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Lignocelluloses are imperative structural components 
of plant cell wall and are profusely found in agricul-
tural crop residues. The structural heterogeneity and 
recalcitrance of lignin limit the accessibility of cell 
wall carbohydrates for constructive exploitation. Dur-
ing the past decades, diverse lignin degrading enzymes 
were characterized to facilitate the utilization of  
lignocellulosic biomass for technological applications. 
Versatile peroxidases are unique among ligninolytic 
enzymes for their remarkably high redox potential 
and ability to oxidize lignin without the requisite of 
redox mediators. The hybrid structural architecture 
of this enzyme bearing functional features of lignin 
peroxidase and manganese peroxidase demonstrates 
its versatility in aromatics oxidation. This review 
summarizes the distinctive structural aspects of fungal 
versatile peroxidase in correlation to its oxidation of 
aromatic substrates besides emphasizing on the cata-
lytic environment conducive for substrate oxidation. 
This review also focuses on the general strategies  
employed for production of this enzyme, its molecular 
framework, potential biotechnological applications of 
versatile peroxidase and prospects on enhancing the 
production of enzyme. Finally, the significance of this 
enzyme in improving the nutritive value of crop resi-
dues to promote ruminal productivity is highlighted. 
 
Keywords: Lignolytic enzyme, lignin degradation,  
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LIGNOCELLULOSES are major components of plant cell 
wall that impart mechanical strength and rigidity to 
plants. Lignin cements the cellulose and hemicellulose  
filaments together and acts as a barrier to prevent degra-
dation of sugar polymers. Lignin is the second abundant 
organic polymer on earth next only to cellulose. Its me-
tabolism is of great importance for the maintenance of 
carbon cycle. Interestingly, agricultural crop residues are 
one of the renewable sources of lignocellulosic biomass 
which in addition to energy-rich carbohydrates, preserve 
a significant proportion of nitrogen, phosphorus, sulphur 
and potassium of the total nutrient intake of the plant. 
Despite the energy-rich potential of these fibres, a large 
fraction of these crop residues are burnt on field pointing 

to the ease of clearance and lack of economically viable 
alternative for disposal of these crop residues post-
harvesting. Ironically, this lignocellulosic biomass has  
attracted immense research in recent decades owing to its 
vast potential for utilization in diverse industrial applica-
tions vitally in paper pulp industries, for bioremediation, 
for second generation biofuel production and as animal 
feed. Delignification of lignocellulosic residues exposes 
the nutritionally-affluent and highly valuable polysaccha-
rides as feedstock for these applications. The complex 
process of mineralization of lignin has been perceived 
with fungi of basidiomycetes and bacteria of the actino-
mycetes and proteobacteria group1,2. The gut microflora 
of wood boring termites, beetles and certain soil bacteria 
possess the capability to decompose aromatic lignin struc-
tures. Streptomyces viridosporus, Rhodococcus jostii,  
Nocardia autotrophica of actinomycetes and Pseudomo-
nas putida, Sphingobium, Burkolderia of proteobacteria 
could depolymerize lignin through their extracellular en-
zymes. Albeit, the fungal system of biodegradation of 
lignin overarches most efficient bacterial lignin degraders 
in terms of redox potential and in oxidation of highly  
recalcitrant compounds3. The fungal system possesses  
integrative complete machinery requisite for selective  
degradation of lignin. To this end, selective degradation 
of lignin for access to energy-rich cellulose and hemi-
cellulose is performed naturally by white rot fungi, in 
particular phylum basidiomycetes1. These fungi have 
evolved with the ability to efficiently degrade whole 
wood components by selective or simultaneous delignifi-
cation with selective delignification more pronounced for 
their action focused on lignin with least attack on poly-
saccharides. Lignolytic fungi secrete a repertoire of ex-
tracellular enzymes during their secondary metabolism in 
response to nutrient limitation for non-specific oxidative 
degradation of lignin4. This enzyme array comprises phe-
nol oxidases like laccase, heme peroxidases like lignin 
peroxidase, manganese peroxidase, versatile peroxidase 
and extracellular H2O2 generating oxidases5. Chemically, 
lignin macromolecule is a highly heterogenous aromatic 
polymer of phenyl propanoid units whose stereo irregular 
structure costs high redox potential for oxidation. Redox 
potential of laccases falls in the range of 780–800 mV, 
while manganese peroxidases and lignin peroxidases has 
potential of 1100–1500 mV. Recently explored versatile 
peroxidases operate with a redox potential of about 
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1700 mV (ref. 6). The oxidizing ability of peroxidases is 
a summation of active site morphology, redox potential 
and substrate accessibility. Thus, peroxidases are more 
prominent of ligninolytic enzymes for their relatively 
high redox potential and capability to oxidize the heavily 
recalcitrant non-phenolic phenyl propanoid units of lignin 
in contrast to phenol oxidases which preferably oxidize 
the phenolic units7. Versatile peroxidases have been the 
focus of intense research in the past decade because of its 
unique feature of oxidizing phenolic and non-phenolic 
units of lignin, independent of redox mediators, contrary 
to other ligninolytic enzymes which require the presence 
of mediators for destruction of non-phenolic units. This 
trait of versatile peroxidase makes them potential biocata-
lysts for diverse biotechnological applications. This re-
view focuses on the properties of versatile peroxidases 
and the reactions catalysed by them featuring their rele-
vance in biotechnological applications. 

