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There has been increasing popularity in large scale 
mapping for deriving 3D surface and elevation models 
of earth and building structures. The techniques of 
computer vision comprising feature detections and 
matching and photogrammetry play an important role 
in deriving near accurate 3D reconstruction of scenes 
from 2D images. Since the images captured by the 
unmanned aerial vehicle (UAVs) are of high resolu-
tion, there is need for more sophisticated processing 
and analysis of the imagery to generate 3D models and 
other useful imagery products. The open source  
softwares are excellent tools for research and can be  
modified or changed to suit our model, as specific or 
combinations of algorithms behave differently based 
on the nature of UAV image scene to be processed. 
Though many algorithms are available for performing 
feature extractions from images, few studies have been 
carried out to identify suitable detector algorithms to 
be used based on the nature of image or scene that the 
UAV captures. An attempt has been made to under-
stand and analyse the suitability of feature detection 
and descriptor algorithms for different scene types. 
This article also describes the popular technique 
called structure from motion process pipeline for  
sequential processing of UAV images with high over-
lapping, which involves the estimation of 3D point 
clouds from the keypoint correspondences. The rela-
tive accuracy of the 3D point cloud derived from our 
approach is comparable with similar output from 
other state-of-the-art UAV processing systems and is 
found to match with high precision. 
 
Keywords: 3D reconstruction, open source, point 
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THE unmanned aerial system (UAS) is a drone with pay-
loads such as cameras, sensors and detectors – both imag-
ing and non-imaging. UAVs armed with remote sensing 
technology are increasingly being used to acquire high 

resolution spatial data about land cover resources, and 
provide the environment for processing and analysing 
remote sensing data. Further, they can be deployed in in-
accessible or dangerous areas for mapping. The ability to 
acquire data from low flying altitude has enabled high 
resolution, large scale mapping even with consumer 
grade camera sensors. This has boosted remote sensing 
groups and has led to several applications in relevant  
areas. The imagery data product obtained from UAS  
image post-processing, can immensely help in many  
applications ranging from large scale building modelling 
to vegetation structure mapping which can in turn greatly 
benefit the local planning and development, in the North 
Eastern region of India owing to its limited road connec-
tivity and physical infrastructure. The output of UAV  
image processing gives us valuable products such as  
orthophotos and elevation/surface models at various lev-
els of details. However, there are challenges in processing 
huge volume of high resolution aerial imagery. The sim-
pler and lighter platforms and sensors of UAV acquisition 
technologies do not necessarily translate into simpler 
processing systems. In contrast, more sophisticated proc-
essing is required for processing the imagery. The tech-
nique of photogrammetry and computer vision1 has a big 
role to play for accurate and automatic processing of high 
resolution imagery captured using UAV. The recent ad-
vances in 3D scene reconstruction technique using struc-
ture from motion (SfM) approach2,3 combined with the 
established rules of classic stereoscopic photogrammetric 
survey helps in deriving high resolution and precise 
three-dimensional texture models. Accurate feature detec-
tion and matching are critical steps in any UAV data proc-
essing pipeline involving 3D scene reconstruction. There 
are various computer algorithms for feature detectors,  
descriptors and matching for detecting and describing the 
different types of features in the image4. There is a need 
to compare the performance of these algorithms against 
images with different viewpoints, scales, illumination and 
image compressions5. There are popular feature extrac-
tion algorithms such as scale invariant feature transform6 
which extracts distinct features which are invariant to 
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scale and rotation from hundreds of high resolution aerial 
photographs. The image-based modelling approach using 
SfM approach is inexpensive and highly automated, but 
capable of producing highly accurate dense point clouds 
comparable to that of point cloud generated by a terrestrial 
laser scanning (TLS) surveys7 and airborne LiDAR with 
horizontal and vertical precision in the centimetre range8. 
SfM is best suited for series of unstructured aerial images 
with high overlapping. It can estimate the 3D sparse point 
clouds along with positions and orientations of the cam-
era9. The noisy sparse 3D point output from SfM is not 
sufficient for full 3D and high quality surface reconstruc-
tions and therefore the need to increase the number of 3D 
point clouds10. The multi view stereo algorithms are then 
applied to SfM outputs to generate 3D models with many 
details11. 
 We have examined the efficacy of popular algorithms 
for feature detection using a few scenes of our study area. 
In this article, we describe an effective approach to UAV 
data processing using open source-based process pipe-
lines to develop a 3D model of a landslide-affected area 
in Ribhoi, Meghalaya. The various stages of UAV data 
processing have been highlighted and described in detail 
with relevant techniques and algorithms used. Further, 
the processing output has been analysed for accuracy. 

