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Forest inventories are critical for effective manage-
ment of forest resources. Recently, the use of terres-
trial laser scanning (TLS) to automatically extract 
forest inventory parameters at tree level (e.g. tree lo-
cation, diameter at breast height (DBH) and height) 
has gained significant importance. TLS using both 
single-scan and multi-scan techniques, not only helps 
in detailed and accurate measurements of tree objects 
but also helps increase the measurement frequency. In 
the current study, we develop an automated solution 
to extract forest inventory parameters at individual 
tree level from TLS data by using random sample 
consensus (RANSAC)-based circle fitting algorithm. 
The method was evaluated on both single- and multi-
scan data by characterizing four circular plots of  
radius 20 m in dry deciduous forests of Betul, Madhya 
Pradesh (India). Over all the plots, tree detection rates 
of 75% and 97% were obtained using single- and  
multi-scan TLS data respectively. Tree detection rates 
were significantly affected by increase in distance 
from the scanner, in single-scan approach when com-
pared to multi-scan approach. Field based DBH mea-
surements correlated well using both single (R2 = 0.96) 
and multiple scans (R2 = 0.99). The DBH estimates 
from multi-scan TLS data resulted in low root-mean-
square error (RMSE) of 2.2 cm compared to that of 
4.1 cm using single-scan. Further, tree heights were 
extracted from TLS data and validated with selec-
tively measured trees on field (R2 = 0.98; N = 65). The 
RMSE of tree height was estimated to be 1.65 m. The 
current results show the potential use of TLS in auto-
matically deriving forest inventory parameters with 
reliable accuracy at individual tree level. 
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FOREST inventory parameters, such as tree counts, loca-
tion, species, DBH and height, are vital for obtaining 
above-ground biomass and assessment of carbon seques-
tration potential1. However, estimation of forest inventory 
parameters using conventional field methods is a daunt-
ing task. Simple measurements such as DBH and height 

are labour-intensive and time-consuming. The complexi-
ties and time only increase when other geometrical prop-
erties of trees including branch and crown parameters are 
to be measured. Thus, ways towards faster inventories 
with reliable accuracies are much appreciated. 
 TLS is a fast, affordable and accurate method used in 
the extraction of forest inventory parameters (e.g. DBH, 
tree heights and crown shape parameters) at the individual 
tree level by capturing three-dimensional (3D) point 
cloud of the forest area2–5. Also, dense point cloud data 
from TLS is used to determine stand/plot level attributes, 
such as leaf area index6, non-destructive tree volume  
estimates7, which aid in the calibration of satellite-based 
remote sensing estimations8. Both single and multiple 
scans have been used to extract forest inventory parame-
ters2,5,9,10. 
 The most common method used to extract inventory 
parameters using TLS point cloud commonly focused on 
extraction of a slice of the point cloud and identified tree 
stems by clustering methods and finding circles2,5,9–12. 
Maas et al.2 used a mathematical morphological-based 
clustering approach to find trees and estimate DBH using 
single-scan and multiple-scan approaches in 5 circular 
plots of 15 m (212–410 stems/ha). They reported an accu-
racy of 97% with an RMSE of 1.8 cm in DBH measure-
ment. An iterative close point algorithm, to cluster trees 
from ground vegetation, in combination with Hough 
transform to find circles was used by Huang et al.10, to 
detect trees in a sparse forest plot with 33 trees/ha, using 
multiple-scan TLS data. They detected all trees (100%) 
with a DBH variation of 3.4 cm. Olofsson et al.5 recov-
ered tree locations from single-scan TLS data with an  
accuracy of 73% and DBH with an RMSE ranging from 2 
to 9.6 cm over 16 circular plots of 20 m (358–1042 
stems/ha) using both Hough transform and RANSAC 
based circle fitting. Studies have also noted that tree  
detection rates in both single- and multiple-scans are  
majorly impacted by forest structure13. These highly  
varying results from different forest types of varying tree 
densities, plot sizes and scanning scenarios suggest the 
need for further research on this topic. 
 In order to use TLS for forest inventory, algorithms 
have to be developed and tested across different forest 
types. In the current paper, we develop an automatic al-
gorithm to identify tree stems and extract inventory in-
formation (tree positions, DBH and tree heights) from 
both single-scan and multiple-scan TLS data. The method 
uses stem probability score to cluster and identify tree 
stems and RANSAC-based circle fitting to estimate loca-
tion, DBH and height. The algorithm is evaluated over  
4 plots (different densities) in central Indian dry decidu-
ous forests (Betul, Madhya Pradesh). 
 Four circular plots of 20 m radius were established in 
the teak mixed dry deciduous forests of Betul (Madhya 
Pradesh, India) around 215146.84N and 772533.67E. 
The plots were mostly flat with a slope variation of about 
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Table 1. Plot level statistics of field measurements 

