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This article addresses the robust analysis on a delayed 
system with uncertainties. A geometric sequence divi-
sion (GSD) method is applied for delay partition. 
Then, a GSD-dependent Lyapunov–Krasovskii func-
tional (LKF) is newly proposed, in which the integral 
interval relevant with the state variables forms in 
geometric progression. In addition, by applying the 
convex combination method, parameter uncertainties 
and the delay derivative ( )d t  can thus be flexibly 
overcome. As a result, unnecessary enlargement for 
estimating the LKF derivative is eliminated. Numeri-
cal example shows that this proposed work achieves 
expected results. 
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IN the real world, delay is inevitably experienced in  
dynamic systems, such as chemical reaction processes, 
biological systems, mechanical systems, etc. The exis-
tence of delay can often yield poor performance or even 
instability1. Therefore, how to overcome the negative in-
fluence of delays has attracted vast attention in recent 
academic research. Meanwhile, stability is considered as 
the priority in many applications, a lot of research has 
been done on stability analysis for various types of de-
layed processes in recent decades2–5. Generally, stability 
conditions of delayed systems are categorized as delay-
independent and delay-dependent ones. Less conservative 
results can be obtained using delay-dependent conditions 
in case of a relatively small delay or interval time-varying 
delay. 
 For stability analysis, the essential issue for a system 
with delay is to obtain maximum delay upper bound that 
guarantees the studied system to be asymptotically stable. 
For obtaining a higher delay upper bound, various forms 
of Lyapunov–Krasovskii functional (LKF) are con-
structed, such as discretized LKF, augmented LKF and 
delay-partitioning LKF6–10. In fact, expected stability  
results will be achieved if well-developed inequalities are 

employed for estimating LKF derivative. Therefore,  
estimation of LKF derivative alternatively for reducing 
conservatism is another considerable option. Three tech-
niques are commonly applied: Jensen-inequality11–13, free 
weight matrix methods14,15, convex optimization method 
including their combinations16–21. The well known Jen-
sen-inequality and its modification are proposed in refs 
18 and 19. However, as a result of handling LKF  
derivative, some terms are neglected. So, it leads to con-
servative conditions because of the estimation. How to 
avoid unnecessary conservatism in the estimation of LKF 
derivative is still a challenge. 
 In addition, uncertain dynamic behaviours commonly 
exist in practical implementation due to modelling errors, 
immeasurable issues and perturbations, which could  
degrade the performance of system or even cause system 
instability22,23. The analysis of uncertainties is another hot 
topic for studying dynamic systems24–27. However, reduc-
ing conservatism in such systems is normally accompa-
nied with extra computational complexity28. How to 
compromise conservative reduction and computation 
burden is also full of challenges. 
 In this article, stability analysis on an uncertain system 
is studied. Delay-dependent criteria are derived to ensure 
that the linear system is globally asymptotically stable 
under the maximum upper bound. Comparing with exist-
ing results, the main outcome would be as follows: 
 (1) The recently developed geometric sequence divi-
sion (GSD) method is first applied on time-varying delay 
in a linear system. Using this method, a new modified 
LKF is constructed, which contains new GSD-dependent 
integral forms with unfixed intervals. This approach can 
dramatically reduce the number of decision variables. 
This new development can provide expected stability 
conditions with high efficiency and less computational 
complexity. 
 (2) Convex combination method is introduced to repre-
sent the parameter uncertainties and solve the delay  
derivative. This estimation approach can handle the LKF 
derivative without using extra inequalities or constraint 
conditions. Thus, unnecessary enlargement can be elimi-
nated. 
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 (3) Using convex combination and GSD methods, the 
stability criteria on robust analysis for delay linear system 
are improved remarkably. 
 
Notations: n is the Euclidean space with n-
dimensional. P > ()0 indicates positive (semi-positive) 
definite matrix P  In(0n) is the n-dimension identity  
(zero) matrix; He(A) = A + AT. 

Preliminaries 

A nominal system is given as 
 

 x (t) = A(t)x(t) + Ad(t)x(t – d(t)), t  0, 
 
     x(t) = (t), t  [−dN, 0], (1) 
 
where x(t)  n is state vector, A(t), Ad(t) are the real ma-
trices with appropriate dimensions, d(t) is time-varying 
delay, (t)  C ([−dN, 0], n) is the initial function. 
 For any t  0, the time-varying delay d(t) is described 
as two categories:
 
Case 1: d(t) – a differentiable function satisfying. 
 