Characteristics of versatile peroxidase 

From a structural point of view, versatile peroxidase (EC 
1.11.1.16), a reactive black 5 hydrogen peroxide oxido-
reductase is a heme containing glycoprotein catalysing 
oxidative degradation of aromatic heterogenous com-
pounds using hydrogen peroxide as electron acceptor. 
The most typical feature of this enzyme is the hybrid  
molecular architecture with Mn2+ to Mn3+ oxidizing prop-
erty of manganese peroxidase and high redox potential 
 
 

 
 

Figure 1. Substrate oxidation mechanism of versatile peroxidase. 
Resting enzyme is oxidized by hydroperoxides to a two electron defi-
cient compound I followed by subsequent one electron reductions of 
compound I to compound II and the native enzyme. Enzyme abstracts 
electrons from either aromatic compound (AH) or Mn2+. Fe4+ = O+ 
represents high valent porphyrin cation radical (adapted from Ruiz- 
Dueñas et al.41 and Hofrichter43). 

compounds oxidizing behaviour of lignin peroxidase. 
This Mn2+ oxidizing property has initially led to designa-
tion of versatile peroxidase as manganese peroxidase 
isoenzyme. Nevertheless this enzyme was later identified 
as a novel peroxidase with added manganese independent 
activity8. This enzyme also exhibits higher stability 
among basidiomycetes peroxidases in oxidation of lignin 
units, whereas lignin peroxidase is inactivated by high 
concentration of phenolic compounds9. Additionally, 
manganese is an obligatory co-factor for manganese per-
oxidase while laccase and lignin peroxidase oxidize non-
phenolic lignin structure through aromatic mediators like 
ABTS (2,2-azino-bis (3-ethylbenzothiazoline-6-sulphonic 
acid)) and veratryl alcohol respectively. Although these 
mediators are secreted by fungi as part of their secondary 
metabolism, industrial production of these enzymes  
necessitates explicit supplementation of these redox com-
pounds. Amazingly, versatile peroxidase leads the ligni-
nolytic peroxidases with its ability to oxidize the dimeric 
lignin macromolecule free from the presence of redox 
mediators. From the taxonomical standpoint, versatile  
peroxidase belongs to class II ‘plant, fungal and bacterial 
peroxidases’, the major role of which appears to be the 
degradation of lignin in wood. 

