient levels in all three respective seasons (Ambe, Mrig and Hasth bahar). Highest fruit weight was recorded in P₃ (75 cm pruning) followed by P₂ (50 cm pruning) at Ambe, Mrig and Hasth bahar. In case of nutrients, highest fruit weight was observed in N₄ followed by N₆. Lowest fruit weight was observed in N₃. Increase in weight might be due to availability of more nutrients both in leaf and soil in this particular treatment. The interaction effect between pruning and nutrients revealed that the fruit weight was statistically significant under all treatment combinations in three seasons. Thus maximum fruit weight was found in T₂₅ (P₃N₄) combination followed by T₂₇ (P₃N₆).

These results might be due to better sunlight penetration in plant canopy, which caused higher fruit weight and better colour development in heavily pruned citrus plants than unpruned plants¹⁹. Similar findings were reported by Ahmad *et al.*²⁰ in kinnow and Singh *et al.*¹⁹ in citrus. Improvement in the quality of fruits might be due to proper supply of nutrients and induction of hormones, which stimulates cell division, cell elongation, increase in number and weight of fruits, better root development and better translocation of water uptake and deposition of nutrients. This might be attributed to improved fertilizer use efficiency with the application of organic source of nutrients²¹. These results agree with Kumar *et al.*²² in lemon cv. Pant Lemon.

Fruit length

The data pertaining to fruit length (Tables 1 and 2) were significantly different at different levels of pruning and nutrients and at combined effect of both. However, the data were statistically at par under N_5 and N_6 in Ambe bahar and N_2 and N_3 in Mrig bahar. Maximum fruit length was recorded in P_3 at Ambe, Mrig and Hasth bahar followed by P_2 . The maximum fruit length was recorded in N_4 followed by N_6 and the minimum fruit length was observed in N_3 at Ambe, Mrig and Hasth bahar respectively. The fruit length was influenced by different interaction effects between pruning and nutrients. It was revealed that T_{25} (P_3N_4) gave the highest fruit length followed by T_{27} (P_3N_6).

Fruit breadth

Observations on fruit breadth were statistically significant under different treatments except under nutrient treatments in Ambe bahar (Tables 1 and 2). The highest fruit breadth was recorded in P₃ followed by P₂ and in N₄, whereas the lowest fruit breadth was observed in N₃ at all three seasons respectively. Thus the larger fruit size (length and breadth) in heavily pruned plants might be attributed to lower fruit density and increased leaf: fruit ratio that supplied higher photosynthates to plants under this treatment; whereas lower fruit size in unpruned

		Weight (g)			ength (cm)		Η	3readth (cm)		Spe	cific gravit	×
Treatments	Ambe	Mrig	Hasth	Ambe	Mrig	Hasth	Ambe	Mrig	Hasth	Ambe	Mrig	Hasth
P_0	112.00d	119.33d	115.00d	12.53d	13.72d	13.25d	4.27c	5.54d	4.78d	0.61d	0.67d	0.64d
\mathbf{P}_1	122.00c	130.67c	127.00c	13.46c	14.42c	14.08c	4.40b	5.80c	4.89c	0.72c	0.77c	0.74c
\mathbf{P}_2	124.00b	134.00b	128.00b	13.64b	15.23b	14.75b	4.45ab	5.89b	4.99b	0.76b	0.82b	0.79b
P_3	141.00a	154.67a	147.00a	14.44a	15.70a	15.05a	4.48a	6.20a	5.21a	0.82a	0.87a	0.85a
SEm (±)	0.86	0.85	0.66	0.04	0.03	0.01	0.03	0.03	0.01	0.01	0.01	0.01
LSD ($P \le 0.05$)	2.45	2.41	1.88	0.11	0.08	0.04	0.08	0.07	0.03	0.02	0.02	0.02
N,	112.00de	119.33de	115.00cd	12.53c	13.72de	13.25c	4.27a	5.54bc	4.78cd	0.61bc	0.67bc	0.64cd
$ m N_2$	111.67de	119.00e	115.00d	12.46c	13.69ef	13.25d	4.26a	5.51cd	4.78de	0.61cd	0.64c	0.62d
N_3	110.67e	118.00e	114.00d	12.37d	13.67f	13.12e	4.22a	5.30d	4.71e	0.56d	0.62c	0.59d
N_4	121.33a	128.00a	126.00a	12.63a	13.98a	13.45a	4.37a	5.71a	4.83a	0.67a	0.73a	0.71a
N_5	120.67bc	127.67bc	125.00b	12.58ab	13.80bc	13.34b	4.32a	5.61abc	4.79bc	0.65ab	0.72ab	0.69ab
N_6	121.33ab	128.00ab	125.00ab	12.63ab	13.95ab	13.45a	4.34a	5.68ab	4.81ab	0.66ab	0.73a	0.71ab
N_7	113.33cd	120.33cd	116.33c	12.57bc	13.74cd	13.29b	4.27a	5.60abc	4.79bcd	0.64ab	0.69ab	0.67bc
SEm (±)	1.14	1.12	0.88	0.05	0.04	0.02	0.03	0.03	0.02	0.01	0.01	0.01
LSD ($P \le 0.05$)	3.24	3.19	2.48	0.15	0.10	0.05	NS	0.10	0.04	0.03	0.03	0.03
Means with the se	ime letter are	not significan	utly different.									