 Diameter at breast height 
 

Plot ID Stem count Density (stems/ha) Minimum (cm) Maximum (cm) Mean (cm) 
 

S1 51 406 9.55 41.00 18.84 
S2 60 477 9.55 41.00 18.71 
S3 65 517 9.45 38.04 16.41 
S4 52 414 9.61 42.53 19.27 

 
 
5–10 degrees. The dominant tree species found in the 
plots are Tectona grandis, Lagerostromia parviflora,  
Miliusa tomentosa and Diospyros melanoxylon. In each 
plot, for all the trees greater than 30 cm in girth, inventory 
parameters such as tree location and DBH were meas-
ured. Tree locations were accurately measured up to 1 m 
using metre tape and DBH was measured using standard 
metre tape. Tree heights were measured for selected trees 
(~15 trees in each plot) using Nikon forestry pro instru-
ment. The stem density across plots varied from 400 to 
500 stems/ha. The summary of plot level statistics is  
given in Table 1. 
 A Reigl VZ-1000 was used to collect 5 scans for each 
plot, one at the centre of the plot and the remaining four 
at the plot boundaries during May 2016. Scans were 
merged using artificially set up targets. The data was  
captured in a high speed mode (pulse repetition rate of 
300 kHz) with a vertical and horizontal resolution of 0.05 
degree. The scanner acquired each scan within a time 
span of 2 min, in the field of view of 360 in horizontal 
direction and 100° (set at 30–130 for the present study) 
in vertical direction. 
 In the current method, tree locations and associated  
parameters were obtained automatically from both single-
scan and multiple-scan TLS data in four major steps: (i) 
Estimation of ground model (digital elevation model – 
DEM) to normalize the point cloud; (ii) Identification of 
tree boles by clustering and filtering the point cloud; (3) 
Circle fitting at 1.3 m height using RANSAC (random 
sample and consensus) based least square fitting; (4)  
Validation of estimated circles to detect trees. All TLS 
point clouds were pre-processed to remove all points with 
erroneous reflectance values, with range more than 20 m 
(plot size). All methods mentioned in the current paper 
for automated analysis of the data were developed by the 
authors using MATLAB, Python and R programing lan-
guages. 
 Estimation of ground model (DEM) is the primary step 
in TLS processing to normalize the point cloud and esti-
mate breast height level for all trees. In the current study, 
DEM is based on the generation of minimum elevation 
(minZ) raster with a grid size of 50 cm. For all grids with 
point density >200 points/m2, the lowest elevation value 
was recorded. For the missing grids, minZ value was  
interpolated using Delaunay triangulation. Finally, DEM 

