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Since failures in sensors degrade the performance of 
active mass damper (AMD) control systems, a dyna-
mic filter design method, a state observer design 
method and a robust control strategy are developed 
and presented in this paper to overcome this deficiency. 
The filter design method is transformed into a H2/H 
control problem that is solved by linear matrix ine-
quality approach. Thus, it is used to perform fault  
detection and isolation (FDI) for the control systems. 
The state observer design method uses the accelera-
tion responses as the feedback signal. The detected 
and isolated fault signals in accelerometers are used to 
estimate the whole states, that are used to calculate 
the control force though a robust control strategy 
based on regional pole-assignment algorithm. Then, 
the active fault-tolerant control (FTC) is accom-
plished. To verify its effectiveness, the proposed meth-
odology is applied to a numerical example of a ten-
storey frame and an experiment of a single span four-
storey steel frame. Both numerical and experimental 
results demonstrate that the performances of FTC 
controller and the control system are improved by the 
designed dynamic FDI filter to effectively detect and 
isolate fault signal. 
 
Keywords: AMD control system, fault-tolerant control, 
flexible buildings, fault detection and isolation, state ob-
server. 
 
ACTIVE mass damper (AMD) is used to control the  
dynamic response of highly flexible buildings horizon-
tally1–5. Recently, several studies focused on robust con-
troller design for nonlinear dynamical systems and 
mainly include fault-tolerant control (FTC) technology6–9. 
The design methods of the FTC system include analytical 
redundancy method, hardware redundancy method, etc. 
The hardware redundancy method aims to provide backup 
hardware for components that are prone to failure and to 
improve the fault-tolerant performance of the system. 
However, this method increases hardware costs and the 
weight of the system, and is restricted by space. There-
fore, the analytical redundancy method, which improves 

the redundancy of the system through the design of the 
controller, is more appropriate for flexible buildings. The 
FTC system using analytical redundancy method is  
divided into passive and active fault-tolerant systems. 
The passive fault-tolerant system, which cannot accom-
plish on-line fault identification, is regarded as traditional 
robust control. In comparison, the active FTC system in 
engineering practices needs to utilize the dynamic fault 
detection and isolation (FDI) technology to contain fault 
signals. Currently, several innovative FDI technologies 
have been developed10 and widely used in the field of 
control11–14. Generally, the AMD system of a high-rise 
building includes sensors, actuators and controller. In 
practice, structural vibration response measured by sev-
eral types of sensors is sent to the controller as the feed-
back signal, which is usually a state vector composition 
of displacement and velocity in the horizontal direc-
tion15,16. Instead, using a state observer can overcome the 
deficiency when the whole states are too hard to be 
measured directly in a high-rise building. Since accelera-
tion is easier to measure than displacement and velocity, 
it is used to construct the state observer that is more  
robust17. Based on the state observer and a suitable con-
trol strategy, the control system restrains the structural 
response in a timely manner18,19. Noticeably, due to  
adverse circumstances such as mechanical damage, envi-
ronmental damage and lack of maintenance, the attached 
accelerometers may sometimes malfunction or even fail. 
An observer-based system is considered to introduce a 
fault signal that seriously reduces the control perform-
ance. Therefore, the reliability and robustness of this sys-
tem should be studied. FDI technologies are often used to 
estimate the state of the control system through an ob-
server. For example, Kalman filter was used to  
estimate the state of an aircraft model and also introduced 
for fault detection and isolation20. An observer-based FDI 
technology was designed to estimate the state of linear 
structural systems, so as to detect faults and disturbances 
of the systems21. In other studies22, an observer with  
unknown input was applied to the system with random 
noise, which realized the fault detection and identifica-
tion. However, a state observer design method based on 
the acceleration signals with a corresponding protective 
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measure (a FDI filter), which is an effective measure for 
flexible buildings to resist strong dynamic loads, needs 
further theoretical and applied studies. 
 In this paper, the derivation of the state-space equation 
of flexible buildings with an AMD control system that 
considers fault signal in sensors is first described. The 
design problem of the dynamic FDI filter is then  
expressed as a group of nonlinear matrix inequalities that 
are transformed into a group of linear matrix inequalities 
(LMI)23 through variable substitution method24. Through 
the FDI filter, the detected and isolated signal is regarded 
as the input of the designed state observer to estimate the 
whole states of the system, which are used to calculate 
the control force based on regional pole-assignment algo-
rithm25. Finally, a numerical example of ten-storey frame 
and an experiment of a single span four-storey steel 
frame is presented to verify the effectiveness of the pro-
posed method. 

