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On 14 September 2015, the twin detectors belonging to 
the Laser Interferometer Gravitational Wave Obser-
vatory (LIGO) made a triple discovery: the first direct 
detection of gravitational waves (GWs), first observa-
tion of formation of a black hole and first observation 
of a binary black hole. Since then LIGO has reported 
two other events and a marginal candidate. These dis-
coveries have heralded a new era in observational as-
tronomy. They will help us in exploring extremes of 
astrophysics and gravity. GWs are our best chance of 
getting an idea of what went on a small fraction of a 
second after the big bang, even if that takes many 
more decades. With LIGO’s discoveries we hope to 
solve many puzzles in astronomy and fundamental 
physics, but GWs are guaranteed to show up objects 
and phenomena never imagined before. 
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Introduction 

TWO remarkable predictions of Albert Einstein’s general 
relativity are black holes and gravitational waves (GWs). 
Karl Schwarzschild derived the first black hole metric1 
and Einstein showed the existence of wave-like solutions 
in the linear approximation2,3, both within a few months 
after he presented his general relativity (GR) to the Prus-
sian Academy on 25 November 1915 (ref. 4). 
 Almost exactly after 100 years, on 14 September 2015, 
the twin instruments of the Laser Interferometer Gravita-
tional Wave Observatory (LIGO) located at Livingston, 
Louisiana and Hanford, Washington, USA, confirmed 
both these predictions with the observation of GWs from 
a pair of colliding black holes5. This transient event 
called GW150914 has been hailed as the greatest physics 
discovery of the century and the biggest progress in  
astronomy since Galileo Galilei’s observation of the sky. 
 Two other high-confidence detections made on 26 De-
cember 2015 (ref. 6) and 4 January 2017 (ref. 7), and a 

marginal detection on 12 October 2015, are also from 
coalescing black hole binaries8. These discoveries have 
ushered in a new era in understanding the cosmos. The 
nascent field of GW astronomy and astrophysics will not 
only open a new window on the Universe9, but more im-
portantly, it will allow precision tests of GR and alterna-
tive theories of gravity8. This article will focus on the 
salient points of the theory of GWs and LIGO’s discov-
ery, with particular emphasis on the properties of GWs 
and LIGO’s black holes. 

Gravitational waves – their generation,  
propagation and properties 

In GR, Einstein’s equations admit wave solutions. This is 
readily seen if we make a weak field approximation2. A 
weak GW is described by a metric perturbation h in 
GR. To get an idea of the weakness of GW, typically, for 
detectable astrophysical GW sources, h  10–22. To the 
linear order in h, it can be easily shown in the trans-
verse and traceless (TT) gauge10, that Einstein’s field 
equations reduce to the wave equations 
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where c ~ 3  105 km/s is the speed of light, G the New-
ton’s gravitation constant and T is the stress–energy 
tensor. It is clear that GR predicts GWs and GW travel 
with the speed of light c. Thus GWs are waves in the met-
ric field g. Since the curvature or Riemann tensor is  
essentially the second derivative of the metric, GWs can 
also be described as ripples in the curvature of space–
time. One may use either the metric or the curvature to 
describe GWs. 
 Further, the following properties of GWs can be de-
duced from GR: they are transverse, and they have two 
polarizations denoted by h+ and h. The two polarization 
states are easily understood, if we examine the effect of 
the waves on free test particles. We need at least two spa-
tially separated particles to observe the effect of GWs (a 
single free mass particle cannot detect a wave (or any 
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Figure 1. A circular ring of test particles deformed into an ellipse by an incident gravitational 
wave (image taken from ref. 45). Phases, half a cycle apart, are shown for the + polarization. The 
length change in the interferometric arms is also schematically shown. 

 
 
gravity) because of the equivalence principle of GR); one 
tracks the variation in the distance between the particles 
as a function of time. Since h is a symmetric trace-free 
second rank tensor (in a certain gauge), a circular ring of 
test particles best demonstrates the effect of a wave 
which shears the circle into an ellipse. If a weak mono-
chromatic GW of + polarization is incident on a ring of 
test particles, the ring is deformed into an ellipse as 
shown in Figure 1. Phases, half a cycle apart, of the GWs 
are shown in the figure. For the  polarization the ellipses 
are rotated by an angle of 45. A general wave is a linear 
combination of the two polarizations. 
 We will confine ourselves to interferometric detec-
tion11. If we select two masses on this ring of test masses 
at right angles and monitor their distance with respect to 
the centre of the ring, which we take to be the reference 
point, we will find that during an half cycle of the wave 
one arm shortens while the other arm elongates. In the 
next half cycle of the wave the opposite happens. Using a 
laser interferometric arrangement, a passing GW will 
produce a time-varying path difference which can be  
detected on a photodiode. 
 However, there is a catch. The changes in distances are 
exceedingly small in astrophysical situations. For exam-
ple, a neutron star binary at a distance of 100 Mpc 
(1 Mpc or mega parsec is ~1019 km) – a typical distance 
to a GW source – will produce a differential length 
change of ~10–16 cm for test masses kept a few kilometres 
apart, which is the typical length of the arm of a large-
scale ground-based interferometric detector. For a GW 
source, the well-known Landau–Lifschitz quadrupole 
formula12 relates the metric perturbation h to the source 
described by T. This formula can be obtained by inte-
grating the inhomogeneous wave equation, i.e. eq. (1) 
under certain assumptions. The formula relates the GW 
amplitude hik (spatial part) in the TT gauge to the second 