Table 2.	Interaction	effect of pru	uning and nut	rient manag	ement on frui	it weight, len	gth, breadth a	ind specific	gravity of le	mon cv. Ass	am lemon	
		Weight (g)		Ι	ength (cm)		E	Breadth (cm)	0	Spe	cific gravit	y
Treatments	Ambe	Mrig	Hasth	Ambe	Mrig	Hasth	Ambe	Mrig	Hasth	Ambe	Mrig	Hasth
$T_1 (P_0 N_1)$	112.00	119.33	115.00	12.53	13.72	13.25	4.27	5.54	4.78	0.61	0.67	0.64
$T_2 (P_0 N_2)$	111.67	119.00	115.00	12.46	13.69	13.25	4.26	5.51	4.78	0.61	0.64	0.62
$T_3 (P_0 N_3)$	110.67	118.00	114.00	12.37	13.67	13.12	4.22	5.30	4.71	0.56	0.62	0.59
$T_4 (P_0 N_4)$	121.33	128.00	126.00	12.63	13.98	13.45	4.37	5.71	4.83	0.67	0.73	0.71
$T_5 (P_0 N_5)$	120.67	127.67	125.00	12.58	13.80	13.34	4.32	5.61	4.79	0.65	0.72	0.69
$T_{6} (P_{0}N_{6})$	121.33	128.00	125.00	12.63	13.95	13.45	4.34	5.68	4.81	0.66	0.73	0.71
$T_7 (P_0 N_7)$	113.33	120.33	116.33	12.57	13.74	13.29	4.27	5.60	4.79	0.64	0.69	0.67
$T_8 (P_1 N_1)$	122.00	130.67	127.00	13.46	14.42	14.08	4.40	5.80	4.89	0.72	0.77	0.74
$T_9 (P_1 N_2)$	121.67	130.33	126.67	13.44	14.42	14.08	4.38	5.75	4.87	0.69	0.77	0.74
T_{10} (P ₁ N ₃)	121.33	130.00	126.33	13.23	14.34	14.07	4.37	5.72	4.84	0.69	0.77	0.74
T_{11} (P ₁ N ₄)	123.33	132.00	128.00	13.56	14.65	14.21	4.43	5.84	4.93	0.75	0.81	0.78
T_{12} (P ₁ N ₅)	122.00	131.33	127.33	13.53	14.59	14.14	4.42	5.83	4.91	0.74	0.79	0.75
T ₁₃ (P ₁ N ₆)	122.67	132.00	127.67	13.55	14.60	14.17	4.43	5.83	4.92	0.74	0.80	0.77
$T_{14} (P_1 N_7)$	122.00	131.00	127.33	13.48	14.53	14.12	4.41	5.81	4.90	0.73	0.79	0.75
$T_{15} (P_2 N_1)$	124.00	134.00	128.00	13.64	15.23	14.75	4.45	5.89	4.99	0.76	0.82	0.79
T_{16} (P ₂ N ₂)	124.00	133.33	128.00	13.60	14.99	14.65	4.45	5.87	4.95	0.75	0.82	0.79
T_{17} (P ₂ N ₃)	123.67	132.67	128.00	13.60	14.83	14.43	4.45	5.85	4.95	0.75	0.81	0.78
$T_{18} (P_2 N_4)$	130.67	140.00	135.00	13.82	15.61	14.89	4.47	6.03	5.11	0.78	0.85	0.83
T_{19} (P ₂ N ₅)	126.67	134.33	130.33	13.70	15.56	14.82	4.46	5.90	5.07	0.76	0.84	0.82
$T_{20} (P_2 N_6)$	128.00	135.00	130.67	13.72	15.56	14.88	4.47	6.01	5.08	0.77	0.84	0.82
T_{21} (P ₂ N ₇)	124.33	134.33	130.00	13.68	15.38	14.81	4.46	5.90	5.04	0.76	0.83	0.81
T_{22} (P ₃ N ₁)	141.00	154.67	147.00	14.44	15.70	15.05	4.48	6.20	5.21	0.82	0.87	0.85
T_{23} (P ₃ N ₂)	136.33	148.67	145.00	14.35	15.68	14.95	4.48	6.14	5.19	0.79	0.87	0.85
T_{24} (P ₃ N ₃)	132.00	148.00	142.67	14.04	15.62	14.89	4.48	6.07	5.18	0.79	0.87	0.85
T_{25} (P ₃ N ₄)	154.67	169.33	158.67	14.97	15.90	15.45	4.62	6.28	5.35	0.84	0.93	0.92
$T_{26} (P_3 N_5)$	144.00	162.00	155.00	14.94	15.71	15.34	4.50	6.23	5.25	0.83	0.89	0.88
T_{27} (P ₃ N ₆)	151.67	165.00	158.00	14.95	15.78	15.4	4.51	6.26	5.31	0.84	0.91	0.89
$T_{28} (P_3 N_7)$	143.67	161.00	152.00	14.63	15.70	15.26	4.48	6.23	5.23	0.83	0.87	0.85
SEm (±)	2.28	2.25	1.75	0.10	0.07	0.03	0.07	0.07	0.03	0.02	0.02	0.02
LSD ($P \le 0.05$)	6.47	6.37	4.97	0.29	0.21	0.10	NS	NS	NS	NS	NS	NS

plants may be due to higher competition of photoassimilates among the developing fruits⁷. Similar results were found in guava²³ and in kinnow fruit²⁰. Increase in fruit length and breadth might also be due to cell division in the beginning and enlargement in later stages. Increase in fruit size with potassium application could be due to the fact that potassium increases photophosphorylation and dark reaction of photosynthesis which leads to the accumulation of more carbohydrates and also enhancing the translocation of photosynthates, which mobilize the stored material from leaves and stem towards the fruit²⁴.

Specific gravity

Data on fruit specific gravity of lemon fruits under different treatments have been presented in Tables 1 and 2 for the three seasons. Maximum specific gravity was recorded in P₃ followed by P₂ at Ambe, Mrig and Hasth bahar. Minimum specific gravity was observed in unpruned (P₀) plants at all three seasons respectively. Similarly maximum specific gravity was recorded in N₄ followed by N₆ and minimum specific gravity was observed in N₃. The interactions between pruning and nutrients have no effect on fruit specific gravity. Higher nutrient availability and greater production of photosynthates through pruning enhanced higher fruit weight increasing the specific gravity.

Fruit colour

Observations on fruit colour under different treatments and their combination are presented in Tables 3 and 4. Light green fruit colour was recorded in P₃ (YGG144C), dark green colour fruit was observed in (P₀) unpruned plants (GG143A); and light green fruit colour (YGG144B) was recorded in N₄ followed by N₆ (YGG144A). Dark green colour fruit (GG143B) was observed in N₃ and the interaction effect between pruning and nutrient revealed that T_{25} (P₃N₄) maintained light green fruit colour (YGG144C), whereas dark green colour fruit was recorded (GG143C) in T₃ (P₀N₃) at Ambe, Mrig and Hasth bahar respectively. It might be due to better sunlight penetration in plant canopy, which caused better colour development in heavily pruned plants than unpruned plants¹⁹. Similar results were recorded by Ahmad et al.²⁰ in kinnow fruits. Changing fruit colour from dark green to light green might be enhanced by increasing potassium through integrated use of fertilizers⁷.

Juice percentage

Tables 3 and 4 show juice percentage under different pruning and nutrient treatments in all the three respective seasons. Maximum juice percentage was recorded in P_3

followed by P₂. Similarly maximum juice percentage was recorded in N₄ followed by N₆ at Ambe, Mrig and Hasth bahar. Minimum juice percentage was observed in N₃. The interaction effect between pruning and nutrients revealed significant variation with respect to juice (%) under Mrig and Hasth bahar. Results showed that T₂₅ (P_3N_4) gave the highest juice percentage followed by T₂₇ (P₃N₆), whereas lowest juice percentage was recorded in T_3 (P₀N₃) in the three seasons respectively. These results agree with the findings of Ahmad et al.²⁰ in kinnow and in Valencia orange²⁵, which showed higher juice percentage in heavily pruned plants. Increase in juice percentage could be due to the fact that humic acid and fulvic acid fraction of the soil organic matter contributed by the organic sources (vermicompost) would have probably formed water soluble micronutrient, thereby increasing their availability and uptake resulting in better quality 26 .

Peel thickness

Observations on peel thickness under different pruning and nutrients level have been presented in Tables 3 and 4 for the three seasons. Highest peel thickness was recorded in P₃ (4.95, 5.08 and 5.04 mm) and the lowest peel thickness was observed in unpruned plants (4.81, 4.93 and 4.89 mm) at Ambe, Mrig and Hasth bahar respectively. Similarly highest peel thickness (44.84, 4.97 and 4.91 mm) was recorded in N₄ followed by N₆ (4.84, 4.96 and 4.91 mm) and lowest peel thickness (4.78, 4.92 and 4.85 mm) was observed in N₃ in the three seasons respectively. The interaction effect was statistically at par under three cropping seasons except in Ambe bahar.

Puncture force of fruit

Data pertaining to puncture force of fruit under different pruning and nutrient treatments was significantly different in three seasons (Tables 3 and 4). Maximum fruit firmness was recorded in P₃ (0.52, 0.59 and 0.54 N) followed by P₂ (0.48, 0.55 and 0.51 N) and similarly in N₄ (0.46, 0.53 and 0.48 N) followed by N₆ (0.45, 0.52 and 0.48 N) in all the three seasons. Minimum puncture force of fruit (0.38, 0.45 and 0.41 N) was observed in N₃.

