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In this paper, dynamical heterogeneities are charac-
terized both at the monomer and centre-of-mass level, 
in polymer melts well above their glass transition 
temperature, responsible for anomalous dynamics in 
these systems. Microscopic analysis of united atom 
molecular dynamics simulations of unentangled poly-
ethylene melts suggests a molecular mechanism for the 
observed heterogeneous dynamics based on local den-
sity fluctuations about a tagged polymer. These local 
density fluctuations are related to variations in en-
tropy in a small volume about a polymer in the melt, 
which result in initial connections of the dynamical 
heterogeneities to entropy. 
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THE term ‘dynamical heterogeneities’ encompasses tran-
sient clusters of particles with enhanced or reduced  
mobility relative to the average in time intervals t < τRouse 
(where τRouse is the longest intramolecular relaxation 
time, and defined as the time a molecule requires to dif-
fuse a distance comparable to its own dimension, radius 
of gyration Rg). These high and low mobility regions 
fluctuate throughout the sample in time. Many theoretical 
and experimental studies show that polymer melts and 
glass-forming liquids display heterogeneous dynamics 
near glass transition temperature, or under supercooled, 
or undercooled conditions1–7. The possibility of dynami-
cal heterogeneities in these systems, specifically polymer 
melts well above their glass transition temperature, is 
rather less reported. In this paper we investigate, charac-
terize dynamical heterogeneities in polymer melts well 
above their glass transition temperature, and attempt to 
address the molecular origin of these transient high and 
low mobility regions in the melt. 
 Polymer melts display short-time anomalous dynamics 
in disagreement with conventional single-molecule mean-
field theories – namely Rouse and reptation models for  
dynamics in unentangled and entangled systems respec-
tively8–11. This anomalous dynamics includes subdiffusive 
centre-of-mass (c.m.) dynamics and anomalous segment 
diffusion, and has been attributed to dynamical heteroge-
neities in these liquids12. Consequently, a theory which 
defines the relevant variables as momenta and space  
coordinates of the molecules comprising the low mobility 

region and projects the fluid dynamics onto these vari-
ables – namely the cooperative dynamics generalized 
Langevin equation (CDGLE) formalism – could correctly 
predict the observed anomalous dynamics of monomer 
and c.m. in the complete range of timescale of interest, 
from the prediffusive to the diffusive regime12. But 
CDGLE approach does not discuss the origin of dynami-
cal heterogeneities. 
 In spite of considerable experimental and theoretical 
effort in the past two decades, the origin of dynamic  
heterogeneities remains an open question for many sys-
tems13,14. Glotzer and co-workers observed string-like 
correlated motion in the dynamics of simulated super-
cooled unentangled polymer melts and related this motion 
to dynamical heterogeneities1. Based on these findings 
and further work, string model of glass formation15 is  
explored to study different aspects of glass formation and 
dynamical heterogeneities in polymer melts16. Still the 
origin of dynamical heterogeneities is not explained in 
these studies. We provide useful insights into this ques-
tion in polymer melts well above glass transition tem-
perature by microscopic analysis of united atom 
molecular dynamics (UA-MD) simulation trajectories of 
unentangled polyethylene melts from G. S. Grest and co-
workers17,18 and V. G. Mavrantzas and coworkers19. 
 The following section discusses the analysis of hetero-
geneous dynamics in unentangled polyethylene (PE) 
melts well above their glass transition temperature. The 
next following section suggests a molecular mechanism 
of the observed dynamical heterogeneities, that evolves 
from the microscopic analysis, relating the rapid switch 
from slow to fast dynamics of a tagged chain to density 
fluctuations. Later, we discuss the associated estimation 
of entropy about the tagged chain. Conclusions are drawn 
at the end. 

Characterization of heterogeneous dynamics 

We analyse heterogeneous dynamics in UA-MD simula-
tion trajectories of unentangled polyethylene melts from 
research groups of G. S. Grest17,18 and V. G. Mavrant-
zas19. These UA-MD simulation data from the research 
groups17–19 mentioned, exhibited excellent agreement 
with CDGLE theory12. The details of the UA-MD simula-
tion data analysed are given in Table 1. G. S. Grest and 
coworkers17,18 performed simulations for all N (except 
C100) under isothermal-isochoric conditions, while V. G. 
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Mavrantzas and coworkers19 performed simulations for 
N = 100 on an NPT ensemble over a group of n chains. 
The characteristic longest timescale, for these unentan-
gled melts is τRouse, defined as the time taken by a chain 
in the melt to diffuse a distance comparable to its own 
dimension, Rg, and thus written as τRouse = R2

g/D (where D 
is the diffusion coefficient), and calculated in Table 1. 
This timescale is also the characteristic relaxation time of 
dynamical heterogeneities as shown in Figure 1 a and b 
for monomer dynamics. Self-part of the monomer van 
Hove distribution function Gs(Δr, t), represents the prob-
ability of monomer displacement Δr in time interval t, 
which can be shown to be Gaussian if harmonic in-
tramolecular potential is assumed as shown explicitly in 
the appendix (eq. A15). In a purely diffusive system 
Gs(Δr, t) is expected to be a single mode Gaussian. Figure 
1 a and b show representative radial distributions of 
monomer displacements sampled at fixed time intervals 
t < τRouse and t = τRouse. These distributions are fitted to a 
Gaussian distribution (dashed line) in Figure 1 a, while 
the derived equation (eq. A15) is shown in solid line 
(Figure 1 a and b). The derived  Gs(Δr, t) (eq. A15) does 
not show good agreement with simulation data for  
t < τRouse (Figure 1 a), but provides excellent fit to the 
simulation data for time intervals t ≥ τRouse (Figure 1 b). 
For t < τRouse the distribution of monomer displacements 
shows a non-Gaussian tail at large displacements due to a 
fast dynamical process in addition to the slow diffusive 
process in the polymer melt system. At times t ≈ τRouse, 
the distribution becomes Gaussian as dynamical hetero-
geneities are averaged out and the trajectories follow free 
diffusion. Similar conclusions from analysis of c.m. dy-
namics can be found elsewhere12. 