time derivative of the quadrupole moment of the source. 
It reads 
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where R is the distance to the source, Iik the quadrupole 
moment tensor of the source at the retarded time t – R/c, 
the double dot over Iik represents its second time deriva-
tive and the superscript TT denotes the transverse trace-
less part of the tensor. The luminosity of a GW source is 
obtained by integrating the energy flux of gravitational 
radiation over all directions in the sky and is given by the 
formula 
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where the angular brackets denote the time average over a 
period. If M is the mass of the system, r the size of the 
system and  its frequency, then  ~ (G/c5)M2r46, 
where  ~ 1 is a measure of the nonsphericity of the 
source. 
 Note that ikI  has dimensions of energy and the opera-
tion of taking its transverse traceless part means that it is 
the nonspherical motion of the source, the kinetic energy 
in the nonspherical motion, which we denote by 

kinetic
nonspherical ,E  is responsible for producing GWs. If we con-

sider kinetic 2
nonspherical /E c  of the order of a solar mass and the 

distance to the source ranging from galactic scale of tens 
of kpc (kilo parsec) to cosmological distances of Gpc 
(giga parsec), then h (a typical component of hik) ranges 
from 10–17 to 10–22. These numbers then set the scale for 
the sensitivities at which the detectors must operate. 



ASTRONOMY: LIGO 
 

CURRENT SCIENCE, VOL. 113, NO. 4, 25 AUGUST 2017 665 

 The quantity h relates to the change in distance be-
tween the test particles. For ground-based detectors if L is 
the distance separating the test masses, then the change in 
distance L due to a GW with metric perturbation h is 
easily obtained from the geodesic deviation equation 
 
 L ~ hL.  (4) 
 
Detection involves impossibly small measurements, and 
therefore, the noise in the detector needs to be suppressed 
by several orders of magnitude in order that there is a 
chance of extracting the signal from the noise by statisti-
cal signal detection methods. A host of noise sources con-
taminate the data. Some of the main sources of noise are 
seismic noise at low frequencies, thermal noise at mid-
frequencies up to a few hundred hertz and the photon shot 
noise at high frequencies. Sophisticated techniques have 
been evolved and devised over the decades to control 
such noises. These efforts have shown that long arm 
lengths, high laser power, and extremely well-controlled 
laser stability are essential to reach the requisite sensiti-
vity. 
 The response in the detector is a linear combination of 
the two time-dependent polarization amplitudes h+ and 
h, and is given by 
 
 h(t) = h+(t)F+(, , ) + h(t)F(, , ),  (5) 
 
where F+ and F are the antenna pattern functions, and , 
,  carry information about the direction to the source in 
the sky and polarization relative to the orientation of the 
detector13. For the binary inspiral, the polarization ampli-
tudes at the leading order take the form 
 
 h+(t) = A(t)(1 + cos2 ) cos (t), (6) 
 
 h(t) = –2A(t) cos  sin (t). (7) 
 
The phase evolution (t) determines the masses which in 
turn determine the absolute amplitude of the wave. The 
inclination angle  of the orbital plane to the line of sight 
may be deduced from a network of detectors with different 
orientations from polarization information. The observed 
amplitude depends on the absolute amplitude, inclination 
angle and distance. If the first two can be measured, then 
one can solve for the distance to the binary. 

Detection and measurement of gravitational 
waves 

Consider a data segment [0, T] uniformly sampled with N 
time samples tk, k = 0, 1,…, N – 1 and sampling interval 
; we then have T = N and tk = k. If x(t) are the data, 
the N samples x(tk) = xk can be regarded as an N-dimen-
sional column vector x with components xk (ref. 14). We 

first consider the simple situation where a data vector x 
either contains only noise, i.e. x = n, or contains a given 
signal s plus noise, x = s + n, where we have assumed 
additive noise. This is called a binary hypothesis and the 
hypotheses are denoted by H0 and H1 respectively. The 
data vector x is a vector random variable with a multi-
variate probability distribution. The probability distribu-
tions will differ depending on whether the signal is present 
in the data or not. The multivariate probability distribu-
tions are denoted by p0(x) for H0 and p1(x) for H1. Given 
x we must decide between the hypotheses H0 and H1. The 
assumption of additive noise implies p1(x) = p0(x – s). 
 We will consider the case of wide sense stationary 
(WSS) Gaussian noise15, although in reality it is neither 
of these. The WSS assumption is justified, if the signals 
are for short durations; then the noise for that duration 
can be considered to satisfy the WSS conditions. The 
WSS assumption requires that the first two moments of 
the noise are invariant under time translations. That is 
 
 n(t) = n(t + ), n(t)n(t) = n(t + )n(t + ), (8) 
 
for all time translations  and where the angular brackets 
denote ensemble average. Physically, this indicates that 
the mean and covariance between noise samples do not 
depend on absolute time, but only on the time difference. 
We will consider zero mean noise (the DC component is 
removed), i.e. n(t) = 0. The noise is then characterized 
by its autocorrelation function K defined as follows 
 
 n(t)n(t) = K(t – t). (9) 
 