 0  d0  d(t)  dN, 1  d (t)  2. (2) 
 
Case 2: d(t) – a continuous function satisfying. 
 
 0  d0  d(t)  dN, (3) 
 
where d0, dN, 1, 2 are constants. 
 Considering that uncertainties exist in the system, para-
meters are represented as v(t), (v = 1, 2), and 1(t) = 
A(t), 2(t) = Ad(t), which are not exactly known and 
might be taken from an interval v(t)  [v1, v2]. Then 
the parameters with uncertainties satisfy 
 

 v(t) = 1(t)v1 + 2(t)v2 = 
2

0 0
1

( ) ,v
o

t

   (4) 

 
with any constant 1(t)  0, 2(t)  0 satisfying 1(t) + 
2(t) = 1. 
 Some lemmas are employed as follows: 
 
Lemma 1 (ref. 19). Considering any matrix  > 0, and a 
continuously differentiable function z∶ [–, +]  n, the 
next inequality holds 
 

 ( ) ( ) ( )d ( ) ( ),T Tz s z s s t t




  




         (5) 

 
where 
 

 1( ) ( ) ( ) ( )d
( )

T
T T Tt z z z s s





  
 





 
 

 
 

  
  

and 
 

 
4

.
    
      
    

  
 


 

 
Lemma 2 (ref. 29). Let z: [–, +]  n be a differenti-
able function, Z  n×n and 1, 3  ℝ3n3n be symmetric 
matrices, and 2  ℝ3n3n, 1, 2  ℝ3n3n satisfying this 
condition, 
 

 
1 2 1

2* 0

* *

 
   
 
 



  
   

 
it holds 
 

 ( ) ( )d ,T Tz s z s s




 




      (6) 

 
where 
 

 1( ) ( ) ( )d ,
T

T T Tz z z s s




  
 





 
 

 
 

  
  

 

 1 3 1 2 2
1( ) +He( + ),
3

          
 

     

 
 1 1 2 2 3 1 2 1, 2 , [ 0 0],e e e e e e I             
 
 2 3[0 0], [0 0 ].e I e I    
 
Lemma 3 (ref. 30). For any vectors ƒ1, …, ƒN, scalar 
i

 (t)  [0, 1], 1 ( ) 1,N
i i t   and matrices i > 0, there 

exists matrix ij(i = 1, …, N – 1, j = i + 1, …, N) satisfies 
 

 0,
*

i ij

j

 
 

  






 

 
then the next inequality holds: 
 

 
1 1 1, 1

1
2

1 * .
( )

* *

T
NN

T
i i i

ii
N N

f f
f f

t
f f



    
           
         




   






 

 
Lemma 4 (ref. 31). For a symmetric positive matrix 

n n   and differentiable function z: [–, +]  n×n, 
then the next double integral inequality holds 
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 ( ) ( )d d ( ) ( ),T Tz s z s s t t
 



  
 



       (7) 

 
where 
 

 1( ) ( ), ( )d ,
( )

T Tt z z s s




 
 






 





  

 

    2
1 ( )d d

( )

T
Tz s s

 




 

 


 




 
   

 
and 
 

 
6 6 24

18 48 .
144

     
       
     

  
 


 

 
Lemma 5 (ref. 32). Let   n,  = T  n×n and 
B  mn with rank(B) < n. The next statements are 
equivalent: 
 
 (i) T < 0, B = 0,   0; 
 
(ii) BTB  < 0; 
 
 (iii) D  nm∶ + He(DB) < 0. 
 
where 
 
BT  n×(n-rank(B)) is the right orthogonal complement of 
B. 

Stability analysis 

A GSD based delay partition method is employed in Fig-
ure 1. 
 For any integral N  1, the interval [d0, dN] is separated 
into N subintervals as 
 

 
0

1
, 1,..., ,

i
i

i

i
a

d d i N

 




 



  



 (8) 

 
where  is a real positive number, and i is the length of 
the ith subinterval that is equal to i. It is obtained as  
 

 
 

Figure 1. GSD delay partition method. 

[d0, dN] = 1 .N
k kl  There exists an integer k  {1, …, N} 

  0, s.t. d(t)  lk. 
 