Correlation between chain stretching and fast diffusion 

For times t < τRouse, the probability distribution for mono-
mer displacement (Figure 1) and c.m. displacements12 
(not shown) exhibit non-Gaussian tail at large displace-
ments, implying a fraction of monomers and c.m.s move 
farther than the rest, respectively, and are considered to 
be more mobile. We analyse c.m. displacements at such 
selected time intervals t < τRouse, where maximum devia-
tion of probability distributions for monomer and c.m. 
displacements from that expected of Gaussian approxima-
tion (which holds for purely diffusive motion), is ob-
tained. Evidently at these time intervals maximum 
 

Table 1. Parameters for the UA-MD simulation trajectories17–19 

System N n T (K) L (Å) τRouse (ns) 
 

C16H34  16 64 323  31.7  0.26 
C30H62  30 64 400  39.3  0.83 
C44H90  44 100 400  51.4  2.35 
C96H194  96 400 448 105.4 15.30 
C100H202 100  48 450  52.9 18.73 

heterogeneity in dynamics is exhibited, which implies 
more fraction of monomers or c.m.s perform very fast 
motion and pronounced non-Gaussian tail is obtained at 
larger displacements in the distributions for both c.m. and 
monomer displacements. The correlation between c.m. 
displacements and average end-to-end distances for the 
time interval t that maximizes this contribution due to the 
fast dynamical process is studied. Figure 2 a, b and c show 
representatively the results for C16H34 at t = τRouse/2, 
C44H90 at  t = τRouse/7.6, and C100H202 at t = τRouse/2.3, re-
spectively. The different colours represent contour plots 
of the three-dimensional distribution function. A point 
with its colour on this contour plot represents the prob-
ability that a polymer exhibits c.m. displacement ΔR in time 
interval t with end-to-end distance Rete, in a scale of 2–11. 
Hence darker colours represent lesser probability and vice-
versa. The melts of short polymer chains (Figure 2 a and 
b) distinctly show that the fast dynamical relaxation is  
correlated with the appearance of persistent stretched 
configurations comprising high percentage of trans con-
formations. However, completely stretched configura-
tions are entropically unfavourable (except for very short 
chains like C16 (Figure 2 a)), and become less probable  
 
 

 
 

Figure 1. Distribution of monomer displacements for C30H62 at fixed 
time intervals (a) t < τRouse and (b) t ¬ τRouse. Unfilled coloured circles: 
UA-MD simulation data. Dashed line: best fit (single mode Gaussian 
distribution) to slow dynamics. Solid line: as calculated from eq. (A15) 
with 〈(Δr)2〉 input from the simulation. 
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with increasing polymer length. In fact, for the high mo-
lecular weight sample as seen in Figure 2 c the appear-
ance of stretched configurations becomes a rare event as 
they are entropically unfavourable since the difference in 
entropy of Gaussian chain at non-zero extension from its 
zero extension value, scales as ΔS ∝ – N (ref. 20). 
 In Figure 2 a–c, the polymer molecules in blue regions 
on the top right corner, exhibit fast dynamics and also 
maximum heterogeneity in dynamics (as explained above); 
are subjected to further investigation. The c.m. of these 
molecules shows transient periods of very small amplitude 
(slow) motion followed by periods of distinctly large ampli-
tude (fast) motion, which also implies that the molecule 
trajectory switches from transient low mobility to high 
 
 

 
 
Figure 2. Contour plots of the normalized distribution of the correla-
tion between the c.m. mean displacement and the root mean-square 
chain end-to-end distance at fixed time intervals t < τRouse for (a) C16H34 
at t = τRouse/2 = 0.13 ns, (b) C44H90 at t = τRouse/7.6 = 0.31 ns, and (c) 
C100H202 at t = τRouse/2.3 = 8.0 ns. 