The Fourier transform of K(t) is the power spectral den-
sity (PSD) S( f ). 
 For describing probability distributions, it is conven-
ient to go over to the sampled data vector x. We define 
the covariance matrix of the noise vector as 
 
 Cik = K(ti – tk) = K((i – k)). (10) 
 
Then the probability density function (pdf) for Gaussian 
noise is a multivariate Gaussian with mean zero and is 
given by 
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We may define the matrix  (Fischer information matrix) 
as the inverse of C; then in the exponent of the pdf we get 
the quantity ikxixk. This motivates the definition of a  
scalar product. We define a scalar product of two data 
vectors x and y as 
 
 (x, y) = ikxiyk. (12) 
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Then we can write 
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If we denote the set of data trains with , then with the 
scalar product so defined,  is a Hilbert space. In the 
Fourier space in case of WSS noise, the metric ik is dia-
gonalized; ik   ( f – f ) = S( f ). In the literature, S( f ) 
is replaced by the one-sided PSD which we again denote 
by the same symbol. Then eq. (12) can be written as 
 

 
0

*( ) ( )( , ) 4 d ,
( )

x f y ff
S f



 x  y  (14) 

 
where we have taken the real part of the integral. 
 To decide between the hypotheses, we devise a test. A 
test amounts to partitioning  into two disjoint regions  
and c, where c is the complement of . Thus if 
x  , the signal is present or H1 is true; otherwise 
x  c, H0 is true and the signal is absent. Now the prob-
lem reduces to determining the region . In order to do 
this, we define the false alarm and detection probabilities 
PF and PD respectively, as follows 
 

 0 1( ) ( )d , ( ) ( )d .N N
F DP p x P p x  x x

 

   (15) 

 
The solution to finding  is given by the Neyman–Pearson 
approach as follows. We first define the likelihood ratio 
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Given a false alarm probability PF = , the detection  
region  is determined by [P|(x) > 0] =  and  = 
[x  |(x) > 0]. 0 is called the threshold and is de-
cided by the false alarm probability . 
 We illustrate the situation for Gaussian noise. Then the 
pdfs for the signal absent and signal present cases are the 
following 
 

 
1 1
2 2( , ) ( , )

0 1( ) e , ( ) e .N Np A p A   
 

x x x s x sx x  (17) 
 
Here AN is the normalization constant which normalizes 
the pdfs. It is convenient to deal with the log likelihood 
ratio, which is 
 

 1ln ( ) ( , ) ( , ).
2

  x x s s s  (18) 
 

The monotonicity of the functions involved allows us to 
translate the equation, (x)  0 to  = (x, s)  0. We 

may write  = qixi where qi = iksk. The vector q is called 
the matched filter. The matched filter is optimal in the 
Neyman–Pearson sense – it maximizes the detection 
probability for a given false alarm probability16. 
 Although the above procedure is simple and easy to 
implement, we are not in this situation. We have a family 
of signals (instead of a single given signal), say s() 
where the vector parameter  collectively denotes the  
parameters ,  = 1, 2, …, p. For example, in the case of 
coalescing binary sources, the signal depends on the indi-
vidual masses, spins, distance to the binary and other kin-
ematical parameters such as time of arrival, initial phase, 
etc. All these constitute the . The family of vectors s() 
traces out a p-dimensional manifold – a submanifold of 
. This is called the signal manifold . The signal para-
meters  can be regarded as coordinates on the signal 
manifold17. 
 We now have to deal with composite hypotheses: 
 
 H0: No signal present, i.e. x = n, noise only and the 

corresponding pdf is p0(x). 
 H1: One among the family of signals s() is present, 

i.e. x = n + s() with the corresponding pdf now de-
noted by p1(x; ). 

 
We may use the Bayesian framework to address this 
problem. We are provided with a prior pdf z() on the pa-
rameter space which is based on either prior astrophysical 
information or some other consideration. Following on 
the lines of the previous case, we define the likelihood ra-
tio for a specific signal with parameters  as 
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x
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 (19) 

 
The Bayesian statistic is the marginalized likelihood 
given by 
 

 B ( ) d ( ; ) ( ).x z     x  (20) 
 
This is again optimal in the sense that the average detec-
tion probability is maximized for a given false alarm 
probability. 
 Computing the likelihood ratio is expensive – one 
would have to compute the matched filter at tens of mil-
lions of points in searching over the parameter space. 
Since our computational resources are limited, we can 
search the parameter space only over a finite number of 
grid points in . These vectors are called templates, 
which we take to be normalized. The template placement 
is achieved elegantly by defining a metric on the parame-
ter space17,18. In fact, the scalar product defined on  in 
eq. (14) induces a metric on  
 

 , .g   
    
  

s s  (21) 
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For those points that do not coincide with the grid points, 
we allow a maximum mismatch of ; typically  = 0.03 
allowing for a 10% loss in detected events. The place-
ment of templates is governed by the equation 
 
 g = . (22) 
 