Methodology 

For construction of the textured model, we first import 
the set of 2D images. Then the detection of distinguished 
keypoints was initiated. In this step, the software also 
searched for matched points in all the images. For feature 
detection phase, we used a few of the popular algorithms 
for detecting features such as edges, corners or blobs. The 
SIFT6 was used to build the feature descriptors for each 
feature or interest point detected. Computer vision  
techniques were used to accurately match the features. 
The matched keypoints were then used to reconstruct  
external orientation and the position of each camera scene 
gave the 3D sparse point clouds. The 3D points were 
joined to form triangular facets using surface reconstruc-
tion algorithms. Then, the texturing was applied to each 
facet with the colour information from the original raster 
giving the final full textured 3D surface model. The 
schematic block diagram describing the detailed metho-
dology is shown in Figure 1. 

Image acquisition 

The ready-to-fly quadcopter was fitted with an optical 
sensor that can capture high-resolution geo-tagged aerial 
photos and high-definition videos for aerial surveillance 
and suitable for immediate deployment for near-real time 
assessment of landslide-affected areas. It can attain a 
maximum altitude of up to 2 km with a scanning radius of 

5 km. With the currently available LiPo battery, it can fly 
for about 20 min and sufficiently cover an area of  
1–1.5 sq km. Images of the target scene were taken from 
different positions (Figure 2). These images formed the 
dataset for further processing. 
 For capturing the images, we used T600 DJI inspire  
series of UAV. It has Zenmuse X3-FC350 (Figure 3) 
camera with focal length of 4 mm and an effective resolu-
tion of 12.4 mega pixels giving a maximum image size of 
4000  3000. 
 It was flown at a height of 120 m to collect 90 images 
of the landslide-affected area located in Ribhoi, Megha-
laya. The camera has a sensor width of 6.17 mm  
4.55 mm which translates the pixel size of the sensor to 
0.0015 mm. Using the formula of GSD = (pixel size of 
the sensor  flight altitude)/focal length, we obtained 
high resolution images with GSD of 4.5 cm per pixel. 
While flying the UAV, we ensured 75% overlapping for 
the images. With this, we had more than 5 overlapping 
images for every scene in our area of study (Figure 4). 
This later helped in generating a large number of repeated 
feature points in multiple images which were useful in 
getting denser 3D point clouds. 

Feature detection and matching 

Initially, features were identified from images and the  
respective descriptors were constructed for every detected 
feature12. For every descriptor pair, the distance was cal-
culated and marked as matched, if the distance fell below 
a threshold. Smaller the distance, the better the match. 
Based on the types of features to be detected, different 
combinations of detector-descriptor pairs were used to 
accurately detect the features on every image. The corner 
or interest point features were better detected by Harris, 
FAST and Shi-Tomasi. Edge features were well detected 
by Canny detectors. Among many feature detectors, SIFT 
and SURF were the most commonly used feature detec-
tion techniques4. 
 These algorithms select the robust features which are 
localized, scale-invariant, distinct and repeatable in  
nature. SIFT descriptors, after identifying a set of  
keypoints, compute a descriptor vector or feature vector 
for every keypoint. These feature vectors were then used 
to align the images. We then established feature key-
points that corresponded to correct matches. The accu-
racy of the match was known by finding the ratio of the 
distances to the second nearest neighbour and the first 
nearest neighbour at some threshold. For it to be called a 
good match, the ratio has to be high. 
 