was created by smoothing minZ raster using a 2D median 
filter. Using DEM, ground points were separated as 
points with less than 50 cm height and vegetation points 
were used for further processing. 
 The vegetation points were then sliced at 1.3 m height 
(breast level) with a 0.5 m buffer (i.e. points between 
0.8 m and 1.8 m) and used to detect tree positions. The 
assumption that the tree trunks are continuous in vertical 
direction, was used to filter trees boles from low vegeta-
tion and branches. 
 The sub-vegetation point cloud was rasterized with a 
horizontal grid size of 1 cm and all the points in each grid 
were used to understand height distribution in order to 
find points with high trunk probability. In each grid, all 
points were further divided into height (Z) sub-intervals 
of 4 cm (25 bins) and total filled bins with points (Zt) and 
the largest continuously filled bins (Zc) were calculated. 
High probable trunk points were then identified as points 
with high vertical continuity and point distribution (Zt  5 
and Zc  3). Undergrowth and branches were then  
removed by employing less vertical connectivity thresh-
olds (Zt  2 and Zc < 2). The thresholds were set on the 
basis that a tree trunk should at least have 20% of the 
bins filled and continuous in at least half of them. Finally, 
tree boles were identified using high probable trunk 
points as seeds and clustering the filtered point cloud by 
using Euclidean distance criteria (5 cm threshold). Figure 
1 depicts the screenshots of original sub-vegetation point 
cloud which is filtered and clustered using seed points to 
identify tree boles. 
 Trees are often modelled by circles or cylinders. Each 
cluster (possible tree bole), is used to fit circles to esti-
mate DBH and tree location. In each cluster, all points in 
20 cm disk centred at 1.3 height are used to fit circles  
using RANSAC method14,15. 
 RANSAC is an iterative algorithm to estimate model 
parameters with minimal influence from outliers in the 
set of observed data. RANSAC algorithm was further 
modified to have valid circle estimates by using certain 
conditions as follows. The circles with estimated centre 
between the scan position and the first trunk point were 
considered invalid. Since no data point can penetrate the 
tree trunk, the estimated circles with more than 2% of the 
cluster points inside the trunk were considered invalid. 
Randomly estimated circles with radius more than 50 cm 
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Figure 1. a, Represents subset of the original point cloud. b, Filtered point cloud. c, Seed points as identified. d, Clus-
tered point cloud using seed points and filtered point cloud. 

 
 

 
 

Figure 2. Proportion detected trees as a function of distance to the 
scanner using both single and multiple scans. 
 
 
and radius less than 4 cm were also considered invalid 
(minimum threshold of 4 cm was based on the field data). 
Finally, using modified RANSAC, maximum inliers  
(iterations = 100) were selected and a circle was fitted by 
using least square method to estimate centre and radius. 
 Further validation included examination of vertical 
consistency to finalize tree locations and DBH estimates. 
Since trunks are vertically distributed, the circle centre 
and radius have to maintain uniformity in vertical direc-
tion. For each cluster with valid radius and centre at 
1.3 m, two more circles were fitted at heights 1.2 m and 
1.4 m for verification of centre and radius. The centre  
location error of 10 cm and a radius error of 20% were  
allowed to validate each circle. Finally, such validated 
circles were used to provide the tree locations and DBH 
estimates. 

 Tree heights were estimated using vegetation points 
(after normalization) and tree locations. After fitting  
circles for each cluster, a cylindrical subset of point cloud 
was extracted with centre as circle centre and radius as 5 
times circle radius. The height (Z) values were binned  
into intervals of 0.5 m. The continuous bins were sepa-
rated in order to remove the canopy layers from surround-
ing trees. Finally, the maximum height value of those 
continuous bins was marked as tree height. Since the 
scans were done during dry season with least hindrance 
due to leaf, occlusions to the top of the tree were minimal 
and helped in accurate estimation of tree height. 
 The tree detection rates across four plots of 20 m  
radius with stem density between 400 and 500 stems/ha 
have varied from 73% to 82.5% using single-scan data 
and from 95% to 98% using multiple scan-data. In the 
range of 10 m, over all plots, an average accuracy of 91% 
and 100% was observed using single- and multiple-scans 
respectively. 
 The detection accuracies decreased with increase in 
distance to the scanner. The detection rates decreased  
up to 30% from 5 m to 20 m range in case of single-scan 
approach whereas it was only 5% using multiple-scan  
approach (Figure 2). This was largely due to the increas-
ing occlusion of trees leading to less visibility of the plot 
to the scanner. However, increase in plot visibility using 
multiple scan positions led to higher detection accuracy 
as expected. It was also observed that the trees with larger 
diameter were identified with more accuracy in both sin-
gle- and multiple-scans. The high detection rates were al-
so possible due to the dry season which allowed minimal 
hindrance from undergrowth. The plot-wise accuracy es-
timates of detection accuracy are provided in Table 2 and 
Figure 3. The tree location bias for majority of trees (90% 
using single-scan and 97% using multiple-scan) was 
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Table 2. Plot wise detection accuracy with respect to distance to the scanner (R) using both single- and multiple-scans 