The contours traced out by  are approximately hyperel-
lipsoids. The simplest arrangement is that of hypercubes, 
where the hypercube fits inside the hyperellipsoid. The 
template is at the centre of the hypercube of side l 
which is determined by requiring that the square of the 
distance from a vertex, namely p(l/2)2 = . The number 
of templates Ntemplates is the volume of the parameter 
space divided by the volume of the hypercube and is 
given by 
 

 templates
d

.p
g

N
l





 (23) 

 
where g is the determinant of the metric g. 
 However, in general, the template placement problem 
is difficult because one needs good coordinates on , 
which may not be readily available. In the spinless case, a 
good choice of coordinates are the chirp times, say, 0, 3, 
in which the metric components are nearly constant lead-
ing to a uniform grid. However, in general, there are only 
suboptimal solutions. In two dimensions, an improvement 
over the hypercube is the hexagonal packing which re-
duces the number of templates by 23%. In O1 run of the 
LIGO detectors ~250,000 templates were used in com-
pact binary coalescence searches. Sathyaprakash and 
Dhurandhar19 for the first time showed how to match fil-
ter the data with a bank of templates and further pre-
sented an optimal strategy for detecting GW signals of 
known shapes. 

Coalescing compact binaries: their dynamics and 
signature in gravitational wave radiation 

In eq. (1), the left-hand-side is the curvature of strain and 
the right-hand-side consists of the matter stress–energy 
tensor. Time-varying internal stresses cause ripples in the 
fabric of space–time that travel outwards from their 
sources at the speed of light. The coupling constant bet-
ween the stress–energy tensor and the curvature of strain 
is G/c4 and it has dimensions of 1/force. This force 
GF  c4/G ~ 1044 N, which we shall call the geometric 
force, is enormous. It implies that only when stresses in a 
system are large enough to produce forces this big can we 
expect the strain amplitudes to be the greatest. Let us ask 
when do self-gravitating systems experience this force. In 
a binary system of a pair of stars of total mass M, the cen-
tripetal force is F = M2/r = 4/G, where r is the distance 
between the bodies and v is the rotational speed. In the 

last of the equalities we have used Kepler’s law 
2 = GM/r. We can rewrite the centripetal force in terms 
of the geometric force: F = GF(/c)4. Thus the centripetal 
force is always smaller than the geometric force, coming 
close to it when  ~ c. For most astronomical binaries, 
v  c. However, for black hole and neutron star binaries, 
v can get very close to c just before they merge. It is only 
then that the strains produced are the largest ever possi-
ble. For this reason, black hole and neutron star binaries 
are considered to be the most powerful sources of GWs. 
 A binary system is the perfect example of a negative 
feedback system; the emission of radiation causes the 
system to become more unstable and emit an even greater 
amount of radiation by bringing the component bodies 
together. After evolving for millions of years, the two 
bodies would approach each other at relativistic speeds, 
collide and merge, emitting in the process a burst of ra-
diation. Ground-based interferometric detectors are de-
signed to observe the final moments of and minutes of 
their lifetime. 
 From the quadrupole formula given in eq. (2), we can 
estimate the strain amplitude from an inspiralling binary 
of total mass M and reduced mass  as follows. The non-
spherical kinetic energy in the system is kinetic

nonsphericalE   
v2/2: From Kepler’s law, v2 = GM/r, where r is the size 
of the orbit. Hence the amplitude is 
 

 2 2~ 2 ,GM GMh
c R c r

  (24) 

 
where 0   = /M  1/4 is the symmetric mass ratio and 
R is the luminosity distance to the source. The magnitude 
of the strain is h ~ 2.5  10–23 for a binary of total mass 
M = 1 M, when the bodies are separated by a distance of 
r = 10 GM/c2. 
 The dynamics of an inspiralling binary can be deter-
mined by demanding that the luminosity in GWs  comes 
at the expense of the binding energy of the system 
E ~ Mv2/2. The luminosity can be estimated from eq. (3) 
to be 
 

 
55 2

2
32 .

5
c GM
G rc
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 
  (25) 

 
The formula holds good for a binary on a quasi-circular 
orbit, quasi because the orbit is in reality shrinking due to 
the loss of energy. A binary on an eccentric orbit with the 
same semi-major axis as a circular orbit has a greater lu-
minosity. 
 The emission of the radiation has a back reaction on 
the binary, causing the two stars to spiral in. Starting 
from a separation r, the rate r  at which the orbit shrinks 
can be estimated by equating the luminosity to the rate of 
change of the orbital energy, i.e. dE/dt = –. From the 
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latter equation, the rate at which the separation r changes 
as a function time is 
 

 
3 3

5 3
d 64 .
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From this equation we can work out the lifetime tC of the 
system starting from a separation r = r0 to be 
 

 
45

0
3 3

5 .
256C
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G M

  (27) 

 
tC is called the chirp-time. It is often convenient to write 
the chirp-time in terms of the GW frequency f which, due 
to the symmetry of the system, is equal to twice the or-
bital frequency forb. Using Kepler’s law we find 
2f 2 = GM/r3. Upon substituting this expression in the 
equation for tC we get 
 