mobility regions as explained in the next section (also see 
Figure 4). Figure 3 a and b show a representative result 
from one such study done on a tagged polymer 10 of 
C100H202 melt, where the correlation between the stretch-
ing and fast dynamics is explored further at fixed time in-
terval t = 8.0 ns where polymer 10 exhibited maximum 
heterogeneity in dynamics. The c.m. displacement ΔR(t) 
in Figure 3 a is given by ΔR(t) = |R(t2) – R(t1)|, where  
t2 – t1 = t. Projections of ΔR(t) in the direction of end-to-
end distance Rete are averaged over the fixed time interval 
t as 2 2 2 1/ 2

ete ete ete ete
ˆ ( )X Y Z −Δ ⋅ = + +R R  (ΔXXete + ΔYYete + 

ΔZZete). The x-, y- and z-components of Rete in this ex-
pression are averaged over the fixed time interval t, while 
components of ΔR are obtained as explained above (for its 
magnitude ΔR(t)). The magnitude of the c.m. displace-
ment along the direction perpendicular to Rete is calcu-
lated as 2 2 1/ 2

ete ete
ˆ ˆ| | [( ) ( ) ] .RΔ × = Δ − Δ ⋅R R R R  The mean 

square displacements, the projections of ΔR(t) along and 
perpendicular to end-to-end distance, and the end-to-end 
distance values averaged over fixed time interval t are 
shown in Figure 3 a and b, where the x-axes are the lower 
bounding step numbers of the instances (sequences) of t 
as it occurs in the UA-MD simulation trajectory. For ex-
ample, values of ‘0’ and ‘5’ of steps-axis (x-axes in Fig-
ure 3) represent instances of time interval of t = 8.0 ns 
occurring between (0–80)th and (5–85)th steps respec-
tively (0.1 ns/step, i.e. trajectories were recorded by V. 
G. Mavrantzas and coworkers19 after every 0.1 ns). Thus 
x-axes in Figure 3 give the direction of time in the trajec-
tory of the molecule, and the results are shown over the 
entire trajectory. The y-axis values of the curve labelled 
Rete in Figure 3 a are averaged over fixed time interval t; 
for example, the value at steps-axis value = 5 (say) repre-
sents end-to-end distance averaged over all the steps from 
5th to 85th step of the tagged polymer trajectory (also 
explained above). Similarly other quantities, namely, pro-
jections of ΔR(t), tagged chain fragment-averaged den-
sity, and different entropy estimates are averaged over t 
in Figures 3 b, 6 a, 7 a, b, 8 a–c and 9. For medium 
length chains (C44) and long chains (C96 and C100), in-
creased correlation is obtained between the fastest c.m. 
motion and the stretching of the chain, while shorter 
chains (C16 and C30) being stiffer due to its small size has 
more propensity to be in extended state (red region in top 
left corner of Figure 2 a). Hence the representative results 
are shown for C100 in this study. As shown in Figure 3 a, 
fastest c.m. motion of polymer 10 occurs at steps-axis 
values in the range 2100–2300, which is increasingly cor-
related with large tagged chain extension values (aver-
aged over t) at the same range of steps-axis values. 
Similarly, projections (averaged over fixed time interval 
t) of c.m. displacement along and perpendicular to the 
end-to-end and squared end-to-end distance values (aver-
aged over t) are compared for the entire trajectory of the 
molecule in Figure 3 b. The comparison of these results 
in Figure 3 b in the steps-axis (values) range 2100–2300,
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Figure 3. Correlation between extension Rete and c.m. displacement ΔR, and its parallel/perpendicular component along the direction of 
Rete in (a) and (b) respectively, for polymer 10 of C100 at time interval t = 8.0 ns. 

 

 
 

Figure 4.  Molecule 11 of C96H194 PE melt: (a) c.m. trajectory and (b–d) snapshots at times marked by filled colored circles in (a). •: coiled, •: 
stretched, •: reverse to coiled–conformations of the chain, and : onset of stretched conformations. Colored filled symbols in subfigures (a–d) cor-
respond to the following real times: • at 3.5 ns,  at 4.0 ns, • at 4.4 ns, and • at 4.875 ns. 
 
 
shows that the fastest and the most part of the c.m. mo-
tion for C100 is along (both positive and negative) direc-
tion of the end-to-end distance; the same is true for other 
PE melt systems (not shown). 

Molecular mechanism 

The mechanism of fast dynamics is ascertained by fol-
lowing the c.m. motion of the molecule which exhibits 
the maximum heterogeneity in dynamics at a fixed time 
interval t. Polymer 11 of C96H194 was found to exhibit 
maximum heterogeneity in dynamics (as explained in 

previous section) at fixed time interval t = 1.85 ns. A 
2.4 ns portion of the c.m. trajectory (where the fast dy-
namics is obtained) for polymer 11 of C96H194 is shown 
representatively in Figure 4 a, where coloured filled sym-
bols label different (real) times along the trajectory. The 
snapshots of polymer configurations at times correspond-
ing to coloured circles (in Figure 4 a) are shown in Figure 
4 b–d. Early caged dynamics (•), where the polymer is 
sufficiently coiled (Figure 4 b) is followed by fast long-
range unidirectional c.m. motion (•), that are correlated 
with the appearance of intramolecular polymer configura-
tions having a high percentage of trans (stretched)  
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conformations (Figure 4 c), and subsequent recoiling 
(Figure 4 d) when c.m. slows down and performs short-
range motion (•).  denotes a time after 1.5 ns of the tra-
jectory shown in Figure 4 a that marks approximately the 
onset of relatively stretched configurations when the 
molecule unfolds to perform fast motion. The real time 
picture of this c.m. motion and corresponding polymer 
configurations (in the form of a movie of length 3.125 ns 
in real time as in simulations), exhibiting all the features 
as discussed for Figure 4, is in the supplement21. The time 
stamp in the movie21 is of real time trajectory as it occurs 
in the simulation data. The correlation between stretched 
configurations and fast c.m. motion can be explicitly seen 
in the movie21 between times 4.2 ns to 5.0 ns. Coloured 
filled symbols in Figure 4 a–d correspond to the following 
real times: • at 3.5 ns,  at 4.0 ns, • at 4.4 ns, and • at 
4.875 ns. 
 The analysis of c.m. trajectories (Figure 4 and the 
movie21) shows that a tagged polymer undergoes transient 
periods of small-amplitude motion followed by periods of 
large-amplitude displacements. During a short-time inter-
val some molecules undergo local motion, while others 
undergo fast unidirectional diffusion22. Although the 
molecules are always partitioned between mobile and less 
mobile sub-populations, the identities of molecules as-
signed to either group change in time, and for  t > τRouse, 
the system behaves ergodically22. These features are in 
accord with the mechanisms of heterogeneous dynamics 
observed in undercooled ‘fragile’ glass-forming liquids6,7. 