Analysis of feature detectors: There have been few  
studies on effective selection of a particular feature detec-
tion algorithm and a feature matching algorithm,  
especially for 3D scene reconstruction involving 2D
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Figure 1. Methodology. 
 
 

 
 

Figure 2. 2D images of landslide affected area in Ribhoi, Meghalaya. 
 

 
 

Figure 3. The Zenmuse X3-FC350. 
 
images from UAVs. We did a comparative analysis of 
popular feature detector algorithms and certain feature 
matching techniques for chosen scenes. Performance 
analysis was carried out which suggested the suitability 
of the algorithm for our applications. We randomly chose 
three popular feature detection and matching algorithms 
from VLFeat and OpenCV. The Harris Corner, FAST and  
Minimum Eigen were compared on the basis of (a) maxi-

mum number of robust feature keypoints detected, (b)  
average computation time, (c) even distribution of key-
points. As observed from Figure 5, MinEigen was able to 
detect keypoints (in green colour) with uniform distribution 
in the scene. Among popular feature detectors such as 
Harris, MinEigen and FAST, the MinEigen was able to 
collect a larger number of keypoints from the image that 
contains mostly tree-clad areas. The keypoints are repre-
sented by green dots (Figures 5 and 6). Further, MinEigen 
was able to collect large number of keypoints from the 
scene when compared to Harris and FAST (Figure 6). 
The MinEigen performed well for matching the detected 
features at the scene. At threshold 60, it gave maximum 
numbers of correct matches when compared to FAST, 
SURF and SIFT (Figure 7). 
 
Suitability of feature detectors for different scene types 
captured by our UAV: Although there are numerous 
feature detectors and descriptors available, there is a need 
to analyse them properly and measure their performance 
in terms of the number of robust features detected, the 
even distribution of keypoints and repeatability of  
features detected13. Specific detectors/descriptors or a 
combination of them which work well on a scene behave 
differently on different types of scenes. To understand 
and analyse this properly, we took three different scene 
types – Scene-I: Natural scene with tree-clad areas, scene-
II: Buildings and artificial structures, scene-III: Mix 
scene with natural and artificial structures (Figure 8). 
 Even distribution of detected features is important and 
helps in uniform 3D reconstruction. In scene-I, the detec-
tors such as SIFT and DoG were able to detect uniform 
and evenly distributed number of keypoints (Figure 9). 
 In scene-II, the popular feature detector and descriptor 
SIFT, failed to detect large number frames when com-
pared to DoG detector, whereas MSER was able to detect 
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only boundaries of the object and not the interested  
keypoints (Figure 10). 
 In scene-III, both SIFT and DoG detected uniform key-
frames. The scale invariant Harris Laplace was best 
suited for detecting corners as well as highly textured 
keypoints. Further, Harris Laplace was able to detect re-
gions missed by both SIFT and DoG (Figure 11). Figure 
12 depicts the number of feature points detected by vari-
ous detectors for different scene types. 
 

 

 
 

Figure 4. Number of overlapped images for our study area. 
 
 

 
 

Figure 5. Distribution of keypoints. a, Harris corner; b, FAST;  
c, MinEigen. 
 

 

 
 

Figure 6. Robust detection of keypoints. a, Harris: 1970; b, FAST: 
2784; c, MinEigen: 22433. 

 

 
 

Figure 7. Keypoints matching. 

 The DoG and Multiscale Hessian were able to detect 
maximum number of keypoints in all scenes when com-
pared to other detectors. 
 Once we chose the right feature detector for the scene, 
the next step was to describe each feature detected and 
establish tracks or feature correspondence for a pair of 
features (Figures 13 and 14). 
 High repeatability of features indicates how efficiently 
the regions are marked in the scene by the corresponding 
detector3. We observed the changes in repeatability  
by considering the changes in image viewpoints. The  
viewpoint-angle changes were set at 30 and 40 for all  
detectors. The detector with high repeatability and high 
number of correspondences was the preferred detector. 
The repeatability was calculated for every reference  
image-test image pair. At a viewpoint angle of 40, the  
repeatability was found to be the highest for all the  
 
 

 
 

Figure 8. Three different scenes captured by our UAV. a, Scene-I;  
b, Scene-II; c, Scene-III. 