 3 3 8 /3
0

5 .
256 ( / )C

GMt
c GMf c 

  (28) 

 
Starting from a frequency of f0 = 30 Hz, an equal mass 
system of total mass M = 65 M will last for tC = 25 ms. 
This is the in-band duration of the first GW signal  
detected by LIGO in the inspiral regime and increases 
rapidly as the detector sensitivity improves at lower fre-
quencies. 
 Imprint in the amplitude and phase of the signal are the 
parameters of the source which include the luminosity 
distance R, the component masses (m1, m2) and spins 

1 2( , )S S
 

 of the binary, the sky position of the source 
(, ), inclination of the orbit relative to the line of sight  
(i.e. angle between the radial vector from the detector to 
the source and instantaneous angular momentum of the 
binary) and the orientation of the ellipse formed by the 
orbit of the binary projected on the sky (which essentially 
determines the combination of the polarizations measured 
by a detector). For long-lived signals, the amplitude and 
phase could be modulated by the Earth’s motion relative 
to the source, but this is not important for signals that last 
for less than half an hour in the sensitive band of the  
detector. 
 The source parameters could be extracted by finding 
the waveform parameters that best describe the signal. 
This is done by Bayesian inference. Given the data x, one 
computes the posterior probability of the parameters k 
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( | ) ,
( )
k k

k
P x P

P x
P x
 

   (29) 

 
where P(x|k) is the likelihood, P(k) the prior probability 
of the parameters and P(x) = P(x|k)dnk is the evidence. 

As the source parameters are varied, they do not neces-
sarily produce differences in waveforms that can be dis-
cerned from the background noise. This degeneracy of 
the waveforms indicates that not all parameters can be 
measured equally well. Table 1 shows the parameters of 
the LIGO sources detected so far. 
 LIGO’s black holes are the heaviest stellar mass black 
holes known to us. The observed luminosity in GWs for the 
three confirmed events reached  ~ few  1056 ergs/sec, 
which is only three orders of magnitude smaller than the 
theoretical maximum luminosity c5/G that a source could 
have. At that moment the luminosity in GWs exceeded 
the electromagnetic luminosity of the entire Universe. 
 The rate at which the frequency of GWs evolves  
depends on the intrinsic luminosity of a binary, while the 
amplitude of the radiation contains information about the 
extrinsic luminosity of the source. The two together can 
be used to infer the luminosity distance to a source. 
GW150914 and GW151226 are both at a distance of 1.3 
billion light years, while GW170104 and LVT151012 are 
both measured to be at a distance of almost 3 billion light 
years. 

Implications of the discovery for astrophysics  
and fundamental physics 

In this section we will briefly discuss the implications of 
LIGO’s discoveries to fundamental physics and astro-
physics. 

Astrophysical implications 

From Table 1 we see that the masses of four companions 
out of eight black holes are larger than ~20 M. Indeed, 
LIGO’s black holes are among the heaviest stellar mass  
 
 
Table 1. Parameters of the source corresponding to LIGO’s three  
detections GW150914, GW151226 and GW170104 and one candidate 
LVT151012 as of June 2017: matched filter signal-to-noise ratio, signal 
arrival time difference between the Hanford and Livingson detectors 
tHL, peak luminosity in gravitational waves (GWs), radiated energy in 
the process of merger, luminosity distance to the source, masses of the 
companions and total mass of binary, and mass and dimensionless spin  
  of the remnant black hole 

Source parameter 150914 151226 170104 151012 
 

Signal-to-noise ratio  24  13  13  9.7 
tHL/ms  7  1.1  –2.9  –0.6 
Peak GW luminosity/(1056 erg/s)  3.6  3.3  3.1  3.1 
Radiated energy/Mc2  3.0  1.0  2.0  1.5 
Luminosity distance/Mpc  420  440  880  1020 
Primary mass/M  36  15  31  23 
Secondary mass/M  29  7  19  13 
Total mass/M  65  22  51  37 
Remnant mass M/M  62  21  49  35 
Remnant spin c | |S


/(GM2)  0.68  0.74  0.64  0.66 
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black holes known in astronomy. X-ray observations have 
identified many black hole candidates, but these are typi-
cally in the mass range 5–29 M (ref. 20). In fact, accord-
ing to current understanding of stellar evolution, it is not 
possible to form black holes of mass greater than ~20 M 
from stellar processes unless they have sub-solar metal-
licities9,21, which were considered to be unlikely. Thus 
LIGO’s discoveries are already impacting astrophysical 
models of the evolution of massive stars and their envi-
ronments. 
 Binary black holes can form in isolated binaries or in 
dense stellar clusters by dynamical processes9,22,23. Mas-
sive stars in an isolated binary could each go through the 
main sequence phase at the end of which they suffer 
gravitational collapse and undergo supernova. If the pro-
genitor stars are more massive than about ~20 M, then 
the remnant could be a black hole21. If supernova kicks 
are large, the resulting binary may be disrupted or so 
wide that gravitational radiation emission may not be suf-
ficiently large to drive the system to merger within the 
Hubble time. If the kicks are small enough, then the re-
sulting binary may merge within the Hubble time and can 
be observed in the LIGO band. 
 In the second scenario massive stars in dense nuclear 
or globular clusters could end up as black holes that sink 
into the centre of the cluster by dynamical friction, where 
they may pair up with other black holes that have previ-
ously sunk in. Multiple interactions between such black 
holes could lead to hardening of the binaries that could 
merge within the Hubble time (ref. 9 and references 
therein). 
 LIGO’s detections are currently consistent with either 
scenario7,9. Future observations could discriminate bet-
ween different models as merger rates, spin orientations, 
and mass and spin distributions are different for alterna-
tive models. 