Formulation of AMD control systems with fault  
signal 

When several accelerometers fail to work, the system is 
considered to introduce a time-varying fault signal f and 
is assumed to follow the form described in ref. 26. The 
force equilibrium of the flexible buildings (n degrees of 
freedom) with an AMD system is 
 
 ( ) ( ) ( ) ( ) ( ) ( ),w s eMX t CX t KX t B w t B u t B f t       (1) 
 
where M, C and K are the mass matrix, damping matrix 
and stiffness matrix of the system respectively. u and w 
are the control force and strong wind respectively. Bs, Bw 
and Be are the position matrices of control force, strong 
wind and fault signal respectively. ( ),X t  ( )X t  and ( )X t  
are the acceleration, velocity and displacement vector of 
the system respectively. 
 The degrees of freedom of the whole control system (a 
building and its AMD system) become (n + 1). The state 
vectors [ ]TZ X X   of the system include displacement 
and velocity. Therefore, its dimension is 2  (n + 1). Its 
derivative, which includes velocity and acceleration, is 

[ ] .TZ X X    Equation (1) can be expressed into the 
state equation as 
 
 1 2( ) ( ) ( ) ( ) ( );Z t AZ t B w t B u t Ef t     
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where A, B1 and B2 are the state matrix, the excitation  
matrix and the control matrix respectively. E is the influ-
ence matrices of the fault signal on system state equation. 
 The observation equation can output displacement,  
velocity and acceleration of the system. The displacement 
and velocity are used to verify the control effectiveness, 
and the acceleration is used to observe the whole system 
state. 
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where Y is the output vector, and C, D1 and D2 are the 
state output matrix, the direct transmission matrices of 
control force and external excitation respectively. F is the 
influence matrix of the fault signal on system observation 
equation. 
 The system shown as eq. (3) can be illustrated by  
Figure 1 a. P is the mathematical model of eq. (3), and Co 
is the controller. When the fault signal exists in certain 
sensors, an input signal f is added into the system and 
negatively impacts the performance of the control system. 

Dynamic FTC controller design 

Dynamic FDI filter 

In order to guarantee the performance of the control  
system under the influence of the fault signal, the dynamic 
FDI filter CD is required to detect and isolate the fault 
signal in time. The output information of the system  
is used as the input of CD. Since the external excitation 
input W and the fault signal f are unknown, the output 
measurement Y and the detected fault signal r are  
regarded as the input and output of CD respectively.  
The error signal e= r – f is introduced to evaluate the 
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Figure 1. Block diagram of different systems: a, The system with fault signal; b, The dynamic FDI system I; c, The dynamic FDI system II;  
d, The dynamic FTC system. 
 
 
performance of CD. If the error signal is close to zero, it 
means the output of CD is close to the actual fault signal. 
The design block diagram of CD is shown in Figure 1 b, 
and P2 inside the dashed box in Figure 1 b represents the 
space-state model for designing the dynamic FDI system. 
 Supposing [ ] ,T

pw u w f  py Y  and ,pz e  then 
the state-space equation of the system is shown in Figure 
1 c and is described as 
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where 1 2 1[ ],pB B B E  2 0,pB   1 0,pC  2 ,pC C  

11pD  [0 0 ],I 12 ,pD I  21 2 1[ ]pD D D F  and 
22 0pD   respectively. 