Total soluble solids

Data on total soluble solids of lemon fruits under different pruning and nutrient treatments were significantly different (Tables 5 and 6) in three seasons, although it was statistically at par under different nutrient treatments in Mrig bahar. The highest total soluble solids was recorded in P₃ (6.03, 6.73 and 6.53°Brix) followed by P₂ (5.93, 6.67 and 6.33°Brix); maximum total soluble solids (5.53,

		Colour			Juice (%)		Peel t	hickness (m	m)	Puncti	ure force ()	ź
Treatments	Ambe	Mrig	Hasth	Ambe	Mrig	Hasth	Ambe	Mrig	Hasth	Ambe	Mrig	Hasth
\mathbf{P}_0	YGG146B	YGG146B	YGG146B	29.35d	30.55d	30.13d	4.81d	4.93d	4.89d	0.44c	0.51b	0.47c
P_1	YGG144B	YGG144B	YGG144B	37.17c	37.87c	37.39c	4.87c	5.00c	4.95c	0.46b	0.53b	0.49b
\mathbf{P}_2	YGG144A	YGG144A	YGG144A	42.07b	45.84b	45.38b	4.92b	5.05b	4.99b	0.48b	0.55b	0.51b
P_3	YGG144B	YGG144B	YGG144B	50.32a	51.80a	51.34a	4.95a	5.08a	5.04a	0.52a	0.59a	0.54a
SEm (±)	I	I	I	1.19	0.02	0.01	0.01	0.01	0.01	0.01	0.01	0.01
LSD ($P \le 0.05$)	I	I	I	3.38	0.04	0.03	0.02	0.02	0.02	0.02	0.02	0.02
N.	YGG146B	YGG146B	YGG146B	29.35e	30.55e	30.13e	4.81cde	4.93cde	4.89bc	0.44abc	0.51b	0.47abc
N_2	YGG144A	YGG144A	YGG144A	29.24f	29.87f	29.51f	4.81de	4.92de	4.89cd	0.41bc	0.48ab	0.44bc
N_3	YGG144B	YGG144B	YGG144B	29.12g	29.72g	29.45g	4.78e	4.92e	4.85d	0.38c	0.45ab	0.41c
N_4	GG143B	GG143B	GG143B	30.40b	31.17a	30.65a	4.84a	4.97a	4.91a	0.46a	0.53a	0.48a
N_5	YGG144A	YGG144A	YGG144A	30.21c	30.85c	30.45c	4.83bc	4.96bc	4.91bc	0.45abc	0.52a	0.48ab
N_6	YGG144B	YGG144B	YGG144B	30.26a	31.00b	30.59b	4.84ab	4.96ab	4.91ab	0.45ab	0.52a	0.48abc
N_7	YGGN144A	YGGN144A	YGGN144A	29.76d	30.78d	29.33d	4.83bcd	4.94bcd	4.91bc	0.45abc	0.51ab	0.47abc
SEm (±)	I	I	I	1.57	0.02	0.02	0.01	0.01	0.01	0.01	0.01	0.01
LSD ($P \le 0.05$)	I	I	I	4.47	0.06	0.04	0.03	0.03	0.03	0.03	0.02	0.02
Means with the	same letter ar	e not significa	antly different.	(YGG, Yel	low green grc	up, GG, gree	sn group).					

Table 3. Effect of pruning and nutrient management on fruit colour, juice percentage, peel thickness and puncture force of lemon cv. Assam lemon

Table 4.	Interaction effect	t of pruning ar	nd nutrient man	lagement o	n fruit colour	, juice percen	ntage, peel th	ickness and	puncture for	rce of lemon	cv. Assam	lemon
		Colour			Juice (%)		Peel	thickness (n	um)	Punct	ure force ((z
Treatments	Ambe	Mrig	Hasth	Ambe	Mrig	Hasth	Ambe	Mrig	Hasth	Ambe	Mrig	Hasth
$T_1 (P_0 N_1)$	YGG146B	YGG146B	YGG146B	29.35	30.55	30.13	4.81	4.93	4.89	0.44	0.51	0.47
$T_2 (P_0 N_2)$	YGG144A	YGG144A	YGG144A	29.24	29.87	29.51	4.81	4.92	4.89	0.41	0.48	0.44
$T_3 (P_0 N_3)$	YGG144B	YGG144B	YGG144B	29.12	29.72	29.45	4.78	4.92	4.85	0.38	0.45	0.41
$T_4 (P_0 N_4)$	GG143B	GG143B	GG143B	30.40	31.17	30.65	4.84	4.97	4.91	0.46	0.53	0.48
$T_5 (P_0 N_5)$	YGG144A	YGG144A	YGG144A	30.21	30.85	30.45	4.83	4.96	4.91	0.45	0.52	0.48
$T_{6} (P_{0}N_{6})$	YGG144B	YGG144B	YGG144B	30.26	31.00	30.59	4.84	4.96	4.91	0.45	0.52	0.48
$T_7 (P_0 N_7)$	YGGN144A	YGGN144A	YGGN144A	29.76	30.78	29.33	4.83	4.94	4.91	0.45	0.51	0.47
$T_8 (P_1 N_1)$	YGG144B	YGG144B	YGG144B	37.17	37.87	37.39	4.87	5.00	4.95	0.46	0.53	0.49
$T_9 (P_1N_2)$	YGG144B	YGG144B	YGG144B	36.75	37.83	37.05	4.87	4.99	4.94	0.46	0.53	0.49
$T_{10} (P_1 N_3)$	YGG144A	YGG144A	YGG144A	30.54	37.62	30.89	4.85	4.98	4.92	0.46	0.53	0.48
T_{11} (P ₁ N ₄)	GG143A	GG143A	GG143A	40.58	41.95	41.45	4.90	5.03	4.97	0.48	0.54	0.50
T ₁₂ (P ₁ N ₅)	YGG144B	YGG144B	YGG144B	37.23	41.33	37.58	4.88	5.02	4.95	0.47	0.54	0.49
T ₁₃ (P ₁ N ₆)	YGG144A	YGG144A	YGG144A	38.44	41.89	41.01	4.90	5.02	4.97	0.47	0.54	0.49
T_{14} (P ₁ N ₇)	YGGN144A	YGGN144A	YGGN144A	37.21	37.88	37.45	4.88	5.01	4.95	0.47	0.53	0.49
$T_{15} (P_2 N_1)$	YGG144A	YGG144A	YGG144A	42.07	45.84	45.38	4.92	5.05	4.99	0.48	0.55	0.51
T_{16} (P ₂ N ₂)	YGG144B	YGG144B	YGG144B	41.24	45.84	42.35	4.91	5.05	4.99	0.48	0.55	0.51
T_{17} (P ₂ N ₃)	YGG144B	YGG144B	YGG144B	41.18	42.73	41.55	4.90	5.04	4.98	0.48	0.55	0.51
$T_{18} (P_2 N_4)$	GG143B	GG143B	GG143B	45.42	50.86	50.49	4.92	5.06	5.00	0.49	0.56	0.52
$T_{19} (P_2 N_5)$	YGG144A	YGG144A	YGG144A	45.34	46.03	45.65	4.92	5.05	5.00	0.48	0.56	0.51
$T_{20} (P_2 N_6)$	YGG144A	YGG144A	YGG144A	45.34	46.12	45.79	4.92	5.05	5.00	0.49	0.56	0.51
$T_{21} (P_2 N_7)$	YGGN144B	YGGN144B	YGGN144B	45.13	45.93	45.61	4.92	5.05	4.99	0.48	0.55	0.51
$T_{22} (P_3 N_1)$	YGG144B	YGG144B	YGG144B	50.32	51.80	51.34	4.95	5.08	5.04	0.52	0.59	0.54
T_{23} (P ₃ N ₂)	YGG144A	YGG144A	YGG144A	50.28	50.99	50.64	4.93	5.06	5.01	0.50	0.57	0.53
T_{24} (P ₃ N ₃)	YGG144A	YGG144A	YGG144A	50.25	50.87	50.56	4.93	5.06	5.00	0.50	0.57	0.52
$T_{25} (P_3 N_4)$	GG143A	GG143A	GG143A	55.18	55.83	55.41	5.11	5.22	5.18	0.56	0.64	0.59
$T_{26} (P_3 N_5)$	YGG144A	YGG144A	YGG144A	54.83	55.80	55.30	5.00	5.12	5.07	0.52	0.59	0.55
T_{27} (P ₃ N ₆)	YGG144B	YGG144B	YGG144B	54.96	55.82	55.39	5.01	5.13	5.08	0.53	0.60	0.55
$T_{28} (P_3 N_7)$	YGG144A	YGG144A	YGG144A	51.14	55.69	55.22	4.97	5.09	5.04	0.52	0.59	0.54
SEm (±)	I	I	I	3.15	0.04	0.03	0.02	0.02	0.02	0.02	0.02	0.02
$1.SD (P \le 0.0;$	2)	I	I	SZ	0.11	0.09	0.06	SZ	SZ	SN	SZ	SZ