Tests of general relativity 

LIGO’s binary black holes and the remnants that form 
from their merger are ideal test beds of strong fields and 
dynamical space–times. The dimensionless gravitational 
potential at the Earth due the gravitational field of the 
Sun is /c2 = GM/rc2 ~ 10–8, where r = 1 AU is the dis-
tance between the Sun and the Earth. Even in radio binary 
pulsars like the PSR1913+16 and J0737-3039, it is 
/c2 ~ 10–4. The potential is of the order unity for two 
black holes at the time of merger /c2 ~ 0.5 (refs 24, 25). 
Moreover, the strongly nonlinear nature of the problem 
implies that it is necessary to compute the solution to the 
two-body dynamics in the perturbative post-Newtonian 
approximation, which would ensure that the waveforms 
built from such approximations are accurate enough for 
the purpose of detection, measurement and tests of GR26. 
 In the post-Newtonian approximation27, one describes 
the phase evolution of the orbit by an expansion in the 

small parameter v, the characteristic speed of the com-
panion stars in the binary. (For the sake of simplicity, we 
shall neglect logarthmic terms that are present in such an 
expansion. Tests of the post-Newtonian approximation 
are actually performed on the coefficients of the phase in 
the Fourier phase; the time-domain description given here 
provides the gist of the tests.) 
 

 ( ( )) ( / ) .k
k

n
v t v c    (30) 

 
The post-Newtonian coefficients k depend on the 
masses and spins of the companion black holes. One can 
use LIGO’s detections to test if these parameters are as 
predicted by post-Newtonian approximation or differ 
from their values in GR28. The same approach can also be 
used to test the waveforms for the full inpsiral, merger 
and ringdown that are obtained analytically and matched 
to the exact solutions obtained by numerical solutions at a 
finite number of points in the parameter space29,30. These 
tests have so far not revealed any departure of the data 
from GR, once again proving Einstein right7,8. 
 The late time dynamics of the system requires its full 
nonlinear description and hence it is during the merger 
phase that we might expect GR to fail. We have looked 
for any departure of the post-inspiral signal with that 
from the inspiral regime31, but found no deviations from 
the predictions of GR7,8. 
 In Einstein’s theory, the waves travel at the speed of 
light and suffer practically no dispersion as they traverse 
over vast distances of billions of light years from their 
sources to the Earth. In a massive graviton theory the 
waves will be dispersed, causing lower frequencies to be 
delayed by a larger magnitude than higher frequencies, 
hence inducing change in the phase evolution of the sig-
nals32. The very first observations have already begun to 
set interesting upper limits on the possible dispersion  
and also a limit on the mass of the graviton of mg < 7  
10–23/c2 eV (ref. 7). 

Outlook 

In 1909, Geiger and Marsden smashed alpha particles on 
a gold foil33, which in 1911 led Rutherford to discover 
the structure of the atom34. A 100 years hence we are at 
the verge of exploring the very structure of space–time 
with a similar experiment by observing black holes – pure 
geometric objects – smashing against each other. LIGO’s 
first discoveries are just the beginning: GW astronomy 
will herald a new era in fundamental physics, cosmology 
and astrophysics35, giving us access to processes with 
phenomenal energies, inconceivable in accelerators, and 
luminosities far exceeding all processes but the big bang 
itself. 
 Neutron stars are the densest objects that we know; the 
density at their cores can be two times that of atomic  
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nuclei at ~4  1017 g/cm3. The structure of matter at such 
densities has not been understood, although there are 
many different models for the state of matter at such den-
sities which could consist (mostly) of just neutrons, 
quark-gluon plasma or hyperons. Close to merger, the 
phase evolution of GWs from binary neutron stars will be 
different from binary black holes due to tidal deformation 
of neutron stars. The extent of that deformation, and the 
induced quadrupole moment, depend on the equation-of-
state. Hence a careful measurement of the waveform bur-
ied in detector noise could potentially reveal the structure 
of neutron star cores36. 
 Formation and evolution of compact binaries consist-
ing of neutron stars and black holes is an important ques-
tion in astrophysics22. For example, black hole binaries 
can form from massive stellar binaries when the compan-
ion stars each end their lives in a supernova resulting in 
black holes. Alternatively, they may form in dense stellar 
clusters where black holes formed from isolated massive 
stars sink to the centre of the cluster, where they pair up 
with black holes that have sunk before. Distribution of 
masses and spins of compact objects deduced from GW 
observations could be used to distinguish between differ-
ent formation scenarios of binary compact objects. A re-
lated question is when did massive black holes found in 
the nuclei of most galaxies form and what were their 
masses at birth and how did they grow? By observing 
black holes throughout the Universe, which is possible 
with more sensitive detectors, it should be possible to an-
swer this question in the coming years. 
 LIGO’s detections have not been able to test many 
predictions of GR so far. We cannot really tell if the sig-
nals detected by LIGO are really from black holes. The 
signal is consistent with other compact objects such as 
boson stars37 or gravastars38 that are also expected to re-
sult in an exponentially damped ringdown of the final 
remnant. The true signature of a black hole39 is in the 
quasi-normal modes it emits40, which consist of an infi-
nite spectrum of damped sinusoids whose frequency and 
time constant depend only on two parameters – the black 
hole mass and spin. Ringdowns of other compact objects 
will depend on the detailed inner structure of the stars. 
Thus, detecting quasi-normal modes that depend only on 
two parameters would be the tell-tale signature of the 
formation of a black hole41–43. 
 Other nonlinear effects expected to be detected in  
future observations include precession of the orbital 
plane, and higher modes in the radiation such as the octu-
pole that contains GW frequencies that are all multiples 
of the orbital frequency. 
 In GR, GWs have only two independent polarizations, 
although as many as six polarizations are possible in a 
generic metric theory of gravity44. Measuring the wave 
polarization would require a network of three or more 
non-colocated interferometers. 