 Equation (4) is represented by the block diagram 
shown in Figure 1 c. The design of the FDI filter is trans-
formed into the design problem of a controller. Specifi-
cally, the controller CD is designed to guarantee that the 
response of the augmented system P2 under the effect of 
disturbance wp is minimum. The aim is to use H2/H con-
trol theory to design the dynamic FDI filter. Specifically, 
the difference zp between the estimated and actual fault 
signals is regarded as the target output, and the designers 

should guarantee that H2 norms of the transfer function 
between the interference input wp and the target output zp 
is minimum. 
 The input of CD is yp = Y, the output is the detected 
fault signal r, and the state-space equation of CD is 
 

 ,f f f f p

f f f p
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  


 


 (5) 

 
where Zf is the state vectors of CD. 
 To eliminate r and yp in eq. (5), supposing 

[ ] ,T
CL fZ Z Z  then eqs (4) and (5) are combined into 

a new closed-loop system as 
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The control system shown as eq. (4) has a H FDI filter27, 
if and only if there exists a symmetric positive-definite 
matrix P such that the following inequality holds 
 

 
2

0.
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where ACL, BCL, CCL and DCL are determined by eq. (7) 
and  is a given positive constant. However, because  
inequality (8) is a nonlinear matrix inequality of the  
variables P, Af, Bf, Cf and Df, it is difficult to obtain the 
feasible matrix variables from the inequality directly. 
Therefore, the variable substitution method24 needs to  
be used to transform the nonlinear matrix inequality (8) 
into a linear matrix inequality, and then the LMI toolbox 
can be used to solve the problem. 
 P and its inverse matrix P–1 are written as the block 
matrices 
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where 11

n nP R   and 11 .n nS R   Supposing 1,I P P   
then 
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Both sides of the matrix inequality (8) are pre- and post-
multiplying diag{ , , }TJ I I  and diag{ , , }J I I  respectively. 
Then the matrix inequality (8) is 
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The sub elements ‘*’ of the upper matrix inequality can 
be obtained according to the symmetry of the matrix. The 
matrix inequality (14) is pre- and post-multiplying 

1
11diag{ , , , },S I I I  then 
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Supposing 
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Then, the inequality (15) is 
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The matrix P is a positive-definite matrix, if and only if 
the following inequality is established. 
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where R, X, M, N, L and Df are the feasible solutions of 
the matrix inequalities (17) and (19). 
 Similarly,  is a given positive constant, if and only if 
there exists symmetric positive-definite matrices P and Q 
such that the following inequalities hold. 
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The control system shown as eq. (4) has a H2 FDI filter24. 
The inequality (20) is satisfied by the inequality (8). The 
matrix inequality (21) is pre- and post-multiplying 
diag{ , },I P  then 
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The matrix inequality (23) is pre- and post-multiplying 
diag{ , }TI J  and diag{ , }I J  respectively. According to eq. 
(12), the matrix inequality (23) is equivalent to 
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The matrix inequality (24) is pre- and post-multiplying 
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Using the variable substitution method24, variables are 
defined as eqs (13) and (16); then the matrix inequality 
(25) is equivalent to 
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where R, X, H, N and Df are the feasible solutions of the 
matrix inequalities (26) and (22). 
 Therefore,  and  are given positive constants for the 
control system shown as eq. (6) that has a dynamic FDI 
filter, if and only if the optimization problem is estab-
lished. 
 
 

, , , , ,
min ,

R X M Z N Q
  (27) 

 
s.t. (1) Inequality (17); (2) Inequality (19); (3) Inequal-
ity(26); (4) Inequality(22); where R, X, M, Q, N, L and Df 
are the feasible solutions of the matrix inequalities (27). 
According to eqs (13) and (16), we get 
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The transfer function of the dynamic FDI filter is 
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According to eq. (10), eq. (29) is equivalent to 
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Then 
 
 1 1( ) , ( ) , ,f f fA R X M B R X L C N       (31) 
 
and Df are the coefficient matrices of the dynamic FDI 
filter CD shown as eq. (5) for the control system shown as 
eq. (4). 