There are also similar reports of heterogeneous dynamics 
in supercooled polymer melts, polymer glass and polymer 
melts near glass transition1–4. Since our fragile systems 
are not undercooled (obvious from the T and density val-
ues calculated from Table 1), we argue that the presence 
of dynamical heterogeneities is due to the competition be-
tween chain connectivity and intermolecular excluded-
volume interactions. This induces frustration and slowing 
down of global dynamics even far from the glass transi-
tion. The competition between these two effects is unique 
to polymer melts and concentrated solutions, and is the 
physical origin of the correlation hole in the structure of 
polymer fluids20,23. 
 Two kinds of c.m. motion are predominantly observed: 
(i) the trivial c.m. fluctuation about a point and then re-
coil (caged dynamics), and (ii) the distinct switch from 
slow to fast dynamics; shown schematically in Figure 5, 
where each chain configuration (along with the c.m. 
shown) is a snapshot of the chain trajectory. The non-
trivial second kind of motion, is further investigated,  
believed to be induced by the density fluctuations charac-
teristic of the frustrated systems like undercooled fluids, 
and as argued earlier polymer melts represent one such 
system. As shown in the cartoon in Figure 5 (which is not 
to scale), transient low and high density regions in the 
melt create short lived interfaces. When a polymer end 
from the high density region at random happens to cross 

such an interface, it gets pulled by a force (shown by ar-
rows in Figure 5) caused by this density gradient along 
the interface, which subsequently causes density gradient 
along the chain itself, resulting in simultaneous stretching 
of the chain and thus the whole polymer eventually gets 
pulled out of the high density region followed by recoil-
ing. This reminds us of the experiments by Craighead and 
coworkers24,25 and more recently by Yeh et al.26, where 
they show that single DNA molecules in nanofluidic de-
vices at the interface of regions containing different con-
figurational entropies relax by confinement induced 
entropy recoil mechanism. We actually show that these 
density fluctuations indeed cause the switch from slow to 
fast dynamics in tagged polymers in melts, and further 
show that this switch is primarily entropy driven. 

Correlation between density fluctuations and  
transition from slow to fast dynamics and vice-versa 

The correlation between local density fluctuations about 
the tagged chain (the polymer chain having maximum 
heterogeneity in its dynamics) and its rapid switch from 
slow to fast dynamics, is studied. The number of mono-
mers ( )k

an b  in a spherical volume (of radius b) centered 
at monomer a of the tagged chain in simulation step k is 
calculated as 
 

 2

0

( ) 4 ( ,0)d .
b

k
a an b r G r rπ= ∫  (1) 

 
Here Ga(r, 0) is the static monomer van Hove function of 
the monomer a at step k. b is chosen such that it repre-
sents adequately the density fluctuations responsible for 
transition in the dynamics of the tagged chain. Hence the 
required local density about monomer a is ( ) / ,k

an b V   
 

 
 
Figure 5. Schematic of two kinds of motion: (i) c.m. fluctuation and 
(ii) confinement induced entropy recoil mechanism. Packed circles and 
scattered dots resemble high and low density regions respectively. 
Solid filled circles represent c.m. of the chain configurations. 
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where V = 4/3πb3. Since V is constant for a particular PE 
melt system, density fluctuations can be treated as 
monomer number fluctuations in volume V, and this is 
done consistently in the paper. 
 For a better representation, these calculated densities 
are averaged over m monomers, constituting each N/m 
fragments of the tagged chain, such that we have more 
compact fragment-wise densities of the chain, as shown 
representatively in Figures 6 and 7. For comparison of lo-
cal densities with fast diffusion, these calculated frag-
ment-wise densities are further averaged over time 
interval t as done for the calculations in Figure 3 a, and 
hence the x-axes are the same as in Figure 3 a. Invariably 
all the PE systems in Table 1 show correlation between 
density fluctuations about the tagged chain and fast c.m. 
dynamics of the fragments, results of which are shown 
representatively for long chain melts–polymer 10 of 
C100H202–and for short chain melts–polymer 20 of 
C16H34–in Figures 6 and 7 respectively. The tagged poly-
mer in Figure 6 is divided into 5 fragments comprising 20 
monomers each, and the results are shown in the time 
window of fastest dynamics, for a fixed t. Figure 6 a 
shows the results from average fragment-wise density 
calculations, where curve labelled (1–20) represents av-
eraged local density about one chain end fragment, com-
prising first 20 monomers from one end of the tagged 
polymer 10 (head fragment say, in units of number of  
 
 

 
 