 Detection accuracy (%) 
 

  R  10 m R  15 m R  20 m 
 

Plot ID Single-scan Multiple-scan Single-scan Multiple-scan Single-scan Multiple-scan 
 

S1 100% (12/12) 100% (12/12) 96.5% (28/29) 96.5% (28/29) 82.5% (42/51) 98.0% (50/51) 
S2 91.6% (11/12) 100% (12/12) 85.2% (29/34) 97.1% (33/34) 70% (42/60) 98.3% (59/60) 
S3 94.1% (16/17) 100% (17/17) 84.8% (33/33) 100% (33/33) 73.4% (47/65) 95.3% (61/64) 
S4 86.7% (12/15) 100% (15/15) 88.9% (24/27) 96.2% (26/27) 73.1% (38/52) 96.2% (50/52) 

 
 
 

 
 

Figure 3. Tree location map of plot S3 as derived using TLS. 
 
 
found to be less than 1 m (Figure 4). The result was an-
ticipated since the tree locations measured on ground  
using metre tape were marked with accuracy up to 1 m. 
Further, the deviations in bias could also be due to the 
deviations in tree start positions and stem position at 
1.3 m. 
 Out of 227 trees (across 4 plots), 169 trees were  
detected using single-scan approach and 220 trees were 
detected using multiple-scan approach. Estimated DBH 
values for all detected trees ranged from 10 to 45 cm. The 
estimated DBH values were well in agreement with the 
field measured values, with an R2 of 0.96 and 0.99 for 
single- and multiple-scans respectively. The RMSE in 
DBH measurements was found to be 4.1 cm in case of 
single and 2.2 cm using multiple scans. 
 When plots are described using single-scan, DBH was 
estimated with a relative RMSE of about 22%. In the 

range of 10 m, RMSE in estimated DBH using single-
scan was similar to that of multiple-scan. The higher error 
in DBH estimation using single-scan was caused by trees 
with large distances from the scanner. Another possible 
reason could be due to large trunks, wherein only a  
limited portion was seen using single direction. It was 
observed that error in DBH estimation increased with in-
crease in trunk diameter using single-scan. The relative 
RMSE increased by 5% when trunks with diameters 
greater than 30 cm in comparison with trunks with diame-
ter less than 15 cm were measured using single-scan  
(Table 3). This is due to the fact that large diameter trees 
appear to form different circles when viewed from differ-
ent directions and estimation of circles using single-scan 
always underestimates/overestimates the actual value. 
 It was found that inclusion of scans from different  
directions in a multi-scan approach better described the 
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Table 3. DBH class wise detection accuracy and relative RMSE error in DBH using both single- and  
 multiple-scans 

  Detected trees (%) DBH–RMSE Rel. (%) 
 

DBH class Single-scan (%) Multiple-scan (%) Single-scan (%) Multiple-scan (%) 
 

DBH  15 cm 67.01  95.88 18.25 14.21 
15 < DBH  30 cm 81.65  96.33 19.49 10.92 
DBH > 30 cm 68.18 100.00 23.42 10.04 

 
 

 
 

Figure 4. Cumulative number of trees with location bias in tree posi-
tions. 