6.27 and 5.80°Brix) was recorded in N₄ followed by N₆ (5.47, 6.20 and 5.73°Brix). Least total soluble solids (5.07, 6.07 and 5.33°Brix) were observed in N₃ at Ambe, Mrig and Hasth bahar respectively. The increase in total soluble solids might be due to more nutrients both in leaf and soil under this particular treatment. Prakash *et al.*²³ reported increased total soluble solids in pruned guava plants. Improvement in the total soluble solids content in fruits might be due to proper supply of nutrients and induction of hormones, which stimulates cell division, cell elongation, increase in number and weight of fruits, better root development, and better water uptake and deposition of nutrients. This might be attributed to improved fertilizer use efficiency with the application of organic source of nutrients²¹.

Titrable acidity

Observations on titrable acidity under different treatments have been presented in Tables 5 and 6 under three cropping seasons. Highest titrable acidity was recorded in P₃ and lowest titrable acidity was observed in unpruned plants. N₄ showed highest titrable acidity followed by N₆ and lowest titrable acidity was observed in N₃ at Ambe, Mrig and Hasth bahar respectively. The interaction effect between pruning and nutrients revealed that titrable acidity was statistically at par under three seasons. The increased in titrable acidity could be due to the fact that humic acid and fulvic acid fraction of the soil organic matter contributed by the organic sources (vermicompost) would have probably formed water soluble micronutrient, thereby increasing their availability as well as uptake which resulted in better quality²⁶. Similar findings were reported by Goldwebber *et al.*²⁷ in Persian lime and Ahmad et al.²⁰ in pruned kinnow plants.

Total sugar

Data pertaining to total sugar content in lemon fruits under different pruning treatments showed significant variations under three seasons, although it was statistically at par in pruning levels under Ambe bahar (Tables 5 and 6). Maximum total sugar content was recorded in P3 followed by P₂ at Ambe, Mrig and Hasth bahar. The maximum content was significantly different under different nutrient levels in Ambe and Hasth bahar, whereas it was statistically at par in Mrig bahar. It was recorded maximum in N₄ followed by N₆ in all the three respective seasons. Minimum total sugar content was observed in N₃. The interaction effect between pruning and nutrients was statistically at par with respect to total sugar content except in Hasth bahar. It might be due to proper supply of nutrients and induction of growth hormones which stimulated cell division, cell elongation, and better translocation of water uptake and deposition of nutrients as a result of fertilizer use efficiency²⁸. Similar results were reported by Dutta *et al.*²⁹ in guava cv. L-49 and Shukla *et al.*³⁰ in guava cv. Sweta.

Reducing sugar

Observations on reducing sugar under different pruning and nutrient treatments (Tables 5 and 6) showed statistical significance under three cropping seasons. Highest reducing sugar was recorded in P_3 and the lowest in P_0 ; highest content was recorded in N_4 at all three seasons followed by N_6 , whereas lowest reducing sugar was observed in N_3 . Increased fruit quality could be due to the fact that the different sources of organic and inorganic nutrients (farm yard manures, vermicompost, azotobacter, phosphate solubilizing bacteria, nitrogenous, phosphatic and potassium fertilizers) enhanced the nutrient availability by enhancing the capability of plants for better uptake of nutrients from rhizosphere resulting in the conversion of acid to sugar and their derivatives by the reversal glycolytic pathway³¹.

Ascorbic acid

Data on ascorbic acid content in lemon fruits under different treatments and their combination were significantly different under Ambe, Mrig and Hasth bahar (Tables 5 and 6) although it was statistically at par under pruning and nutrient treatments in Ambe bahar. Maximum ascorbic acid content was recorded in P_3 followed by P_2 at the three seasons. Maximum content was recorded in N₄ followed by N₆ and minimum amount was observed in N₃ at the three seasons respectively. Increase in ascorbic acid might be due to more availability of nutrients both in leaf and soil under this particular treatment. The interaction effect between pruning and nutrient revealed that T₂₅ (P_3N_4) gave the highest ascorbic acid content, whereas lowest was recorded in T_3 (P₀N₃). These results agree with Prakash et al.23 in pruned guava plants. High ascorbic acid content in fruits might be due to proper supply of nutrients and induction of growth hormones, which stimulate cell division, cell elongation, increase in number and weight of fruits, better root development, and better translocation of water and deposition of nutrients. This might be attributed to improved fertilizer use efficiency with the application of organic source of nutrients²¹. These results agree with the findings of Kumar et al.²⁶ in lemon cv. Pant Lemon-1.

Leaf nutrient status

Data pertaining to leaf nutrient (N and K) availability was statistically significant under all the treatments (Tables 7 and 8), whereas the data on leaf phosphorus was statistically at par under all the treatments except after Ambe