Catalytic mechanism of versatile peroxidase 

Versatile peroxidase is a glycosylated heme protein with 
polyvalent catalytic sites for oxidation of manganese and 
low and high redox potential compounds. Structural  
elements that hold this property reveal a heme porphyrin 
ring in a central pocket surrounded by two channels for 
access by hydrogen peroxide, the activator of enzyme 
complex and for manganese ion. The heme pocket is sta-
bilized by two helical domains with Ca2+ and proximal 
and distal basic histidine residues, a feature representative 
of the class II plant, fungal and bacterial peroxidases10. The 
catalytic cycle of versatile peroxidase for oxidation of 
low redox potential substrates follows a similar mecha-
nism of oxidation as other constituent members of heme 
peroxidase family, but stands out in possessing an added 
ability to utilize manganese as substrate. Catalytic cycle 
is initiated by binding of hydrogen peroxide in the central 
heme pocket to form iron peroxide complex (Figure 1). 
The resting enzyme in ferric state (Fe3+) reacts with H2O2 
or any organic peroxide in distal side of heme to generate 
a Fe4+ oxo-porphyrin radical complex with activated 
heme known as compound I, a two-electron deficient 
complex. Compound I is then oxidized in two-consecutive 
single-electron reactions with reducing substrates yield-
ing highly reactive radical products and water. The first 
reduction step results in the formation of another enzyme 
intermediate compound II, which is finally reduced back 
to ferric peroxidase, the native enzyme7. The radical 
products are highly unstable and go through several  
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non-enzymatic reactions resulting in breakdown of ether  
linkages, demethoxylation, aromatic ring cleavage,  
deprotonation and hydroxylation internally to yield  
simple breakdown products11,12. Hydrogen peroxide, the 
electron acceptor requisite for lignin degradation by these 
peroxidases is generated by white rot fungi through cyclic 
redox reactions involving aryl alcohol oxidases and  
dehydrogenases13. Aryl alcohol oxidases catalyse the oxi-
dation of primary aromatic unsaturated alcohols whereas 
dehydrogenases reduce aromatic aldehydes to produce 
H2O2. The high affinity substrate of versatile peroxidase, 
manganese divalent cation is oxidized at a surface close 
to heme propionate where the cation is bound by tri-
carboxylates of glutamate and aspartate residues in closed 
gate conformation, the orientation of residues slightly dif-
ferent from manganese peroxidase, demonstrating higher 
stability of versatile peroxidase over the former. Site-
directed mutagenesis studies have revealed the role of 
three acidic residues in coordination of manganese and 
established that versatile peroxidase exhibited paramount 
manganese oxidizing activity substantiated by experimen-
tal evidence that substituting one of the three carboxylate 
residues or reducing the length of acidic side chains did 
not have a significant effect on its catalytic activity. In 
contrast, manganese peroxidase lost its catalytic activity 
when one of the amino acid carboxylate was replaced, 
whereas in versatile peroxidase only triple deletion  
variant decreased its oxidizing action14. The natural lig-
nocellulosic substrates, viz. wood and the soil, host good 
quantity of manganese which is oxidized by versatile  
peroxidase; this oxidized manganese chelates with organic 
acid secreted by fungi such as glyoxalate, oxalate, lactate 
to act as a diffusible oxidant in oxidation of phenolic  
lignin structures and also non-phenolic moieties through 
formation of lipid peroxyl radicals15. Organic acids are 
secreted by fungi through de novo synthesis and also  
during degradation of lignin16. However, high redox  
potential substrate oxidation by versatile peroxidases is 
inhibited by Mn2+ with decrease in rate of the former  
reaction, a reaction supposed to be non-competitive inhi-
bition17. 
 Another feature of versatile peroxidase which merits 
special mention is the different strategy employed in oxi-
dation of high redox potential substrates in the absence of 
manganese. Reports had documented biphasic kinetics for 
certain large molecular weight bulky substrates14 suggest-
ing the presence of multiple oxidation sites wherein  
initially the large molecular weight substrates are likely 
to be oxidized at the enzyme surface and the degradation 
intermediates gain access to the heme propionate where 
they are further oxidized to end products through classi-
cal catalytic cycle of heme peroxidases. This oxidation at 
enzyme surface is possible by long range electron transfer 
(LRET) from the enzyme surface to redox cofactor heme, 
initiated at an exposed tryptophan neutral radical on the 
protein front18. Putative electron transfer pathways initiat-