 (4 5)

1 4 5

0 ,...,0 , , 0 ,...,0 ,
T

N n nn n n n n
j

j N j

I Re  

  

     
   

 
 j = 1, …, 4N + 5. (9) 
 

The augmented vector is defined as 
 

 
0 1

2 3 4
( )

( ), ( ), ( ), ( ), ( ( )),

( ) ,
( ), ( )d , ( ), ( )

T T T T T

t
T T T T

t d t

x t x t d t x t x t d t

t
t x s s t t




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

  
 

  
 
  





  

  (10) 
 

where 
 
 1 1( ) [ ( ),..., ( )] ,T T T

Nt x t d x t d     
 

 
1

2 ( ) ( )d ,..., ( )d ,
N

T
t t

T T

t d t d

t x s s x s s
 

 
 
  
   

 

 
0 1

1

3
1

1 1( ) ( )d ,..., ( )d ,
N

N

Tt d t d
T T

Nt d t d

t x s s x s s
 
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 

 
 
  

   

 

 
0 0

1

4 2
1

1( ) ( )d d ,...,
( )

d t d
T

d t

t x s s


 


 

 


 


   

 

    
1 1

2
1 ( )d d .

( )

N N

N

Td t d
T

N d t

x s s





  

 





   

 
Theorem 1. Given an integer N > 0, and i = i. Con-
sider delay d(t) satisfying Case 1. The system (1) is as-
ymptotically stable if there exists symmetric positive 
definite matrices , , , , n n

i i i iR R P P Z 
     (i = 1, … , N), 

n n
iP    (i = 1, …, k), n n

iU    (i = k, … , N), B  
ℝ(N+2)n(N+2)n, symmetric matrices 1, 3  R3n3n, matri-
ces 2  R3n×3n, 1, 2  R3nn,   nn, and   
ℝ(4N+5)nnd, such that the next LMIs hold 
 

 
1 2 1

3 2* 0, 1,..., ,
* * i

i N
R

 
    
  

  
   (11) 

 

 
1,2 1 2

1,2

2 2 2

0
1 1 1

( ) ( ) ( )( He( )) 0,o s s ks s
o s s

t t t 
  

         

 
  1,..., ,k N  (12) 
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where 
 
 1 4 3( ) ( )T T T

o d N NA t e A t e e      
 
 

1 2 1 21 2 3 4, 5 3 3
T
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1
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


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1
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T T T
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i
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
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ˆ(1 ) T
s N Ne Pe     

 

 
1 2

1

3 1 1 2 2 1 1
1

( )
k

T T T
ks s i i i i i i k k k

i
e Pe e Pe e P e



     


        

 
     

1 24 4 4 4(1 ) (1 )T T
s N k N s N k Ne P e e U e          

 

     2 2 1 1 2 2
1
( )

N
T T T

k k k i i i i i i
i k

e U e e U e e U e     
 

      

 

 
1 1

4, 2 1 2
1

4 4
1 1

T

T T
N

T T
k i i

i
T T
N i N i

i i

e e

e e

e e
d d

 


   

   
   
   

      
   
   
      

  

 

   
1 1 1 1

2 2 2 4 3 4
1,

2 5 2 5 2 2

TT T T T
i i k kN
T T T T
i i N N

i i k T T T T
N i N i k k

e e e e

e e e e

e e e e

   

   
 

     

       
       

          
       
              

  

 

 
1 1

5 2 5 4 2 5
1

3 5 3 5

T T
i iN

T T
N i N i

i T T
N i N i

e e

e e

e e

 

   


   

   
   

     
   
      

  

 
 
with 
 

 
2

2
0

1 1 1

ˆ
N N i

i
i i

i i
R d R


 

  

 
   

 
     

  
2

2 2
1 0 1 0

2 1

1 ˆ( )
2

N i

i
d d Z d 




 

           
   

 

  
21

0
1

ˆ ,
i

id Z








        
  

 

 2
1 1 3 1 1 2 2

1 He( ),
3i id d        

 
     

 

 2

ˆ ˆ ˆ4 2 6
ˆ ˆ* 4 6 ,

ˆ* * 12

i i i

i i

i

R R R

R R

R

  
 

   
 

  

 

 

 3

ˆ ˆ

ˆ ˆ* 2 ,
ˆ* *

k k
T

k k

k

R R J J

R J J R J

R

   
 

      
 
  

 

 

 4

ˆ ˆ ˆ6 6 24
ˆ ˆ* 18 48 .