 Understanding matter and gravity at extreme densities 
will be the science goal for future observations by LIGO, 
but to observe the full spectrum of GR predictions and 
constrain astrophysical models would require a new gen-
eration of detectors that are 10–30 times more sensitive 
than advanced detectors. Indeed, this nascent field is also 
poised to make new discoveries of objects and phenom-
ena unknown to us today, but observation of stochastic 
GWs that should have been produced at the birth of the 
Universe is our only window to understand what hap-
pened in the earliest moments of creation and the quan-
tum nature of space–time. 
 
 

1. Schwarzschild, K., Sitzungsbe. König. Preuß. Akad. Wiss. (Ber-
lin), 1916, 1, 189. 

2. Einstein, A., Sitzungsbe. König. Preuß. Akad. Wiss. (Berlin), Seite, 
1916, 688–696. 

3. Einstein, A., Sitzungsber. Preuss. Akad. Wiss. Berlin (Math Phys.) 
1918, 154. 

4. Einstein, A., Sitzungsber. Preuss. Akad. Wiss. Berlin (Math. 
Phys.), 1915, 1, 778 [Addendum: Sitzungsber. Preuss. Akad. Wiss. 
Berlin (Math. Phys.), 1915, 799]. 

5. Abbott, B. P. et al. (LIGO Scientific Collaboration, Virgo Col-
laboration). Phys. Rev. Lett., 2016, 116, 061102, arXiv:1602. 
03837 [gr-qc]. 

6. Abbott, B. P. et al. (LIGO Scientific Collaboration, Virgo Col-
laboration). Phys. Rev. Lett., 2016, 116, 241103, arXiv: 
1606.04855 [gr-qc]. 

7. Abbott, B. P. et al. (VIRGO, LIGO Scientific). Phys. Rev. Lett., 
2017, 118, 221101, arXiv:1706.01812 [gr-qc]. 

8. Abbott, B. P. et al. (LIGO Scientific Collaboration, Virgo Col-
laboration). Phys. Rev., 2016, X6, 041015, arXiv:1606.04856 [gr-
qc]. 

9. Abbott, B. P. et al. (LIGO Scientific Collaboration, Virgo Col-
laboration). Astrophys. J. Lett., 2016, 818, L22, arXiv:1602.03846 
[astro-ph.HE]. 

10. Schutz, B., A First Course in General Relativity, Series in Physics, 
Cambridge University Press, 1985. 

11. Abbott, B. P. et al. (LIGO Scientific Collaboration and Virgo  
Collaboration). Phys. Rev. Lett., 2016, 116, 131103, arXiv: 
1602.03838 [gr-qc]. 

12. Landau, L. D. and Lifshitz, E. M., The Classical Theory of Fields: 
Course of Theoretical Physics, Pergamon, Oxford, UK, 1971, 3rd 
edn (translated from Russian). 

13. Dhurandhar, S. V. and Tinto, M., MNRAS, 1988, 234, 663. 
14. Dhurandhar, S. V. and Schutz, B. F., Phys. Rev. D, 1994, 50, 

2390. 
15. Papoulis, A. and Pillai, S. U., Probability, Random Variables, and 

Stochastic Processes, McGraw-Hill Higher Education (a division 
of McGraw-Hill Companies), New York, USA, 2002, 4th edn, 
ISBN 978-0-07-366011-0. 