Figure 6. Average (fragment-wise) densities (in number of both intra 
and inter monomers) in spherical volume V (radius b = 16.9 Å) corre-
lated with fragment-wise c.m. mean square displacements for 5 frag-
ments of polymer number 10 of C100 melt, sampled at fixed time 
interval t = 8.0 ns. a, Average fragment-wise densities; b, Fragment-
wise c.m. mean square displacements. 

both intra and inter monomers) and the average is done 
over both time interval t and the comprising 20 mono-
mers of the fragment (eq. (1)). Similarly the curve la-
belled (21–40), represents result as explained from the 
next 20 monomers following the head fragment and so 
on, and the curve labelled (81–100) represents explained 
local density results from last 20 monomers (tail frag-
ment) at the other end of polymer 10. Similar fragment-
averaging calculations are done in the rest of the paper 
(for Figures 6–9). Figure 6 b shows the c.m. dynamics of 
the fragments averaged over t. In Figure 6 a, a drop in 
density is first found around the chain end (tail fragment) 
at steps-axis values (2080–2120), which propagates till 
the head of the chain in time at steps-axis values (2160–
2200), while parts of the chain from around middle frag-
ment till two fragments before the tail fragment tend to 
remain at the high density region all through the process. 
Thus a gradient in density (Figure 6 a) exists along the 
chain at all times (at all steps-axis values), which gets 
more pronounced at steps-axis values (2080–2120). This 
steep density gradient along the tagged polymer and ini-
tial density drop (Figure 6 a) around the tail fragment at 
steps-axis values (2100–2105) drives the rapid switch to 
fast dynamics of polymer 10, with the tail performing  
 
 

 
 
Figure 7. Average (fragment-wise) densities (in number of both intra 
and inter monomers) in spherical volume V correlated with fragment-
wise c.m. mean square displacements for 4 fragments of polymer num-
ber 20 of C16 melt, sampled at t = 0.13 ns: (a) and (b) are densities at 
b = 5.18 Å and b = 9.76 Å respectively; (c) Fragment-wise c.m. mean 
square displacements. 
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first the fast dynamics (at steps-axis values [2160–2200]) 
and subsequently, pulling the rest of the chain with it by 
steps-axis value of 2220 as shown in Figure 6 b. The head 
fragment exhibits fast dynamics at the end of the process 
(at steps-axis values [2180–2220] in Figure 6 b). A time-
lag between the density drop and the commencement of 
fast dynamics (from slower motion) of the chain frag-
ments is well evident from Figure 6, with the latter event 
following the former; is explained by the mechanism sug-
gested in Figure 5 (as also explained above). Thus we see 
parts of the chain starting from tail to head consecutively 
switching from slow to fast motion in the same manner  
as the density drop propagation along the chain, further 
supporting the fact that indeed density fluctuations 
 
 

 
 
Figure 8. Average (fragment-wise) entropies sb and s2,b calculated 
from eqs (7) and (8) and as explained in the text in a spherical volume 
V (radius b = 12.22 Å), correlated with local densities in V, for 6 frag-
ments of polymer 11 of C96H194 melt, sampled at fixed time interval 
t = 1.85 ns: (a) sb, (b) s2,b, (c) average fragment-wise densities (in num-
ber of both intra and inter monomers) and (d) c.m. mean square  
displacement of the fragments. 

play an important role in this rapid switch from slow to 
fast motion of the tagged molecule. Also it is observed 
that the chain is stretched to the maximum extent in the 
selected time window when all the fragments perform 
fastest dynamics (Figure 3 b). The same features dis-
cussed in Figure 6 a and b for C100 hold true for C96 and 
shown in Figure 8 c and d. 
 The corresponding results for melts of low molecular 
weight polymers are shown representatively for polymer 
20 of C16H34 at fixed time interval t = 0.13 ns (as for Fig-
ure 2 a) in Figure 7 a–c, where x-axes are steps-axis (as 
defined earlier), with 0.01 ns/step (t comprises of 13 in-
tervening steps). The tagged polymer 20 is divided into 4 
fragments, each containing 4 monomers, where data from 
each fragment is labelled similarly as explained for Fig-
ure 6. These chain fragments (in other words the whole 
chain), on the contrary, perform fast dynamics almost at 
the same times as shown in Figure 7 c. This feature is  
attributed to the fact that short chains owing to its small 
size behave like particles in liquids with mass concen-
trated at c.m., at medium to long length scales (à 2nd co-
ordination shell, 9.76 Å). Hence at these length scales, 
individual fragments almost have similar monomer densi-
ties in volume V centered about it, at any particular  
instant as shown in Figure 7 b, unlike tagged chain frag-
ments in long chain melts (Figure 6 a). Nevertheless, 
 
 

 
 