		TSS (°brix)		4	Acidity (%)		Tc	otal sugar (%	()	Redu	cing sugar ((%)	Ascorbic	acid (mg/100	(dlud g (
Treatments	Ambe	Mrig	Hasth	Ambe	Mrig	Hasth	Ambe	Mrig	Hasth	Ambe	Mrig	Hasth	Ambe	Mrig	Hasth
\mathbf{P}_0	5.13d	6.07c	5.53d	0.51d	0.6d	0.57d	4.18a	4.97d	4.56d	3.88d	4.18c	4.09d	42.53a	42.82d	42.78d
\mathbf{P}_1	5.60c	6.40b	5.93c	0.62c	0.85c	0.69c	4.59a	5.18c	4.85c	4.14c	5.01b	4.40c	44.44a	44.92c	44.79c
P_2	5.93b	6.67a	6.33b	0.72b	0.81b	0.77b	4.80a	5.39b	5.17b	4.32b	5.05b	4.83b	45.11a	45.44b	45.32b
P_3	6.07a	6.73a	6.53a	0.75a	0.76a	0.8a	4.97a	5.57a	5.28a	4.58a	5.12a	5.00a	47.91a	48.25a	48.12a
SEm (±)	0.06	0.07	0.06	0.01	0.01	0.01	0.05	0.06	0.05	0.06	0.02	0.05	0.08	0.03	0.01
LSD $(P \le 0.05)$	0.17	0.18	0.16	0.03	0.02	0.02	NS	0.16	0.13	0.16	0.07	0.16	NS	0.08	0.03
N	5.13abc	6.07a	5.53ab	0.51bc	0.60bc	0.57cd	4.18a	4.97a	4.56abc	3.88abc	4.18bc	4.09ab	42.53a	42.82d	42.78e
N_2	5.13bc	6.07a	5.47ab	0.46cd	0.56cd	0.51de	4.17a	4.94a	4.43bc	3.88bc	4.17bc	4.06ab	42.42a	42.75e	42.61f
N_3	5.07c	6.07a	5.33b	0.41d	0.52d	0.49e	4.14a	4.89a	4.34c	3.67c	4.15c	4.03b	42.13a	42.70e	42.57g
N_4	5.53a	6.27a	5.80a	0.55a	0.70a	0.63a	4.52a	5.12a	4.78a	4.05a	4.38a	4.23a	44.09a	44.57a	44.44a
N_5	5.20abc	6.13a	5.67ab	0.53ab	0.63ab	0.61ab	4.27a	5.08a	4.61abc	3.97abc	4.20abc	4.13ab	43.89a	44.25b	44.12c
N_6	5.47ab	6.20a	5.73ab	0.53ab	0.69a	0.63a	4.44a	5.11a	4.72ab	3.99ab	4.33ab	4.21ab	44.02a	44.41b	44.28b
N_7	5.20abc	6.13a	5.67ab	0.53ab	0.63ab	0.58bc	4.21a	5.07a	4.57abc	3.95abc	4.19abc	4.12ab	42.79a	42.90c	42.86d
SEm (±)	0.08	0.09	0.08	0.01	0.01	0.01	0.07	0.08	0.06	0.08	0.03	0.07	0.10	0.04	0.01
LSD ($P \le 0.05$)	0.22	NS	0.22	0.04	0.03	0.03	NS	NS	0.17	0.22	0.09	0.21	NS	0.10	0.04
	,														

Table 5. Effect of pruning and nutrient management on quality of lemon cv. Assam lemon

Means with the same letter are not significantly different.

CURRENT SCIENCE, VOL. 112, NO. 10, 25 MAY 2017

		TSS (°brix)		1	Acidity (%)		T	otal sugar (°	(0)	Redu	cing sugar	(%)	Ascorbic	acid (mg/10)g pulp)
Treatments	Ambe	Mrig	Hasth	Ambe	Mrig	Hasth	Ambe	Mrig	Hasth	Ambe	Mrig	Hasth	Ambe	Mrig	Hasth
T ₁ (P ₀ N ₁)	5.13	6.07	5.53	0.51	0.60	0.57	4.18	4.97	4.56	3.88	4.18	4.09	42.53	42.82	42.78
$T_2 (P_0 N_2)$	5.13	6.07	5.47	0.46	0.56	0.51	4.17	4.94	4.43	3.88	4.17	4.06	42.42	42.75	42.61
$T_3 (P_0N_3)$	5.07	6.07	5.33	0.41	0.52	0.49	4.14	4.89	4.34	3.67	4.15	4.03	42.13	42.70	42.57
$T_4 (P_0 N_4)$	5.53	6.27	5.80	0.55	0.70	0.63	4.52	5.12	4.78	4.05	4.38	4.23	44.09	44.57	44.44
$T_5 (P_0 N_5)$	5.20	6.13	5.67	0.53	0.63	0.61	4.27	5.08	4.61	3.97	4.20	4.13	43.89	44.25	44.12
$T_6 (P_0 N_6)$	5.47	6.20	5.73	0.53	0.69	0.63	4.44	5.11	4.72	3.99	4.33	4.21	44.02	44.41	44.28
$T_7 (P_0 N_7)$	5.20	6.13	5.67	0.53	0.63	0.58	4.21	5.07	4.57	3.95	4.19	4.12	42.79	42.90	42.86
$T_8 (P_1 N_1)$	5.60	6.40	5.93	0.62	0.85	0.69	4.59	5.18	4.85	4.14	5.01	4.40	44.44	44.92	44.79
$T_9 (P_1 N_2)$	5.60	6.33	5.87	0.60	0.83	0.68	4.57	5.14	4.83	4.14	4.96	4.39	44.28	44.76	44.63
$T_{10} (P_1 N_3)$	5.60	6.27	5.87	0.60	0.83	0.65	4.55	5.14	4.81	4.10	4.95	4.31	44.24	44.62	44.48
T_{11} (P_1N_4)	5.73	6.47	6.13	0.68	0.88	0.75	4.66	5.36	5.03	4.21	5.05	4.76	44.81	45.18	44.98
T_{12} (P ₁ N ₅)	5.67	6.40	6.07	0.67	0.87	0.74	4.63	5.29	4.97	4.18	5.03	4.67	44.68	45.03	44.87
$T_{13} (P_1 N_6)$	5.73	6.40	6.07	0.67	0.87	0.75	4.64	5.31	4.96	4.18	5.04	4.69	44.76	45.15	44.97
$T_{14} (P_1 N_7)$	5.67	6.40	5.93	0.65	0.86	0.71	4.61	5.18	4.86	4.18	5.03	4.66	44.59	45.01	44.83
$T_{15} (P_2 N_1)$	5.93	6.67	6.33	0.72	0.81	0.77	4.80	5.39	5.17	4.32	5.05	4.83	45.11	45.44	45.32
$T_{16} (P_2 N_2)$	5.87	9.9	6.27	0.7	0.81	0.77	4.71	5.38	5.10	4.29	5.05	4.79	44.95	45.30	45.17
T_{17} (P ₂ N ₃)	5.80	6.53	6.2	0.69	0.81	0.77	4.68	5.38	5.09	4.26	5.04	4.77	44.86	45.27	45.16
$T_{18} (P_2 N_4)$	6.00	6.67	6.33	0.74	0.83	0.79	4.89	5.49	5.25	4.55	5.08	4.92	47.60	47.94	47.80
$T_{19} (P_2 N_5)$	6.00	6.67	6.33	0.73	0.82	0.78	4.86	5.43	5.21	4.49	5.07	4.9	45.41	45.75	45.62
$T_{20} (P_2 N_6)$	6.00	6.67	6.33	0.73	0.82	0.78	4.88	5.45	5.23	4.54	5.07	4.923	45.47	45.81	45.69
$T_{21} (P_2 N_7)$	5.93	6.67	6.33	0.72	0.82	0.78	4.82	5.40	5.19	4.39	5.06	4.86	45.32	45.68	45.56
$T_{22} (P_3 N_1)$	6.07	6.73	6.53	0.75	0.76	0.8	4.97	5.57	5.28	4.58	5.12	5.00	47.91	48.25	48.12
$T_{23} (P_3 N_2)$	6.00	6.73	6.47	0.75	0.72	0.79	4.94	5.52	5.27	4.57	5.10	4.99	47.86	48.2	48.07
$T_{24} (P_3N_3)$	6.00	6.73	6.40	0.74	0.71	0.79	4.90	5.51	5.26	4.56	5.10	4.97	47.84	48.15	48.01
$T_{25} (P_3 N_4)$	6.33	6.93	6.60	0.79	0.8	0.84	5.14	5.68	5.38	4.95	5.23	5.09	52.45	52.78	52.65
$T_{26} (P_3 N_5)$	6.13	6.87	6.53	0.79	0.79	0.82	4.99	5.61	5.37	4.61	5.17	5.01	52.29	52.60	52.49
$T_{27} (P_3 N_6)$	6.27	6.87	6.53	0.79	0.79	0.84	5.13	5.63	5.37	4.88	5.19	5.03	52.3	52.64	52.51
$T_{28} (P_3 N_7)$	6.13	6.87	6.53	0.77	0.77	0.81	4.97	5.59	5.33	4.60	5.14	5.01	52.24	52.58	52.45
SEm (±)	0.16	0.17	0.15	0.03	0.02	0.02	0.14	0.15	0.12	0.15	0.06	0.14	0.21	0.07	0.03
LSD ($P \le 0.05$)	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	0.58	0.20	0.08