16. Helstrom, C. W., Statistical Theory of Signal Detection, Pergamon 
Press, London, England, 1968, 2nd edn. 

17. Balasubramanian, R., Sathyaprakash, B. S. and Dhurandhar, S. V., 
Phys. Rev. D, 1996, 53, 3033, gr-qc/9508011. 

18. Owen, B. J., Phys. Rev. D, 1996, 53, 6749, gr-qc/9511032. 
19. Sathyaprakash, B. S. and Dhurandhar, S. V., Phys. Rev. D, 1991, 

44, 3819. 
20. Miller, M. C. and Miller, J. M., Phys. Rep., 2014, 548, 1, 

arXiv:1408.4145 [astro-ph.HE]. 
21. Belczynski, K., Bulik, T., Fryer, C. L., Ruiter, A., Vink, J. S. and 

Hurley, J. R., Astrophys. J., 2010, 714, 1217, arXiv:0904.2784 
[astro-ph.SR]. 



ASTRONOMY: LIGO 
 

CURRENT SCIENCE, VOL. 113, NO. 4, 25 AUGUST 2017 671 

22. Postnov, K. A. and Yungelson, L. R., Living Rev. Relativ., 2014, 
17, 3, arXiv:1403.4754 [astro-ph.HE]. 

23. Rodriguez, C. L., Morscher, M., Pattabiraman, B., Chatterjee, S., 
Haster, C.-J. and Rasio, F. A., Phys. Rev. Lett.., 2015, 115, 
051101, arXiv:1505.00792 [astro-ph.HE]. 

24. Arun, K. G., Iyer, B. R., Qusailah, M. S. S. and Sathyaprakash, B. 
S., Phys. Rev. D, 2006, 74, 024006, arXiv:gr-qc/0604067 [gr-qc]. 

25. Mishra, C. K., Arun, K. G., Iyer, B. R. and Sathyaprakash, B. S., 
Phys. Rev. D, 2010, 82, 064010, arXiv:1005.0304 [gr-qc]. 

26. Abbott, B. P. et al. (LIGO Scientific Collaboration, Virgo Colla-
boration). Phys. Rev. Lett., 2016, 116, 221101, arXiv:1602.03841 
[gr-qc]. 

27. Blanchet, L., Living Rev. Relativ., 2014, 17, 2, arXiv:1310.1528 
[gr-qc]. 

28. Li, T. G. F. et al., Phys. Rev. D, 2012, 85, 082003, 
arXiv:1110.0530 [gr-qc]. 

29. Khan, S., Husa, S., Hannam, M., Ohme, F., Pürrer, M., Jiménez 
Forteza, X. and Bohé, A., Phys. Rev. D, 2016, 93, 044007, 
arXiv:1508.07253 [gr-qc]. 

30. Husa, S., Khan, S., Hannam, M., Pürrer, M., Ohme, F., Forteza,  
X. J. and Bohé, A., Phys. Rev. D, 2016, 93, 044006, arXiv: 
1508.07250 [gr-qc]. 

31. Ghosh, A. et al., Phys. Rev. D, 2016, 94, 021101, arXiv: 
1602.02453 [gr-qc]. 

32. Mirshekari, S., Yunes, N. and Will, C. M., Phys. Rev. D, 2012, 85, 
024041, arXiv:1110.2720 [gr-qc]. 

33. Geiger, H. and Marsden, E., Proc. R. Soc. London Ser., 1909, 82, 
495. 

34. Rutherford, E., Philos. Mag., 1991, 21, 669. 
35. Sathyaprakash, B. S. and Schutz, B. F., Living Rev. Relativ., 2009, 

12, 10.12942/lrr-2009-2, arXiv:0903.0338 [gr-qc]. 
36. Flanagan, E. E. and Hinderer, T., Phys. Rev. D, 2008, 77, 021502, 

arXiv:0709.1915 [astro-ph]. 
37. Kolb, E. W. and Tkachev, I. I., Phys. Rev. Lett., 1993, 71, 3051, 

arXiv:hep-ph/9303313 [hep-ph]. 
38. Mazur, P. O. and Mottola, E., Proc. Natl. Acad. Sci. USA, 2004, 

101, 9545, arXiv:gr-qc/0407075 [gr-qc]. 
39. Dreyer, O., Kelly, B., Krishnan, B., Finn, L. S., Garrison, D. and 

Lopez-Aleman, R., Classical Quant. Grav., 2004, 21, 787, 
arXiv:gr-qc/0309007. 

40. Vishveshwara, C. V., Nature, 1970, 227, 936. 
41. Berti, E., Cardoso, J., Cardoso, V. and Cavaglia, M., Phys. Rev. D, 

2007, 76, 104044, arXiv:0707.1202 [gr-qc]. 
42. Kamaretsos, I., Hannam, M., Husa, S. and Sathyaprakash, B., 

Phys. Rev. D, 2012, 85, 024018, arXiv:1107.0854 [gr-qc]. 
43. Gossan, S., Veitch, J. and Sathyaprakash, B., Phys. Rev. D, 2012, 

85, 124056, arXiv:1111.5819 [gr-qc]. 
44. Will, C. M., Living Rev. Relativ., 2014, 17, 4, arXiv:1403.7377 

[gr-qc]. 
45. Abbott, B. P. et al., Reports on Progress in Physics, 2009, 72, 

076901. 
 
 
 
 
doi: 10.18520/cs/v113/i04/663-671 

 
 
 
 
 
 