ˆ* * 144

i i i

i i

i

Z Z Z

Z Z

Z

  
 

   
 

  

 

 
Proof. For t  0, there exists an integer k  {1, …, N}, 
such that d(t)  lk. The LKF is proposed as 
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In the case of 1  d (t)  2, for any 1(t)  0, 2(t)  0 
satisfying 1(t) + 2(t) = 1, let 
 

 2
1 1 2 2 1( ) ( ) ( ) ( ) ,s ssd t t t t µ    


    

 
then the LKF derivative along the trajectory of the linear 
system (1) is indicated as: 
 
 ( ) 1 2( ,  ) | ( ) ( )

kt d t l t tx k x x        
 
        3 4 5( ,  ) ( ,  ) ( ),t t tx k x k x        (14) 
 
where 
 

2
1 2

( )

( )
( )( )

( ) 2 ( )
( )d ( ) (1 ( )) ( ( ))

T

t t
T

t d t

x t
x tt

x t
x s s x t d t x t d t






 
   
       
        



 


B

 

 

2
2

2
1( )

( )
( )( )

2 ( )
( )d ( ) ( ) ( ( ))1 ( )

T

t
T

s sst d t

x t
x tt

t
x s s x t x t d tt




 


 
   
       
        
 


B

 

 
2

1
1

( ) ( ) ( ).T
s s

s
t t t  


   

The derivative of 2(xt) is derived as 
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3 ( ,  )tx k  is derived as 
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The derivative of 4(xt, k) is deduced as 
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Applying Lemma 2 to deal with the second term of (17), 
it is given as 
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1 is defined in Theorem 1. 
 
Using Lemma 1 and 3 for the third term of (17), it is de-
rived as 
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2 and 3 are defined in Theorem 1. 
 Then, it follows from eqs (17)–(19) that 
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The derivative of 5(xt) is deduced as 
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Applying Lemma 4，the above last two terms are derived 
as 
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4 is defined in Theorem 1. Then it is derived as 
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Hence, the next inequality holds 
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s s
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Applying the vector (eq. 10) with the simplified expres-
sion (eq. 9), the linear system (eq. 1) is represented as 
 

 00 ( ),t F  (25) 
 

where F0 is described in Theorem 1. 
 Hence, the asymptotic stability result of the system  
(eq. 1) is presented as 
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 0subject to: 0 ( ).t F  
 

So, using Lemma 5, there will exist a matrix  such that 
eq. (26) is equivalent to 
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Thus the newly proposed LKF derivative is obtained as 
( )( ,  )| 0.t d t lkx k    It means 2

( )( ,  )| || ( ) ||
kt d t lx k x t   

for a sufficiently small  > 0. So the system (eq. 1) is as-
ymptotically stable. This completes the proof. 
 

Theorem 2. Given an integer N > 0, and i = i. Con-
sider delay d(t) satisfying Case 2. The system (eq. 1) is 
asymptotically stable if there exists symmetric positive 
definite matrices ˆ ˆ, , , ( 1,..., ),n n

i i i iR R P Z i N    
( 1) ( 1)ˆ ,N n N n  B  symmetric matrices 3 3

1 3, ,n n   
matrices 3 3

2 ,n n  3
1 2, ,n nR    ,n n and 

(4 5) ,N n n   such that the next LMIs hold 
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where 
1 2ks s  is modified to ˆ

k  by removing 
1 23ks s  and 

replacing 1 2,s s  to 1 2
ˆ ˆ,   as follows 
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Fo are defined in Theorem 1. 
 
Proof. Modify the Lyapunov functionals (eq. (13)) by 
changing 1(xt), 2(xt) and removing 3(xt, k) as 
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Then following the same procedures of proof of Theorem 
1, the stability criteria will be equivalent to 
 

 
2

0 0
1

ˆ( ) ( )( He( )) ( ) 0.T
k

o
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This completes the proof. 