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				Leafnit	rogen content (%	<u> </u>					Leaf phosphc	rus content (%)		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Treatments	Initial	30 days after nutrition	60 days after nutrition	After harvesting (Ambe bahar)	After harvesting (Mrig bahar)	After harvesting (Hasth bahar)	Initial	30 days after nutrition	60 days after nutrition	After harvesting (Ambe bahar)	After harvesting (Mrig bahar)	After harvesting (Hasth bahar)	After harvesting (Hasth bahar)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$														
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	P_0N_1 P_0N_2	1.42bcd 1.40cd	2.12d 2.11d	2.25cd 2.22de	1.76de 1.72ef	1.38bcd 1.33cd	1.12cd 1.04d	0.08a 0.07a	0.16a 0.16a	0.17a 0.17a	0.12ab 0.11b	0.11	0.09a 0.09a	1.27e 1.14d
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	PoN3	1.37d	2.10d	2.19e	1.68f	1.30d	1.00d	0.07a	0.16a	0.17a	0.11b	0.10	0.07a	1.09d
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	P ₀ N ₄	1.49a	2.28a	2.39a	2.06a	1.74a	1.55a	0.09a	0.17a	0.18a	0.15b	0.14	0.10a	1.59a
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	P_0N_5	1.46abc	2.20bc	2.29bc	1.84c	1.54abc	1.31bc	0.08a	0.17a	0.18a	0.14ab	0.13	0.10a	1.47b
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	P_0N_6	1.47ab	2.25ab	2.33b	1.95b	1.58ab	1.38ab	0.09a	0.17a	0.18a	0.14ab	0.13	0.10a	1.53ab
	P_0N_7	1.44abc	2.17cd	2.28bc	1.80dc	1.44bcd	1.2bcd	0.08a	0.17a	0.18a	0.13ab	0.12	0.10a	1.35c
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	SEm (±)	0.03	0.03	0.02	0.03	0.10	0.10	0.02	0.02	0.02	0.02	0.02	0.02	0.04
Means with the same letter are not signiffeantly different. Table 8. Effect of nutrient management on leaf nutrient status of lemon cv. Assam lemon Leaf potassium content (%) Leaf potassium content (%) Table 8. Effect of nutrient management on leaf nutrient status of lemon cv. Assam lemon Table 8. Effect of nutrient management on leaf nutrient status of lemon cv. Assam lemon Tearmonts Initial adays after of days after After harvesting After harvesting PoN Of adys after After harvesting After harvesting PoN <td>LSD ($P \le 0.05$)</td> <td>0.06</td> <td>0.07</td> <td>0.05</td> <td>0.06</td> <td>0.21</td> <td>0.21</td> <td>NS</td> <td>NS</td> <td>NS</td> <td>0.03</td> <td>NS</td> <td>NS</td> <td>0.09</td>	LSD ($P \le 0.05$)	0.06	0.07	0.05	0.06	0.21	0.21	NS	NS	NS	0.03	NS	NS	0.09
TreatmentsInitialantrition60 days afterAfter harvestingAfter harvestingAfter harvestingTreatmentsInitialnutritionnutrition(Ambe bahar)(Mrig bahar)(Hasth bahar) P_0N_2 0.89bcd1.69cd1.9cd1.39d1.31c1.27e P_0N_3 0.85dd1.68d1.86de1.24e1.18d1.14d P_0N_3 0.85d1.68d1.8cde1.24e1.19f1.09d P_0N_3 0.95a1.79a2.01a1.64a1.63a1.99d P_0N_6 0.91abc1.73bc1.97ab1.64a1.63a1.59a P_0N_5 0.93ab1.76ab1.97ab1.63a1.37c1.47b P_0N_5 0.93ab1.76ab1.94bc1.63a1.53ab1.57a P_0N_5 0.020.030.030.010.040.040.04 $LSD(P \leq 0.05)$ 0.050.030.010.040.04								Leaf po	tassium conte	ent (%)				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Trea	tments	Т	30 nitial	0 days after nutrition	60 days after nutrition	VI VI	fter harvestin Ambe bahar)	g Afi	ter harvesting Mrig bahar)	After harvest (Hasth baha	ing IT)	
P_0N_1 $0.896cd$ $1.09cd$ $1.09cd$ $1.5dcd$ $1.5dc$ $1.51c$ $1.24c$ P_0N_3 $0.87cd$ $1.68d$ $1.68dd$ $1.86de$ $1.24e$ $1.18d$ $1.14d$ P_0N_4 $0.85d$ $1.68d$ $1.82e$ $1.19f$ $1.12d$ $1.09d$ P_0N_4 $0.95a$ $1.79a$ $2.01a$ $1.64a$ $1.63a$ $1.59a$ P_0N_6 $0.91abc$ $1.73bc$ $1.97ab$ $1.58b$ $1.51b$ $1.47b$ P_0N_6 $0.93ab$ $1.76ab$ $1.98ab$ $1.63a$ $1.53ab$ $1.47b$ P_0N_7 $0.93ab$ $1.76ab$ $1.94bc$ $1.63a$ $1.53ab$ $1.53ab$ P_0N_7 0.02 0.02 0.02 0.03 0.01 0.04 0.04 $ED(P \le 0.05)$ 0.05 0.06 0.03 0.09 0.09 0.09					-	-	-							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		P_0N_1		0.0	89bcd	1.69cd	1.9cd		1.39d		1.31c	1.27e		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		P_0N_2		0.5	87cd	1.68d	1.86de		1.24e		1.18d	1.14d		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		P_0N_3		0.5	85d	1.68d	1.82e		1.19f		1.12d	1.09d		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		P_0N_4		0.1	95a	1.79a	2.01a		1.64a		1.63a	1.59a		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		P_0N_5		0.1	91abc	1.73bc	1.97ab		1.58b		1.51b	1.47b		
P_0N_7 0.89bcd 1.7cd 1.94bc 1.46c 1.39c 1.35c SEm (±) 0.02 0.02 0.03 0.01 0.04 0.04 LSD ($P \le 0.05$) 0.05 0.06 0.03 0.09 0.09		P_0N_6		0.0	93ab	1.76ab	1.98ab		1.63a		1.58ab	1.53ab		
SEm (±) 0.02 0.02 0.03 0.01 0.04 0.04 LSD ($P \le 0.05$) 0.05 0.05 0.06 0.03 0.09 0.09		P_0N_7		0.5	89bcd	1.7cd	1.94bc		1.46c		1.39c	1.35c		
LSD ($P \le 0.05$) 0.05 0.05 0.06 0.03 0.09 0.09		SEm	(Ŧ)	0.0	02	0.02	0.03		0.01		0.04	0.04		
		TSD	$(P \le 0.05)$	0.0	05	0.05	0.06		0.03		0.09	0.09		