ing at histidine and tryptophan residues were proposed 
for lignin peroxidase which operates through a similar 
electron transfer mechanism wherein site-directed muta-
genesis studies established the only operative stable neu-
tral tryptophan radical in LRET to heme. Proteins 
functioning in catalysis through LRET generally employ 
tryptophan and tyrosine residues in tandem for electron 
transfer to activated cofactor (Figure 2). In contrast, in 
ligninolytic enzymes especially versatile peroxidase, no 
tyrosine residues are observed demonstrating their distin-
guished property in oxidation of aromatic compounds. 
Tyrosine residues in degradation of aromatic compounds 
cross link with phenoxy radicals formed leading to  
enzyme inactivation. Absence of tyrosine residues in 
ligninolytic enzymes prevents enzyme inactivation by 
dimerization proving its competence in demineralization 
of complex aromatic and recalcitrant lignin in highly oxi-
dative environment. Additionally, tryptophanyl radicals 
involved in electron transfer can exist in neutral and  
cationic form. The cationic form typically occurs on inner 
plane of protein and the tail tryptophan residue is usually 
deprotonated and is neutral as confirmed by spectroscopic 
and density functional theory studies19. Further, the tryp-
tophan radical in lignin peroxidase exists in -hydroxy-
lated form in conditions where peroxide is in larger 
proportion than the reducing substrate. Regarding the sur-
face chemistry of tryptophan in versatile peroxidase, the 
aromatic amino acid is present in a positively charged 
environment contributed by basic amino residues exposed 
to solvent, favourable for binding of anionic substrates, 
while in lignin peroxidase, tryptophan is surrounded by 
acidic residues creating a negatively charged environment 
with protruding side chain of phenylalanine residue 
around it. These structural features of lignin peroxidase  
 
 

 
 

Figure 2. Structure of heme pocket of versatile peroxidase showing 
tryptophan residue (W164) involved in LRET (indicated by red arrow) 
and carboxylates of glutamate (E40, E36) and aspartate (D175) forming 
the manganese divalent cation binding site. Heme porphyrin centre is 
indicated in blue (adapted from Ruiz-Dueñas et al.41). 
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necessitate the use of redox mediators for degradation of 
high molecular weight substrates. Versatile peroxidase 
tryptophanyl environment, a strong oxidizing centre acts 
on large molecular substrates effectively, which are  
otherwise not oxidized at the activated heme due to steric 
hindrance20. Electron transfer reactions occur both in the 
enzyme and macromolecular lignin, where labile in-
tramolecular bonds of the compound are subjected to 
non-enzymatic cleavage. Fungal hyphae then sequester 
these lignin degradation products for internal catabolism. 
The enzyme is also highly active in the presence of or-
ganic solvents thereby effectively binding the inorganic 
cation manganese due to favourable decrease in medium 
polarity21. These aspects deliver versatile peroxidases as a 
novel biocatalyst for direct oxidation of a broad spectrum 
of aromatic heterogenic substrates, a feature significant 
for biotechnological applications of this enzyme. 

Biochemical aspects 

The remarkable biotechnological applications of this en-
zyme demand availability of a large quantity of enzyme 
with enhanced stability. Conceptually, enzyme stability, 
kinetic parameters of catalytic reaction and substrate  
ionization are highly reliant on environmental parameters 
such as temperature and pH. Accordingly, versatile  
peroxidase of Bjerkandera fumosa was investigated22 for 
its optimal activity on 2,6 dimethoxyphenol, an aromatic 
substrate at different pH values. The catalytic efficiency 
peaked at pH 4.0 in the absence of Mn2+ and remained 
constant in the pH range 4.0–6.0. Similarly, in the pres-
ence of Mn2+, oxidation efficiency remained constant in 
the pH range 4.5–6.5 with maximum activity at pH 5.0. 
The results agree with the optimal activity values of ver-
satile peroxidases from diverse basidiomycetes and oxi-
dation on a range of different substrates. Interestingly, pH 
optima for versatile peroxidase for oxidation of manga-
nese (pH 5) and aromatic compounds (pH 3) are compa-
rable to the activity maximum of manganese peroxidase 
and lignin peroxidase enzymes respectively evidential of 
its hybrid architecture23. Redox potential of heme peroxi-
dases increases at acidic pH; hence pH optimum in acidic 
range provides an added advantage of efficient aromatic 
degradation. Although natural wood degradation takes 
place at acidic pH, acidic and alkaline stability of en-
zymes is a property desirable for industrial application of 
an enzyme. To this fact, a versatile peroxidase isoenzyme 
from the Pleurotus ostreatus reportedly exhibits a re-
markably high acidic and alkaline stability and also con-
siderably high thermal stability24. Along these lines, 
Pleurotus eryngii versatile peroxidase has been subjected 
to protein engineering based on the stabilizing structural 
information that yields high stability to Pleurotus ostrea-
tus versatile peroxidase. Similarly, production of ligni-
nolytic enzymes and efficiency of lignin degradation 