 
 

 
 

Figure 9. Distribution of the feature frames in scene I. a, SIFT;  
b, DoG; c, Harris Laplacian. 

 
 

 
 

Figure 10. Distribution of the feature frames in scene II. a, SIFT;  
b, DoG; c, MSER. 

 
 

 
 

Figure 11. Distribution of the feature frames in scene III. a, SIFT;  
b, DoG; c, Harris Laplacian. 
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feature detectors. For scene-II, Harris Laplace was found 
to have better repeatability with 65% when viewpoint  
angle was at 40. In short, our experimental analysis  
(Figures 11 and 15) confirmed that Harris Laplace must 
be used for precise detection of features for scene-III. 

Point cloud generation 

There are general techniques for recovering 3D shape 
from one or two 2D images which are defined under 
Shape from X, where X represents the specific 3D recov-
ery technique, viz. stereo, motion, shading, texture, con-
tours, etc. The structure from motion was suitable for 
estimating 3D structures from 2D image sequences  
captured through UAV imagery from multiple view-
points. The coordinate points of the objects in the scene 
 
 

 
 

Figure 12. Number of feature keypoints detected by various detectors 
for different types of scenes. 

 
 

 
 

Figure 13. Marking of feature descriptors of each features detected in 
scene II. 

 
 

 
 

Figure 14. Matching of feature descriptors in scene II. 

to be reconstructed were created. Here, an incremental 
approach for estimating the camera pose was adopted. To 
initiate reconstruction, the camera parameters for a set of 
images were first analysed. The third image was then  
taken and the number of tracks was observed for those 
camera poses estimated in the first step. 
 The normalized direct linear transform (DLT) under 
RANSAC14 was used to find the extrinsic and intrinsic  
parameters of the new image. The 3D point was added if 
it was seen by at-least one more camera and if it helped in 
optimization of the estimates. This process was repeated 
for the rest of the images. The OpenSFM library build on 
top of OpenCV was used for estimation of camera posed 
and reconstruction of 3D scenes from multiple images. 
The sparse point cloud is shown in Figure 16. The pro-
posed method was able to generate a fair number of points 
covering most of the area. Figure 17 shows few selected 
scenes and respective 3D points generated from 2D images 
having more than 5 overlapped images. We also observed 
that the usual SfM approach method was unable to gene-
rate enough points from areas with dense tree covers  
and was able to generate enough points for other areas. 
The multi-view stereo (MVS)15 matching generated dense 
point clouds with relatively good accuracy (better than 
 
 

 
 

Figure 15. Matching of feature descriptors in scene III. 
 
 

 
 

Figure 16. Sparse 3D point clouds. 
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1 mm for a 20 cm wide object) even from low resolution 
images16. To further accelerate point cloud generation 
specially for large number of images, a software having 
combined clustering views for MVS17 and patch-based 
MVS software package was used for computing dense set 
of 3D points cloud from the set of 2D images. The patch 
was further extended to get more by segmenting the 
patches and expanding denser patches18. There were also 
techniques for obtaining denser patches through expan-
sion of initial matches by leveraging nearby pixels19,20. 
The comparisons of point clouds generated by different 
approaches are shown in Figure 18. 
 
Relative accuracy analysis of SfM based 3D point cloud: 
An attempt was made to compare the two-point cloud  
regenerated by SfM-based approach and Pix4D output  
using Cloud Compare21. Once the two point clouds were 
aligned and registered properly, the Euclidean distances 
were calculated with each pair of point clouds and the 
distance or shift of each point was observed. We  
observed near perfect registration of the point in the  
entire scene except for minor deviations in some of the 
areas. Figure 19 shows the point cloud differentiation 
map in cm. The SfM based point cloud captured almost 
all the important features in the study area except for the 
tree-clad areas where it generated less number of points 
when compared to Pix4D cloud. 
 
 

 
 

Figure 17. Point clouds generated from sequance of overlapped 2D 
images.  

 
 

 
 

Figure 18. Comparision of generation of 3D point clouds. 