 
 

 
 

Figure 5. Scatter plot for TLS derived DBH values versus field 
measured DBH values using multiple scans for four plots. 
 
 
trunk and resulted in relative RMSE of 12% in DBH 
(Figure 5). Also, an error rate of 10% was observed in 
trees with DBH >15 cm (Table 3). For, smaller DBH 
trees (DBH  15 cm), the error was comparatively higher 
(14%) and was majorly due to the fact that smaller trees 
are likely to be partly occluded by bigger trees even 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 6. Comparison between field measured tree height and TLS 
derived tree height over selected trees across all plots. 
 
 
though viewed from multiple scan positions, thus causing 
over/under estimation of estimated circle. 
 On the ground, heights of 65 trees across 4 plots were 
measured. The heights extracted from multi-scan TLS  
data for these 65 trees were found to be well in agreement 
(R2 = 0.98) with the field measured height (Figure 6). The 
RMSE in height estimation was 1.65 m. The discrepancy 
in height estimation with TLS in comparison to ground 
was due to two facts. First, often, reliable tree height 
measurements from ground are difficult since it is tough 
to identify the top of a tree in a forest. Secondly, there is 
no way to assess whether the tree top points are captured 
in the point cloud since there are many occlusions from 
crown and branches of the tree and its neighbours. 
 In the current study, tree detection rates were found to 
be 75% and 97% using single- and multiple-scan appro-
aches respectively. Detection rates were comparable to 
globally reported studies, if not higher. Most studies  
using single-scan approach to detect trees reported accu-
racies ranging from 22% to 73% depending on plot size, 
stand density and forest type5,9,16,17. Liang et al.17 used 
single-scan TLS data to automatically detect trees over 9 
circular plots of 10 m radius with average stem density of 
1022 stems/ha, and reported an accuracy of 73%. In  
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comparison with current results, over 10 m radius, detec-
tion rate over four plots using single-scan approach was 
91% with an average stem density of 450 stems/ha. 
Olofsson et al.5 characterized 16 circular plots of 20 m 
radius (average stem density 741 stems/ha) using single-
scan TLS data and achieved an accuracy of 73%, which is 
slightly less when compared to the detection rate in the 
current study. Multi-scan approach resulted in tree detec-
tion rates between 62.1% and 100% depending on the 
forest structure and scanning setup18. Kankare et al.13 es-
timated DBH from multi-scan TLS data in different forest 
types with an accuracy of 1.7 cm using 2 circular plots of 
20 m (122–480 stems/ha). 
 Tree height estimation using TLS data had not been 
explored much. Results from previous studies showed 
that the tree height is typically underestimated up to  
several metres. An RMSE of 0.76 m in height estimation 
using multi-scan data over one plot (212 stems/ha) was 
reported by Huang et al.10. A relatively high RMSE of 
4.55 m for 9 selected trees on four plots (212–410 
stems/ha) was reported by Maas et al.2. In the current 
study, tree height was underestimated with an RMSE of 
1.65 m. The main source of underestimation of  
tree height by TLS is that the top of the tree crown is  
occluded by itself or a neighbouring tree (i.e. wide crowns 
of trees do not allow the scanner to see the tree tops). 
 The current study presents an automatic solution to  
derive forest inventory parameters from both single- and 
multiple-scan TLS data. The experimental results  
suggests that 20 m circular plots are better described by 
using multiple scans from different directions in compari-
son with single scans from the plot centre. However, it 
was found that in the range of 10 m, single scans were  
also able to describe the plot with reliable accuracies. The 
results strongly support the potential use of TLS in forest 
inventory. Further studies towards accurate estimation of 
tree attributes would help understand the added advantage 
of using TLS and would likely challenge the efficiency of 
conventional methods in terms of accuracy. However, 
application of TLS in forest inventories is hampered by 
difficulties in automated point cloud processing and con-
sistent estimation of forest inventory parameters. It is 
highly likely that in the near future, TLS would be used 
in individual tree measurements in field plots to support 
airborne or satellite driven regional and national field  
inventories. 
 
 

1. Wang, B., Huang, J., Yang, X., Zhang, B. and Liu, M., Estimation 
of biomass, net primary production and net ecosystem production 
of China’s forests based on the 1999–2003 National Forest Inven-
tory. Scand. J. For. Res., 2010, 25, 544–553. 