strongly depends on fungal growth conditions and growth 
medium composition. Solid state fermentation on wheat 
straw, cotton stalks and wood chips has provided promis-
ing results with ligninolytic fungi owing to the fact that 
solid state fermentation mimics the natural habitat condi-
tions of the fungi8. Solid state fermentation and liquid 
cultures stimulate the secretion of different isoenzymes 
such as differential expression of enzymes under different 
media composition. For instance, ligninolytic enzymes 
are strongly expressed when peptone is used as the nitro-
gen source while no activity was found in synthetic me-
dium8. Recent studies reveal that Pleurotus ostreatus, 
Pleurotus eryngii and Pleurotus pulmonarius of white rot 
fungi secrete diverse peroxidases in solid and liquid cul-
tures with minimal difference in their physiochemical 
properties17. The ability of different species to demineral-
ize lignin is generally assessed by the oxidation of KTBA 
(-keto--thiomethylbutyric acid) as representative com-
pound. Given the complexity of lignin degradation fur-
ther insight is needed on the activity of ligninolytic 
enzymes on natural substrate lignin with characterization 
of novel ligninolytic peroxidases for extensive physio-
chemical stability. 

Molecular configuration of lignolytic enzymes 

Laccases, the phenol oxidases, are pervasive among fungi 
of ascomycetes and basidiomycetes, higher plants, bovine 
rumen microflora, bacteria, arthopods, insects, yeast and 
mold25. Although diverse laccase genes have been identi-
fied from the above families, the frailty of laccase in act-
ing independently on non-phenolic units of lignin prevents 
complete depolymerization of the polymer with exclusive 
application of this enzyme. Bacterial ligninolytic system 
encompasses dye-decolourizing peroxidases (DyPs) sub-
stantiated by the recognition of multitude of putative dye-
decolourizing peroxidase encoding genes in the bacterial 
genome3. However, no homologs to fungal peroxidases 
have been perused till date. Dye-decolourizing peroxi-
dases with diverse potential from varying bacterial spe-
cies still lags behind the fungal counterpart in efficiency 
and entirety of oxidation of lignin3. The genes of ligni-
nolytic peroxidases – lignin peroxidase, manganese per-
oxidase and versatile peroxidase are exclusive to white 
rot group of basidiomycetes, confirming their role in 
preferential degradation of lignin26. These peroxidases 
are differentially expressed under the influence of envi-
ronmental conditions, as substantiated by the presence of 
elements such as heat shock response, metal response, 
xenobiotic response, oxidative stress response and cAMP 
response revealed in their upstream regulatory sequen-
ces24. In Pleurotus ostreatus, gene family comprising 
nine genes encode for manganese peroxidase and versa-
tile peroxidase with five genes representing the former 
and four for the latter14. Here, expression of specific  
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enzyme is transcriptionally regulated by the presence of 
manganese in the growth substrate. Also the pH and tem-
perature stabilities of these isoenzymes differ sympto-
matic of environmental regulation. On the sequence 
homology front, versatile peroxidase genes of Pleurotus 
eryngii are reported to have high sequence homology to 
Phanerochaete chrysosporium lignin peroxidase than to 
manganese peroxidase23. However, there also exists a sig-
nificant sequence identity between versatile peroxidase 
and the other peroxidases revealing it to be a ‘hybrid per-
oxidase’. 