 The OpenSfM and MVS22 approaches generated total 
vertices of 1000949 and 1846230 respectively, while the 
Pix4D gave 5247442 vertices covering all areas in the 
scene. However, all the objects with defined shape such 
as man-made structures were precisely captured by SfM 
approach. Further, the MVS approach was also able to 
capture the complete scene including tree-clad areas. We 
compared this point cloud with Pix4D cloud. We  
observed near perfect registration of the two-point clouds 
with centimetre level precision represented by blue  
colour except for deviations for few 3D points as shown 
in green and yellow point clouds (Figure 19). 

Meshing and texturing 

Once we obtained the dense point clouds, the surface  
reconstruction was carried out using Poisson surface  
reconstruction algorithm with greater detail23. Here, the 
points were connected together to obtain a mesh-like 
structure. The mesh surface reconstruction was performed 
through Poisson surface reconstruction algorithm by  
adjusting the octre-depth at 12 to get finer level of mesh 
structures (Figure 20). The colour from the original 
 
 

 
 

Figure 19. Comparison of point cloud accuracy. 
 
 

 
 

Figure 20. Images depicting different stages of converting 2D images 
to 3D textured models. a, 2D images; b, Point clouds; c, Shaded mesh; 
d, 3D textured models. 
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Figure 21. Full 3D textured model. 
 
 
image was then incorporated into the model to get a  
textured output (Figure 21). The texturing of the 3D sur-
face24,25 mesh was very important for generating an  
aesthetically pleasing and realistic 3D model for visuali-
zation. The result of the texturing depends on the resolu-
tion of original input images and quality of mesh 
geometry. Further, the method adopted must be able to 
handle the texturing process even for large models. Then, 
texturing was done through a multi-view approach. 
Therefore a combined approach with SfM and MVS tech-
niques having large number of input images and mesh  
geometry consisting of thousands of triangles in a reason-
able time26 was considered an effective technique for  
efficient texturing process. 
 The non-manifold edges or bad geometry were then 
removed. Finally, we projected the active raster colours 
from the original images to the mesh that we recon-
structed. Meshlab was used externally for editing, clean-
ing and creating a mesh surface from point cloud file. 
The CMPMVS27 was used to generate the 3D mesh and 
textured model of our study area. 

Conclusions 

This article has outlined the use of computer vision algo-
rithms and SfM approach for effective processing of 
UAV derived imagery to generate precise and high reso-
lution 3D surface models. It also described the detailed 
UAV data process workflow where open source tools are 
used for processing high resolution data to generate valu-
able and good quality data products. The high resolution 
3D surface and terrain models have been increasingly 
used as an important input for further analysis to under-
stand various landform processes. The proper understand-
ing of the process deriving 3D surface models involving 
sophisticated analysis and detailed technical understand-
ing of the entire process pipeline is utmost essential for 
precise 3D scene reconstruction from 2D aerial images. 
The ability to accurately detect and match the feature 
keypoints will result in deriving better and precise 3D 

surface models. To understand this, an in-depth study was 
done to identify suitable detector algorithms to be used 
based on the scene type. To better understand this, we se-
lected two scenes with different textures and viewpoints 
and picked up three common detectors, viz. Harris, Fast 
and MinEigen and performed keypoint detections on 
these scenes. Out of the three chosen detectors, the 
MinEigen was able to detect 22,433 number of keypoints 
and the keypoints which were well distributed. Further, 
MinEigen was able to find maximum number of correct 
matches when compared to other two. Thus, the MinEi-
gen detector was chosen for the scene. We also per-
formed several experiments to understand the suitability 
of feature detectors and their response on three different 
types of scenes captured by UAV. As observed in the  
experiments, some detectors performed well in specific 
types of scenes with high repeatability when compared to 
others. We further studied the different approaches for 
generating dense 3D point clouds. The MVS method gen-
erated denser and well-distributed point clouds covering 
the entire region of the study area. The 3D dense point 
clouds generated using these feature correspondences 
were comparable with the Pix4D 3D point cloud with 
centimetre level precision. 
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