2. Maas, H.-G., Bienert, A., Scheller, S. and Keane, E., Automatic 
forest inventory parameter determination from terrestrial laser 
scanner data. Int. J. Remote Sensing, 2008, 29, 1579–1593. 

3. Bienert, A., Scheller, S., Keane, E., Mohan, F. and Nugent, C., 
Tree detection and diameter estimations by analysis of forest  

terrestrial laserscanner point clouds. In ISPRS Workshop on Laser 
Scanning, 2007, pp. 50–55. 

4. Xu, W. et al., Comparison of conventional measurement and  
LiDAR-based measurement for crown structures. Comput. Elec-
tron. Agric., 2013, 98, 242–251. 

5. Olofsson, K., Holmgren, J. and Olsson, H., Tree stem and height 
measurements using terrestrial laser scanning and the RANSAC 
algorithm. Remote Sensing, 2014, 6, 4323–4344. 

6. Antonarakis, A. S., Richards, K. S., Brasington, J. and Muller, E., 
Determining leaf area index and leafy tree roughness using terres-
trial laser scanning. Water Resour. Res., 2010, 46. 

7. Hackenberg, J., Spiecker, H., Calders, K., Disney, M. and Raumo-
nen, P., SimpleTree – an efficient open source tool to build tree 
models from TLS clouds. Forests, 2015, 6, 4245–4294. 

8. Zheng, G., Moskal, L. M. and Kim, S.-H., Retrieval of effective 
leaf area index in heterogeneous forests with terrestrial laser scan-
ning. IEEE Trans. Geosci. Remote Sensing, 2013, 51, 777–786. 

9. Thies, M. and Spiecker, H., Evaluation and future prospects of  
terrestrial laser scanning for standardized forest inventories.  
Forest, 2004, 2, 1. 

10. Huang, H. et al., Automated methods for measuring DBH and tree 
heights with a commercial scanning lidar. Photogramm. Eng.  
Remote Sensing, 2011, 77, 219–227. 

11. Simonse, M., Aschoff, T., Spiecker, H. and Thies, M., Automatic 
determination of forest inventory parameters using terrestrial laser 
scanning. In Proceedings of the Scand Laser Scientific Workshop 
on Airborne Laser Scanning of Forests, 2003, pp. 252–258. 

12. Astrup, R., Ducey, M. J., Granhus, A., Ritter, T. and von Lüpke, 
N., Approaches for estimating stand-level volume using terrestrial 
laser scanning in a single-scan mode. Can. J. For. Res., 2014, 44, 
666–676. 

13. Kankare, V. et al., Diameter distribution estimation with laser 
scanning based multisource single tree inventory. ISPRS J. Photo-
gramm. Remote Sensing, 2015, 108, 161–171. 

14. Fischler, M. A. and Bolles, R. C., Random sample consensus: a 
paradigm for model fitting with applications to image analysis and 
automated cartography. Commun. ACM, 1981, 24, 381–395. 

15. Chum, O., Two-view geometry estimation by random sample and 
consensus, Czech Technical University in Prague, 2005. 

16. Strahler, A. H. et al., Retrieval of forest structural parameters  
using a ground-based lidar instrument (Echidna{®}). Can. J.  
Remote Sensing, 2008, 34, S426–S440. 

17. Liang, X. et al., Automatic stem mapping using single-scan terres-
trial laser scanning. IEEE Trans. Geosci. Remote Sensing, 2012, 
50, 661–670. 

18. Liang, X. et al., Terrestrial laser scanning in forest inventories. 
ISPRS J. Photogramm. Remote Sensing, 2016, 115, 63–77. 

 
 
ACKNOWLEDGEMENT. The present study is funded by Indian 
Space Research Organisation’s Geosphere Biosphere Program (IGBP). 
 
 
Received 1 March 2017; revised accepted 1 August 2017 
 
 
doi: 10.18520/cs/v114/i01/201-206 

 
 