Industrial applications of versatile peroxidase 

Ligninolytic enzymes, especially peroxidases, have 
gained interest in recent years for their diverse biotechno-
logical and industrial applications, owing to their high  
redox potential advantageous in degradation of various 
aromatic heterogeneous compounds. Versatile peroxi-
dases are currently widely preferred among lignolytic  
enzymes, attributed by their significant advantage of  
oxidation of compounds without any expensive redox 
mediators. This is more central from the application per-
spective as cost of synthetic mediators and risk of media-
tor release to environment limit the usage of other heme 
peroxidases. 
 Xenobiotic compounds like polycyclic aromatic hydro-
carbons (PAHs) are efficiently oxidized by versatile per-
oxidase through LRET in the absence of manganese and 
through diffusible oxidation in the presence of manga-
nese27. For instance, bioconversion of chrysene by Pleu-
rotus ostreatus was studied. Degradation of chrysene, an 
aromatic hydrocarbon commonly found in coal tar and 
produced by combustion of plant and animal material, 
was analysed under exclusive laccase production condi-
tions and laccase and versatile peroxidase production 
conditions. Degradation resulted in accumulation of qui-
nine metabolite under exclusive laccase action whereas 
with both laccase and versatile peroxidase, chrysene was 
completely degraded through phthalic acid pathway. This 
reveals that although laccase was effective in the initial 
stages of transformation, versatile peroxidase was re-
quired for complete oxidation of hydrocarbon28. Like-
wise, several azo and anthraquinone dyes are efficiently 
oxidized by versatile peroxidase implying its application 
in treatment of industrial dye effluents29. 
 Recently, versatile peroxidase from Bjerkandera adu-
sta was shown to successfully degrade -carotene and  
exhibit high activity even at alkaline pH. Hence this alka-
line stable enzyme was reported to high applicability in 
de-staining of fabrics in textile industries, leading to 
green processes in textile cleaning30. 
 Paper pulp industries presently employ these ligni-
nolytic enzymes for their pulp bleaching applications 
with versatile peroxidase as the biocatalyst of choice for 

kraft pulp bleaching applications. Also the ecofriendly 
process of pulp bleaching using manganese substituted 
polyoxometalates through versatile peroxidase-assisted 
system has proved to be effective without significant loss 
of viscosity of the pulp and good reduction in kappa num-
ber, an attribute preferred for production of high quality 
paper31. 
 The abundance of lignocellulosic biomass merits its 
application in production of second generation biofuels. 
Delignification and detoxification for removal of toxic 
metabolites from pre-treatment methods are effectively 
achieved by the heme peroxidases32. Versatile peroxidase 
stands out in improving the yield and economics of fuel 
production through its catalytic versatility. 
 In developing countries, the growing livestock popula-
tion faces the challenge of scarcity of quality feed.  
Ruminants possess the capability to utilize cellulose/ 
hemicellulose of crop residues through their gut micro-
flora, conversely their access is highly hindered by the 
presence of recalcitrant polymer lignin. Delignification of 
the lignocellulosic residues converts this biomass to  
nutritionally enriched and highly digestible animal feed.  
Several researches have illustrated the fungal pre-
treatment of lignocellulosic biomass for application as 
good quality ruminant feed. Diverse fungal species have 
been studied in the past decade to enrich the utilization of 
lignocellulosic biomass like rice, wheat, corn residues, 
etc. for ruminant feed (Table 1). Pleurotus ostreatus, 
Pleurotus eryngii, Ceriporiopsis subvermispora, Phlebia 
brevispora and Lentinula edodes have been reported to be 
effective in selective degradation of lignin of wheat crop 
residues. Augmentation of in vitro digestibity of wheat 
straw by 72% was accounted by pre-treatment with Phle-
bia brevispora33. Similarly, for sugarcane residues the 
above fungal species pre-treatment resulted in a maxi-
mum of 88% increase in crude protein by Ceriporiopsis 
subvermispora followed by Lentinula edodes with 74% 
enhancement in crude protein34. Significant lignin diges-
tion of corn straw by 54.6% and wheat straw by 39.7% 
was achieved through pretreatment by Trametes versi-
color and Pleurotus sajor-caju respectively35,36. How-
ever, it is imperative to note that fungal pre-treatment 
comes with the disadvantage of prolonged incubation  
period and utilization of carbohydrates by fungi during 
pre-treatment. Ideally, characterization of ligninolytic en-
zymes involved in fungal degradation of lignocelluloses 
is needed to increase the effectiveness and for large scale 
commercial exploitation of lignocellulosic biomass for 
animal feed. A significant increase of 8% and 9% respec-
tively in the in vitro dry matter digestibility (IVDMD) of 
ragi straw upon treatment with enzyme-rich media at a  
ratio of 2 : 5 obtained from culture of Coriolus versicolor 
and Pleurotus flabellatus was observed37. Highly signifi-
cant (P < 0.05) improvement in the IVDMD was obtained 
in five common crop residues treated with fungal lac-
cases38 while a 20% increase in IVDMD was reported
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Table 1. Fungal species utilized and the lignocellulosic substrates treated for animal feed 