Figure 9. Comparison of average (fragment-wise) excess entropy  
estimates in a spherical volume V (radius b = 12.22 Å) from approxi-
mate method for 4 fragments of polymer number 11 of C44H90 melt, 
sampled at fixed time interval t = 0.31 ns, (a): Excess entropy estimates 
from eq. (12) and as explained in the text; (b): pair contribution to  
excess entropy s2,tag using eq. (7) but with g(r) being of tagged chain, 
and also explained in the text. 
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drop in density in chain fragments is observed at steps-
axis values (3170–3190) which subjects the whole chain 
to fast dynamics (Figure 7 b and c) after a time lag at 
steps-axis values (3210–3222). But at shorter length 
scales (b ¬ 5.18 Å), the fragments show differential pack-
ing (Figure 7 a) and are more mobile (exhibit fast dynam-
ics) in low density regions (see Figure 7 a and c) at steps-
axis values in the ranges (3170–3190) and (3210–3222); 
this particular feature is almost absent for long chains 
(C100 and C96). The features of correlation between den-
sity fluctuations and fast diffusion as discussed in Figure 
7 a–c for short chain melts hold true for C30 and C44. 
 Thus in long chain melts a gradient of density is ob-
served along the chain contour of a tagged polymer and 
hence different portions of the chain perform fast dynam-
ics at different times, consistent with the schematic 
mechanism of Figure 5, while for short chain melts, ow-
ing to its small size almost the whole chain performs fast 
dynamics at similar times and explicit density gradient 
along chain contour is not found until at short length 
scales. However, consistently, a drop in density either at 
the chain ends (for long tagged polymer) or the whole 
chain (for short tagged polymer) drives the switch from 
slow to fast dynamics. 

Entropy estimation 

We attempt to connect the density fluctuations to entropy 
of the tagged polymer. There exist various entropy and 
excess entropy estimation techniques in simulations27,28 
but none addresses the problem of calculating entropy in 
a tagged volume of dimensions – few fractions of the 
simulation box – centered about monomers of a particular 
polymer of the melt. To calculate the entropy in a spheri-
cal volume V centered about monomer a containing 
M = 1k

an +  monomers in a simulation step k, we first  
define the potential energy ( )a M

MV r  considering only 
pair interactions as 
 

 1( ) ( ).
2

M M
a M

M ij ij
i j i

V v r
≠

= ∑∑r  (2) 

 
M monomers in a local volume V can be assumed to be M 
interacting particles in fixed volume V and the partition 
function can be written as29 
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Z V TVQ V T
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where / 2 .Bh mk TπΛ =  Taking β = 1/(kBT), ( , )a

MZ V T  
can be written as 
 
 ( , ) d exp[ ( )]a M a M
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i j i

v rβ

≠
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The integral in eq. (4) is possible if there is a decoupling 
of monomer coordinates in the integrand, but terms with 
vij  restrict it. Instead partition function Z is written alter-
natively as sum over configurations with probability of 
each configuration calculated resulting in a solution for 
entropy in terms of n-particle distribution functions  
expressed as an intensive quantity, which is ensemble in-
dependent and is given as 
 

 
2

,id n
B n

Ss s s
Mk

∞

=
= = + ∑  (5) 

 
where sn is the entropy contribution due to n-particle spa-
tial correlations and sid is the ideal part representing total 
entropy per particle of ideal gas (in V). Assuming only 
pair interactions between monomers, and keeping terms 
until n = 2, eq. (5) reduces to 
 

 3
2

3 1ln ln ! ln
2ids s s M M

M
ρ= + = − Λ − +  

 

    2

0

2 { ( ) ln ( ) [ ( ) 1]} d ,g r g r g r r rπρ
∞

− − −∫  (6) 

 
with s2 being 
 

 2
2

0

2 { ( ) ln ( ) [ ( ) 1]} d ,s g r g r g r r rπρ
∞

= − − −∫  (7) 

 
where g(r) is the monomer pair distribution function and 
ρ is the density of monomers. Equations (5) and (6) were 
derived to calculate entropy for the bulk, produced results 
comparable to other standard techniques of entropy esti-
mation27. More recently these equations were used to  
calculate excess entropy of liquids30,31. Equation (6) is 
modified to calculate entropy in a spherical volume V (of 
radius b) centered about ath monomer of tagged polymer 
at the kth simulation step as 
 

 33 1( ) ln ln ! ln
2

k
a bs M M

M
ρ= − Λ − +  

 

     2

0

2 { ( ) ln ( ) [ ( ) 1]} d ,
b

g r g r g r r rπρ− − −∫  (8) 

 
where g(r) is the monomer pair distribution function  
averaged over all the monomers in V and ρ is the density 
of monomers in V. As before k