Illustrative examples 

Example 1. Consider a nominal system (eq. (1)) with 
the parameters discussed in refs 28 and 34 are given as 
 

 
0.5 2 0.5 1

, .
1 1 0 0.6dA A

      
       

 

 
Considering 20% parameters uncertainties regarding eq. 
(4), i.e. v(t)  [v(t)  80%, v(t)  120%]. By choosing 
d0 = 0 and the maximum value of dN is obtained with dif-
ferent . 
 In the case of  = 0.9 and dN = 0.5412, the state re-
sponse of eq. (1) is shown in Figure 2. 
 Table 1 compares maximum upper bounds dN with dif-
ferent values of  and d0 = 0. It clearly shows that for 
 = 0.9 and   1 this proposed approach presents a big-
ger dN than the results in refs 28 and 34, with N = 3. Fig-
ure 2 indicates that the state converges to zero with 
dN = 0.5412, which means the system (eq. (1)) is globally 
asymptotically stable under the obtained maximum value 
of d(t). 
 
Example 2. Consider a nominal system (eq. (1)) with 
the parameters discussed in refs 31 and 33, are given as 
 

 
0 1 0 0.1

, .
10 1 0.1 0.2dA A   

        
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Considering time-varying delay satisfying case 2, the 
maximum value of dN is obtained based on Theorem 2. 
 In Table 2, considering unknown  and different d0, the 
maximum upper bounds dN are obtained. It shows that the 
proposed method improves the stability results compared 
to the previous works31,33. 
 
Remark 1. In this article, parameter uncertainties are 
taken into account for stability analysis of delayed linear 
system. Different from the existing results28,31,33,34, a new 
LKF is constructed, which contains GSD-dependent inte-
gral forms with unfixed intervals. This novel design can 
reduce the number of decision variables and provide ex-
pected stability conditions with high efficiency and less 
computational complexity. A new expression of uncer-
tainties is formulated in (eq. (4)) using convex combina-
tion method. Extra inequalities and constraint conditions 
can be eliminated compared to earlier research14,21,31. The 
stability criteria on robust analysis for linear system with 
time-varying delay is improved. 
 
 
 

Table 1. Maximum value of dN with d0 = 0 and different vaules  

Method Peng and Tian34 Liu and Li28 Theorem 1 (N = 3) 
 

 = 0.9 0.4760 0.5390 0.5412 
  1 0.4760 0.5390 0.5407 

 
 

Table 2. Upper bounds of dN for unknown  and different d0 

Method Lee et al.33 Park et al.31 Theorem 2 (N = 3) 
 

d0 = 0 1.35 1.64 1.71 
d0 = 1 2.31 2.91 3.13 

 
 
 

 
 

Figure 2. State of systems (eq. (1)). 

Remark 2. This employed GSD method considerably 
improves the efficiency for obtaining the maximum  
value of d(t). Sum formulation of the GSD method is 
a1(1 – N)/(1 – ) where a1 is the first term and   1. For 
example, let the first term a1 = 1,  = 2 and the partition-
ing number N = 4, that is a1(1 – N)/(1 – ) = 15. This 
means that the partition number N = 15, if the common 
equivalent division method is selected. However, by  
using our GSD approach, the partition number N = 4, 
which is 30% less than the equivalently partitioning  
method. Hence, the decision variables are reduced consi-
derably. In addition, if the common ratio  = 1, then the 
sum will be N  a1 that coverts the length of subinterval 
to equal. Thus the previously produced works14,35 using 
equivalent partition approach are the special cases of this 
proposed method. 
 
Remark 3. When a system has high dimension, the 
computation burden is increased. It becomes more diffi-
cult to work out feasible solution. Lower dimension sys-
tems are commonly used for stability study. Additionally, 
big partitioning number requires much more computing 
time. In future, we will try to discover an improved 
method to reduce the computation cost. 

Conclusion 

In this study, stability conditions of nominal system with 
parameter uncertainties and interval time-varying delay 
are investigated by utilizing the GSD delay-partitioning 
method and convex combination approach. New GSD-
dependent LKF is developed, which includes integral 
forms with geometric progression interval. Additionally, 
the convex combination method is proposed to flexibly 
estimate LKF derivative instead of using extra inequali-
ties. Therefore, unexpected enlargement can be appropri-
ately reduced. Meanwhile, less decision variables are 
used, because the proposed GSD approach reduces the 
number of partitioning subintervals. As a result, the com-
putational burden is lessened. Numerical results demon-
strate a good stability criteria. Due to the complex 
dynamics of nonlinear system, control of such systems is 
full of challenges. Recently, this research area has  
attracted a lot of attention. Thus, future studies should 
carry on the robust control of nonlinear systems with  
stochastic disturbances and uncertainties. 
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