			Available	e soil nitrogen (kg	/ha)				Available soi	l phosphorus (kg/ł	la)	
Treatments	Initial	30 days after nutrition	60 days after nutrition	After harvesting (Ambe bahar)	After harvesting (Mrig bahar)	After harvesting (Hasth bahar)	Initial	30 days after nutrition	60 days after nutrition	After harvesting (Ambe bahar)	After harvesting (Mrig bahar)	After harvesting (Hasth bahar)
P_0N_1	196.87d	198.39e	201.59e	200.12e	197.19a	194.25c	14.73e	15.92e	17.69e	17.19e	16.91d	16.73d
P_0N_2	196.56e	198.18f	201.17f	199.74f	195.54a	192.23d	14.21f	15.69f	17.35f	16.97f	16.73e	16.60e
P_0N_3	194.34f	197.51g	200.96g	199.25g	195.09a	191.95d	14.11g	15.38g	17.14g	16.78g	16.42f	16.22f
P_0N_4	198.45a	201.6a	206.72a	205.86a	202.04a	199.72a	15.85a	16.79a	18.93a	17.91a	17.63a	17.48a
P_0N_5	198.27b	200.75c	203.89c	202.18c	199.87a	196.24b	15.12c	16.41c	18.59c	17.54c	17.19c	16.97c
P_0N_6	198.32b	201.23b	206.41b	205.58b	201.63a	196.95b	15.43b	16.65b	18.76b	17.78b	17.46b	17.27b
$\mathbf{P}_0\mathbf{N}_7$	197.51c	199.83d	203.65d	202.06d	199.76a	196.14b	14.96d	16.29d	18.42d	17.36d	16.96d	16.80d
SEm (±)	0.03	0.02	0.02	0.03	0.28	0.64	0.01	0.01	0.03	0.01	0.06	0.06
LSD ($P \le 0.05$)	0.07	0.04	0.03	0.06	0.86	1.40	0.02	0.02	0.06	0.02	0.13	0.13

CURRENT SCIENCE, VOL. 112, NO. 10, 25 MAY 2017

	Table 10.	Effect of nutrient m	anagement on soil nut	rient status of lemon cv.	Assam lemon	
			V	vailable soil phosphorus		
Treatments	Initial	30 days after nutrition	60 days after nutrition	After harvesting (Ambe bahar)	After harvesting (Mrig bahar)	After harvesting (Hasth bahar)
P_0N_1	110.89e	113.26e	115.8e	114.78e	113.97d	112.86c
P_0N_2	110.61f	112.9f	115.58f	114.61f	113.83e	112.85c
P_0N_3	110.33g	112.78g	115.29g	114.49g	113.54f	112.59d
P_0N_4	113.67a	114.81a	116.69a	115.73a	114.78a	113.86a
P_0N_5	111.35c	113.97c	116.18c	115.34c	114.40c	113.46b
P_0N_6	113.45b	114.23b	116.41b	115.48b	114.53b	113.61b
P_0N_7	111.19d	113.49d	115.93d	114.89d	113.99d	112.87c
SEm (±)	0.02	0.02	0.01	0.02	0.06	0.09
LSD ($P \le 0.05$)	0.04	0.04	0.02	0.05	0.13	0.19
Means with the same	e letter are not significa	antly different.				

bahar harvest. Observations reveal that availability of nutrients, viz. nitrogen, phosphorus and potassium in lemon leaves increased gradually after application of fertilizers up to pre-harvesting of Ambe bahar and then decreased gradually after harvesting of each season. Maximum availability of these three nutrients (N, P and K) was found after 60 days after nutrient application under all the treatments. However, among the seven nutrient treatments, N₄ recorded highest nitrogen, phosphorus and potassium availability after 30 days and 60 days of fertilizers application and after harvesting of Ambe, Mrig and Hasth bahar which was followed by N₆. Lowest availability of leaf nutrients was recorded in N3 after 30 days and 60 days of fertilizers application and after harvesting of the three seasons respectively. Reduction in the leaf nutrient availability after harvesting could be due to uptake of nutrients by plants during vegetative and reproductive stages. It might be due to combined effect of azotobacter, vermicompost and vesicular arbuscular mycorrhiza, where azotobacter fixes the atmospheric nitrogen and convert it into inorganic form by mineralization of nitrogen, which in turn is taken by plants and thereby increase its availability. Vermicompost and mycorrhiza assist the plant to acquire mineral nutrients from the soil, especially immobile elements like phosphorus and mobile elements such as potassium and nitrogen^{32-,35}.

Soil nutrient status

Effect of nutrient management on soil nutrient (N, P and K) availability was statistically significant under all treatments from initial stage up to harvest except in soil nitrogen after harvesting of Mrig bahar, where the data was statistically at par under all treatments (Tables 9 and 10). Data showed that the availability of nutrients, viz. nitrogen, phosphorus and potassium increased gradually after application of fertilizers up to pre-harvesting of Ambe bahar and then decreased gradually after harvesting of each season. However, the maximum availability of these three nutrients (N, P and K) was found after 60 days after nutrient application under all treatments. Among the seven nutrient treatments, N₄ recorded highest nitrogen, phosphorus and potassium availability after 30 days and 60 days of fertilizers application and after harvesting of the three seasons respectively which was followed by N₆. Reduction in the soil nutrient availability after harvesting might be due to uptake of nutrients by plants during vegetative and reproductive stages. These results are similar with the findings of Bala *et al.*³⁶ Application of biofertilizers along with vermicompost and vesicular arbuscular mycorrhiza and different doses of NPK was found effective to maintain the nitrogen level of the soil as the microbial population under such treatments was much higher and thereby improved fertility status of the soil.

Conclusion

The integrated application of inorganic fertilizers, organic and biological sources of nutrients in an efficient way would not only reduce the sole dependence on inorganic fertilizers but also influence the fruit's physicochemical composition. Besides, it also improved the leaf and soil nutrient status which ultimately resulted in quality production. Pruning also has significant effect in fruit quality improvement. Among the three seasons of cropping, Mrig bahar recorded the best result in respect to quality of the fruits followed by Hasth bahar and Ambe bahar due to favourable agro-climatic conditions prevailed during fruit growth and developmental period. It could be concluded from the above results that severe pruning (75 cm pruning from the terminal portion of the shoot) along with integrated use of fertilizers, viz. 75% RDF + vermicompost + azotobacter + vesicular arbuscular mycorrhiza proved best in terms of quality lemon production for this region.