as  values are averaged over 
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the fragment-monomers and over fixed time interval t to 
obtain average fragment-wise entropy expressed as an in-
tensive quantity sb, where subscript b denotes the radius 
of V. Representative results for sb using eq. (8) are sum-
marized in Figure 8 a–d for C96H194, polymer 11 at fixed 
time interval t = 1.85 ns, where x-axes are steps-axis, 
with 0.025 ns/step (t comprises of 74 intervening steps). 
The tagged polymer 11 is divided into six fragments, 
comprising of 16 monomers each, where data from each 
fragment is labelled similarly as explained for Figure 6. 
The sb estimates in Figure 8 a have almost one-to-one 
mapping with the averaged fragment-wise local density 
values (radius b = 12.22 Å) in Figure 8 c, a peak in one 
corresponds to trough in the other at any step, explicitly 
seen at steps-axis values (100–175), and this is expected 
as less dense the packing of monomers in V, more con-
formations are available for the monomers and higher is 
the entropy. The corresponding s2,b values are calculated 
similarly with an analogous expression as eq. (8), aver-
aged over t and fragment-monomers, and shown in Figure 
8 b. Comparison of Figure 8 a and b, over the entire 
steps-axis values and specifically in the range (100–175), 
clearly indicates that the features in the sb estimates are 
due to s2 (eq. 7), the pair correlation contribution to ex-
cess entropy, consistent with earlier findings that excess 
entropy could explain the dynamics in supercooled 
fluid32. As expected, and also seen from Figure 8 a and b, 
sid is almost the same for each fragment. Figure 8 d shows 
the c.m. displacements of the fragments of polymer 11, 
the drop in density (Figure 8 c) and peak in entropy (Fig-
ure 8 a) appears first for the tail fragment which propa-
gates to the entire chain at steps-axis values (50–150) 
with the highest local density gradient (Figure 8 c) about 
the tagged chain (at the same steps-axis values). These 
factors drag the whole chain into the low density (high 
entropy) region, starting with the tail fragment perform-
ing the fast dynamics at steps-axis values >110; following 
it is the next connected fragment (65–80) and so on until 
the head fragment is pulled out by steps-axis value ≈200 
as shown in Figure 8 d, a mechanism very similar to the 
tagged chain in C100 melt (Figure 6). Thus it is shown that 
the characteristic switch from slow to fast dynamics 
which is due to local density fluctuations about the chain 
ends, can be related to entropy. 
 Now, we discuss an alternate approximate solution of 
eq. (4) by approximating the potential term in eq. (1) with 

( ).M
l a la lav r≠∑  This approximation implies that only pair 

interactions of monomer a with other monomers are con-
sidered in V, and therefore induces decoupling of the 
variables in eq. (4), and a

MZ  reduces to 
 

 
2 2
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where Ψla(rla) (with |l – a| < 4) are the intramolecular pair 
distribution functions, and vLJ is the Lennard Jones poten-
tial. The stretch (va ± 1,a), bend (va ± 2,a) and torsion (va ± 3,a) 
potentials are written in terms of the intramolecular pair 
distributions and all other pair interactions are written as 
vLJ, which are consistent with the force fields used in the 
simulations17–19. In eq. (3), ( , ) /a M

MZ V T V  is the excess 
part of the partition function, and hence excess Helmholtz 
free energy ( ) ( , )a ex

MA V T  is given as 
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and excess internal energy ( ) ( , )a ex

MU V T  can be written as 
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Therefore, excess entropy ( ) ( , )a ex

MS V T  in a spherical vol-
ume centered about monomer a is given as 
 
 ( ) ( ) ( )( , ) / ( , ) ( , ).a ex a ex a ex

BM M MS V T k A V T U V Tβ β= − +  (12) 
 
It is to be noted here that if calculations are done as 
above by taking ( , )a

MQ V T  instead of Z, the sid as in eq. 
(6) is exactly reproduced, but then excess part will differ 
as integral in eq. (4) cannot be done directly. Substituting 
eqs (10) and (11) in eq. (12) excess entropy is calculated, 
and further averaged over fragment-monomers and over t, 
the representative results are shown in Figure 9 a for 
polymer 11 of C44 melt at fixed time interval t = 0.31 ns 
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(as for Figure 2 b), where x-axes are steps-axis, with 
0.01 ns/step (t comprises of 31 intervening steps). The 
tagged polymer 11 is divided into four fragments, each 
containing 11 monomers, where data from each fragment 
is labelled similarly as explained for Figure 6. A com-
parison of this (approximate) method (in Figure 9 a) is 
done with another approximate calculation for s2 where 
we substitute monomer pair distribution of the tagged 
polymer only (instead of average pair distribution of 
monomers in V, as done for Figure 8 b, in eq. (7) and let 
this quantity after averaging over t and fragment-
monomers be denoted as s2,b,tag, and the results are shown 
in Figure 9 b. There is one-to-one mapping between fea-
tures of Figure 9 a and b, almost a peak corresponds to a 
peak (see in steps-axis values ranges (25–100) and (125–
175)), but the entropy values differ as the approximate 
methods differ with approximations made at different 
levels. 
 The results in Figures 8 and 9 are representative of all 
the polyethylene systems studies in Table 1. The small 
variations in individual fragment entropies as a function 
of time in Figures 8 a, b and 9 a, b can be explained from 
the fact that these values are for small volumes (few frac-
tions of the simulation box dimensions) about the tagged 
polymer, and are first attempts to measure entropy in a 
tagged volume. Nevertheless, our study provides signifi-
cant scope for further improvement on the entropy esti-
mation methods in local volumes. To conclude this 
section, we could connect local density fluctuations about 
a tagged polymer to local entropy and consequently show 
that heterogeneous dynamics well above the glass transi-
tion temperature can be related to entropy. 

Conclusion 

To summarize, a microscopic analysis of united atom 
simulation data (obtained from other research groups17–19) 
is performed for unentangled polymer melts with focus 
on the heterogeneous dynamics. We explicitly found that 
the distribution of both monomer and c.m. displacements 
are non-Gaussian for times shorter than Rouse relaxation 
time due to heterogeneities in dynamics, and explored the 
dynamics of the tagged molecule exhibiting maximum 
heterogeneity. Based on the findings of the analysis of 
simulation data, a molecular mechanism for heterogene-
ous dynamics is proposed. The mechanism is based on 
density fluctuations, which are further related to entropy 
fluctuations about the tagged polymer. Various methods 
to estimate entropy locally in a volume about the tagged 
chain are explored. These methods though approximate, 
are able to give at least initial connections of density fluc-
tuations and local entropy fluctuations responsible for 
heterogeneous dynamics in polymer melts well above 
their glass transition temperature. We believe similar 
analysis for undercooled and supercooled melts will give 

more developed heterogeneity in dynamics and enhanced 
effects compared to the present analysis. 