Lignocellulosic  
substrate Fungal species References 
Wheat Bjerkandera adusta, Ceriporiopsis subvermispora, Cyathus stercoreus, Daedalea guercina,  

Dichomitus squalens, Ganoderma lucidum, Hericium clathroides, Inonotus andersonii,  
Inonotus dryophylus, Inonotus obliquus, Laccaria amethystine, Lentinus tigrinus,  
Lentinula edodes, Lyophyllum ulmarium, Phanerochaete chrysosporium,  
Phellinus laevigatus, Phlebia brevispora, Phlebia fascicularia, Phlebia floridensis,  
Phlebia radiata, Pleurotus eryngii, Pleurotus cornucopiae, Pleurotus ostreatus,  
Pleurotus sajor-caju, Pleurotus sapidus, Polyporus brumalis, Polyporus ciliates,  
Schizophyllum commune, Trametes gibbosa, Trametes versicolor, Volvariella volvacea 

33, 44–58 

Rice Ceriporiopsis subvermispora, Corprinus fimetarius, Lentinula edodes, Phanerochaete  
chrysosporium, Phlebia brevispora, Phlebia fascicularia, Phlebia floridensis, Phlebia radiata, 
Pleurotus eryngii, Pleurotus ostreatus, Pleurotus sajor-caju 

57, 59–61 

Finger millet Pleurotus sajor-caju, Pleurotus ostreatus, Voriallae volvoraceae and Phanerochaete Chrysosporium, 
Coriolus versicolor and Ganoderma lucidium, Pleurotus flabellatus, Poria placenta 

37, 62, 63 

Oil Palm Bjerkandera adusta, Ceriporiopsis subvermispora, Ganoderma lucidum, Lentinula edodes,  
Phanerochaete chrysosporium, Phlebia brevispora, Pleurotus eryngii, Pleurotus ostreatus, 
Schizophyllum commune, Trametes versicolor 

34, 64, 65 

Bamboo Ceriporiopsis subvermispora 66 
Mustard straw Ganoderma lucidum 67 
Cedar Ceriporiopsis subvermispora, Lentinula edodes, Pholiota nameko, Pleurotus ostreatus 68 
Corn Ceriporiopsis subvermispora, Lentinula edodes, Pleurotus eryngii, Pleurotus ostreatus 34 
Sugarcane Ceriporiopsis subvermispora, Lentinula edodes, Pleurotus eryngii, Pleurotus ostreatus 34 

Birch Phanerochaete chrysosporium, Pleurotus sajor-caju, Trametes versicolor 69 
Spruce Phanerochaete chrysosporium, Pleurotus sajor-caju, Trametes versicolor 69 
Water hyacinth Pleurotus citrinopileatus, Pleurotus florida 70 
Cocoa Pleurotus ostreatus 71 

 

 
upon treatment of barnyard millet, foxtail millet and pro-
somillet with purified lignin peroxidase39. 

Conclusion 

The catalytic versatility with non-requirement of redox 
mediators projects versatile peroxidase as a potential in-
dustrial biocatalyst40. Until recently, this enzyme was 
characterized only from Pleurotus and Bjerkandera and 
reported in Panus, Trametes, Lepista, Dichomitous and 
Spongipellis41. Despite extensive literature on characteri-
zation studies of this enzyme on oxidation of representa-
tive lignin compounds, research is lacking on activity of 
this member of peroxidases on its natural substrate lignin. 
Exploration of novel versatile peroxidases may yield 
more effective enzymes with respect to substrate specific-
ity and reaction kinetics. Further, low level of enzyme in 
native state limits its practical use in contrast to demand 
for large quantity of enzyme for biotechnological applica-
tions. Ironically, heterologous expression studies in  
Escherichia coli and Aspergillus nidulans faced the prob-
lems of unproductive protein post-translation modifica-
tion and low yield respectively41. Stability and solubility 
properties of the peroxidases are dependent on efficient 
post-translational modification for proper coordination of 

heme, inclusion of calcium and formation of disulphide 
bridges. Emphatically, an efficient heterologous expres-
sion system for versatile peroxidase is crucial with acqui-
sition of knowledge of activity on its indigenous 
substrate, lignin for better exploitation of unique proper-
ties of this class of peroxidases. 
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