- 1. Iglesias, D. J. et al., Physiology of citrus fruiting. Brazilian J. Plant Physiol., 2007, 19, 333-362.
- Anon., In National Horticulture Board Data Base, National Horticulture Board, 2015.
- Singh, I. P. and Singh, S., In *Citrus Monograph*, ICAR Publication, National Research Centre for Citrus, Nagpur, 2006, p. 30.
- Singh, R. and Saxena, S. K., In *Fruits*, National Book Trust, India, New Delhi, 2008, p. 91.
- Khehra, S. and Bal, J. S., Influence of organic and inorganic nutrient sources on growth of lemon (*Citrus limon* Burm.) Cv. Baramasi. J. Exp. Biol. Agril. Sci., 2014, 2, 126–129.
- Zekri, M. and Orbeza, T. A., Plant nutrients for citrus trees. In *Extension Service Fact Sheets SL 200*, Florida cooperative extension service, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, 2003.
- Singh, S., Gill, P. S., Dhillon, W. S. and Singh, S., Effect of heading back on photosynthesis, yield and fruit quality in pear. *Not Sci. Biol.*, 2012, 4, 90–94.
- Mazumdar, B. C. and Majumder, K., Determination of chemical constituents. In *Methods of Physico-Chemical Analysis of Fruits*, Daya Publishing House, Delhi, 2003, pp. 93–139.
- 9. Rangana, S., Ascorbic acid. In *Manual Analysis of Fruit and Vegetable Products*, Tata McGraw-Hill Publishing Co. Ltd, New Delhi, 1977, pp. 94–101.
- Abd EL-Migeed., M. M., Saleh, M. S. and Mostafa, E. A. M., The beneficial effect of minimizing mineral nitrogen fertilization on Washington Navel orange trees by using organic and biofertilizers. *World J. Agric. Sci.*, 2007, 3, 80–85.
- Fiske, C. H. and Row, Y. S., In *Experimental Biochemical Research Techniques* (eds Cowgill, R. W. and Pardec, A. B.), 1925, p. 177.
- Jackson, M. L., In Soil Chemical Analysis, Asia Publishing House, New Delhi, 1962, pp. 115–120.
- Ghosh, S. P., Citrus. In *Fruits: Tropical and Subtropical* (eds Bose, T. K. and Mitra, S. K.), Naya Prakash Publishers, Calcutta, 1996, pp. 63–131.
- Singha, A., Adak, T., Kumar, K., Shukla, S. K. and Singh, V. K., Effect of integrated nutrient management on dehydrogenase activity, soil organic carbon and soil moisture variability in a mango orchard ecosystem. *J. Anim. Plant Sci.*, 2014, 24, 843–849.
- 15. Subbiah, B. V. and Asija, G. L., A rapid procedure of determination of available nitrogen in soil. *Curr. Sci.*, 1956, **25**, 259–260.

- Saha, A. K., In Method of Physical and Chemical Analysis of Soil, Kalyani Publishers, West Bengal, 2008, pp. 1–169.
- 17. Bray, R. H. and Kurtz, L. P., Determination of total organic and available form of phosphorus in soil. *Soil Sci.*, 1945, **59**, 39–45.
- Black, C. A., In *Methods of Soil Analysis*, Part II, Agron. Ser. No. 9, American Society of Agronomy Inc., Madison, Wisconsin, USA, 1965.
- Singh, S. S., Srivestera, V. S. and Singh, P., Training/pruning. In Advances in Citriculture (ed. Singh, S.), Kalyani Publisher, Karnataka, India, 2004, pp. 206–219.
- Ahmad, S., Chatha, Z. A., Nasir, M. A., Aziz, A., Virk, N. A. and Khan, A. R., Effect of pruning on the yield and quality of kinnow fruit. J. Agric. Soc. Sci., 2006, 2, 51–53.
- Lal, G. and Dayal, H., Effect of integrated nutrient management on yield and quality of acid lime (*Citrus aurentifolia* swingle). *Afr. J. Agric. Sci.*, 2014, 9, 2985–2991.
- 22. Kumar, H., Katiyar, P. N., Singh, A. K. and Rajkumar, B. V., Effect of different pruning severity on growth and yield of ber (*Zizyphus mauritiana* Lamk), cv. Banarsi Karaka. *Int. J. Curr. Microbiol. Applied Sci.*, 2014, **3**, 935–940.
- Prakash, S., Kumar, V., Saroj, P. L. and Sirohi, S. C., Response of yield and quality of winter guava to severity of summer pruning. *Indian J. Hortic.*, 2012, 69, 173–176.
- 24. Sandhu, S. and Bal, J. S., Response of lemon cv. Baramasi to foliar feeding of nutrients. *Indian J. Hortic.*, 2012, **69**, 281–283.
- 25. Sites, J. W. and Reitz, H. J., The variation in individual Valencia oranges from differences locations of the tree as a guide to sampling methods and sport picking for quality soluble solids in the juice. *Proc. Amer. Soc. Hortic. Sci.*, 1948, **54**, 1–10.
- Kumar, V., Singh, M. K., Singh, M., Dev, P. and Mohan, B., Influence of integrated nutrient management (INM) on yield and quality of lemon (*Citrus limon* Burn.) cv. Pant Lemon-I under western UP conditions. *Ann. Hortic.*, 2012, 5, 137–139.
- Goldwebber, S., Boss, M. and Lynch, S. J., Some effects of nitrogen, phosphorus and potassium fertilization on the growth, yield and quality of persian limes. In *Proc. Fla. State Hort. Soc.*, 1956, 69, 328–332.
- Yadav, A. K., Singh, J. K. and Singh, H. K., Studies on integrated nutrient management in flowering, fruiting, yield and quality of mango cv. Amrapali under high density orcharding. *Indian J. Hortic.*, 2011, 68, 453–460.
- 29. Dutta, P., Kundu, S., Bauri, F. K., Talang, H. and Majumder, D., Effect of bio-fertilizers on physicochemical qualities and leaf

mineral composition of guava grown in alluvial zone of West Bengal. J. Crop Weed., 2014, 10, 268–271.

- Shukla, S. K., Adak, T., Singha, A., Kumar, K., Singh, V. K. and Singh, A., Response of guava trees (*Psidium guajava*) to soil application of mineral and organic fertilizer and biofertilizers under conditions of low fertile soil. *J. Hortic. Res.*, 2014, 22, 105–114.
- 31. Bohane, L. and Tiwari, R., Effect of integrated nutrient management on physico-chemical parameter of ber under malwa plateau conditions. *Ann. Plant and Soil Res.*, 2014, **16**, 346–348.
- Kumar, D. and Pandey, V., Effect of NPK fertigation on growth, yield and quality of banana 'Rasthali' in coastal agro-climatic conditions of eastern India. *Indian J. Agric. Sci.*, 2011, 78, 798– 800.
- Gharge, D. D., Karadge, B. A. and Gandhi, M. B., Cumulative effect of VAM fungus and Rhizobium on carbohydrate and mineral content of *Carica papaya* L. *Indian J. Adv. Plant Res.*, 2014, 1, 50–55.
- Bhattarai, B. P. and Tomar, C. S., Effect of integrated nutrient management on leaf nutrient status of walnut (*Juglans regia* L.). *Nepal J. Sci. Technol.*, 2009, 10, 63–67.
- 35. Shaheen, M. A., AbdElWahab, S. M., El-Morsy, F. M. and Ahmed, A. S. S., Effect of organic and biofertilizers as a partial substitute for NPK mineral fertilizer on vegetative growth, leaf mineral content, yield and fruit quality of superior grapevine. *J. Hort. Sci. Ornamental Plants*, 2013, 5, 151–159.
- 36. Bala, S., Chaudhary, V. R. and Shukla, H. S., Effect of organic manure and biofertilizers with graded dose of NPK on soil and leaf nutrient status of aonla (*Emblica officinalis* Gaertn.) ev. Banarasi. *Karnataka J. Agric. Sci.*, 2011, 24, 709–711.

ACKNOWLEDGEMENTS. We thank Biswajit Majumder and Saurav Chakraborty, Technical Assistants, Central Instrumentation Centre and Department of Pomology and Post Harvest Technology, Uttar Banga Krishi Viswavidyalaya for providing laboratory facilities to conduct the experiment.

Received 8 April 2016; revised accepted 20 October 2016

doi: 10.18520/cs/v112/i10/2051-2065