Appendix: Derivation of Gs(Δr, t) 

We consider a generic case where there are n polymers 
each containing N monomers, thus Gs(Δr, t) is defined 
as29 
 

 
1

1( , ) d [ ( )] [ (0)] ,
nN

s i i
i

G r t t
nN

δ δ
=

′ ′ ′Δ = + Δ − −∑∫ r r r r r r  

 (A1) 
 
where ri(t) and ri(0) are the position vectors of monomer 
i at times t and 0 respectively. One such term correspond-
ing to monomer i in eq. (A1) in the integrand can be writ-
ten to a good approximation (based on the physical 
interpretation of Gs(Δr, t)) as29 
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   1[ (0)] [ ( )] [ (0)]i i iW tδ δ′ ′× + Δ − −r r r r r r  

   2 1[ | ] [ ],P W′ ′ ′= + Δr r r r  (A2) 
 
where P2 is the conditional probability and W1 is the one 
time equilibrium distribution function; these notations are 
used consistently even to represent probabilities involv-
ing normal coordinates. Hence a single term of the sum-
mation in eq. (A1), which we define as W[Δr] can also be 
written as 
 
 2 1d [ | ] [ ] [ ].P W W r′ ′ ′Δ ≡ Δ∫ r r r r  (A3) 

 
To be noted from eqs (A2) and (A3), the single term 
above is independent of the label specific to monomer i, 
which is true for a homogenous fluid33. Thus the problem 
reduces to deriving a generic expression for W[Δr] and 
we do this by solving the equation of motion of the 
monomer coordinate ( )i

ar  given as 
 

 
( ) ( )

1
( )

d [ ] .
d

i i
a

ai
at

ς β − ∂Ψ
= − +

∂

r r f
r

 (A4) 

 
The above equation is solved by expanding the monomer 
coordinate ( )i

ar  into N (degree of polymerization) inde-
pendent normal modes xp as 
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hence ( ) ( ),i

a tΔr  can be written as 
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where Q are the eigenvectors. The harmonic potential Ψ 
enables us to decouple eq. (A5) into N independent equa-
tions of motion each corresponding to a normal mode xp. 
The distribution function of the modes xp can be written 
as 
 

 
3/ 2

2 2
3[ ( ) | (0)]

2 [1 exp( 2 )]p p
p p

P t
x tπ σλ

⎡ ⎤
⎢ ⎥Δ =

〈 〉 − −⎢ ⎥⎣ ⎦
x x  

2

2

[ ( ) (0)(exp( ) 1)]3exp ( 0),
2 [1 exp( 2 )]

p p p

p p

t t
p

x t

σλ

σλ

⎡ ⎤Δ − − −
⎢ ⎥× − ≠

〈 〉 − −⎢ ⎥⎣ ⎦

x x
 (A7) 

 

 
3/ 2 2

0
2 0 0

( )1[ ( ) | (0)] exp ,
4 4

x t
P t

Dt Dtπ
⎡ ⎤Δ⎡ ⎤Δ = −⎢ ⎥⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦

x x  (A8) 

 

 
1/ 2 2

1 2 2

3 (0)3[ (0)] exp ,
2 2

p
p

p p

x
W

x xπ

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= −

〈 〉 〈 〉⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
x  (A9) 

 
where λp is the eigenvalue and σ = 3/(ζβl2), with l2 being 
the mean square bond length. An analogous expression as 
eq. (A3) can be written in terms of modes 
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From eqs (A7) and (A8), eq. (A10) can be written as 
 

 
3/ 2

2 2
3[ ( )]

4 [1 exp( 2 )]ap p
ap p p

W Q x t
Q x tπ σλ

⎡ ⎤
⎢ ⎥Δ =

〈 〉 − −⎢ ⎥⎣ ⎦
 

  
2 2

2 2

3 ( )
exp ( 0),

4 [1 exp( 2 )]
ap p

ap p p

Q x t
p

Q x tσλ

⎡ ⎤Δ
⎢ ⎥× − ≠

〈 〉 − −⎢ ⎥⎣ ⎦
 (A11) 

 

 
3/ 2 2 2

0
0 0 2 2

1[ ( )] exp .
4 4

ap
a

ap ap

Q x
W Q x t

DtQ DtQπ

⎡ ⎤ ⎡ ⎤Δ
⎢ ⎥ ⎢ ⎥Δ = −
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 (A12) 

 
The above formulation in terms of Qapxp and QapΔxp is 
done to derive the distribution ( )[ ( )] [ ]i

aW r t W rΔ ≡ Δ  by 
mapping the problem to the random flight problem as  

described in ref. (34). In the next step we obtain  
3N-dimensional Fourier transform AN(ρ) of ( )[ ( )]i

aW r tΔ  
as 
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Hence from eq. (A13), ( )( ( ))i

aW r tΔ  can be written as 
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Thus Gs(Δr, t) from eqs (A2, A3 and A14) can be written 
as 
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In the above expression 〈(Δr)2〉 is input from the simula-
tions for the fixed time interval t. 
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