Dynamic FTC controller with a state observer and a  
FDI filter 

The nonlinear matrix inequalities are transformed into the 
form of LMI based on the variable substitution method, 
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and the solver ‘feasp’ of LMI toolbox in MATLAB is 
used for solving the sub-optimal problem. The variables 
replaced by the method are restored, and then four coeffi-
cient matrices (Af, Bf, Cf and Df) of the dynamic FDI filter 
CD are solved. The fault signal in sensors from measuring 
signal Y is detected and isolated by the FDI filter CD. 
Based on these, a dynamic FTC controller can be built to 
control the structural responses. The control forces of the 
state feedback control system after fault isolation is cal-
culated by region pole-assignment algorithm. 
 The control forces of the FTC controller are described 
as 
 
 ( ) ,u t G Z    (32) 
 
where G is a closed-loop feedback gain matrix based on 
regional pole-assignment algorithm25. 
 By substituting eq. (32) into eq. (2), we get 
 

 2 1

2 1

( ) ( )
.

( ) ( )
Z A B G Z B w t
Y C D G Z D w t
   


  


 (33) 

 
The state vector of each floor is estimated effectively by 
using the state observer. Supposing 2 ,A A B G   

1,B B  2C C D G   and 1,D D  and a brief form of 
eq. (33) is 
 

 .Z AZ Bw
Y CZ Dw
  


 


 (34) 

 
The second equation of eq. (34) is written in the form of a 
partitioned matrix. 
 

 1 11

2 22
,

Y DC
Z w

Y DC
    

        
    

 (35) 

 
where Y1 is a vector of displacement and velocity of the 
structure and its AMD. Y2 is a vector of acceleration, 
which is processed by the FDI filter, and 2 2 ,Y Y r   2Y  
is the acceleration response with fault signal. 
 According to eq. (35), the external excitation vector 
can be written as 
 
 1

2 2 2( ).w D Y C Z    (36) 
 
By substituting eq. (36) into eqs (34) and (35), we get 
 

 
1 1

2 2 2 2
1 1

1 1 1 2 2 1 2 2

( )
.

( )

Z A BD C Z BD Y

Y C D D C Z D D Y

 

 

   


  


 (37) 

 
Supposing 1

2 2 ,A A BD C   1
2 ,B BD  C   

1
1 1 2 2C D D C  and 1

1 2 ,D D D  eq. (37) can be written as 

 2

1 2
.

Z AZ BY
Y CZ DY
  


 

  
   (38) 

 
The state observer is described as 
 

 2 1 1

1 2

( )
.oZ AZ BY G Y Y

Y CZ DY

    


 

   

 
 (39) 

 
By substituting the second equation of eq. (39) into the 
first equation, Y2 and Z can be used to estimate the system 
state vectors 1.Y  
 

 2 1

1 2

( ) ( )
,o o oZ A G C Z B G D Y G Y

Y CZ DY

     


 

    

 
 (40) 

 
where Go is the feedback gain of the observer. 1,Y  which 
is an estimated vector of the system state of the structure 
and its AMD, is used to calculate the control force. 
 Based on the derivation above, the process of the FTC 
control system is illustrated in Figure 1 d. The state-space 
eq. (4) is shown by the point-line box, the state observer 
based on acceleration responses is depicted by the dashed 
box, and the symbol inside the black solid box represents 
the dynamic FDI filter CD. 

Numerical verification 

In this paper, a ten-storey frame is constructed for nu-
merical analysis. The height and total mass of this struc-
ture are 33 m and 892.9 tonnes respectively. The lumped 
mass method is used to build the mass matrix for the 
structure. A unit force is applied to each particle floor of 
the structure, and the displacement at each floor is then 
obtained and combined into the flexibility matrix. The 
stiffness matrix can be easily obtained, as the inverse of 
the flexibility matrix. The AMD control device is as-
sumed to be installed on the eighth floor and is only used 
to control the horizontal vibration along the minor axis. 
Key parameters of AMD are listed in Table 1. Structural 
frequencies and modal mass participating ratios28 of the 
ten-storey frame, which are calculated using the model 
constructed in Matlab, are listed in Table 2. 
 Based on Davenport spectrum, a ten-year return period 
fluctuating wind speed is generated for numerical analysis. 
Mixed autoregressive-moving average (MARMA) model29 
is proposed to simulate the stochastic process. The fluc-
tuating wind load on each floor is calculated by eq. (41). 
 
 ( ) ( , ) ,i i sP V z u z t S   (41) 
 
where Pi is the fluctuating wind load at ith floor,  the air 
density, ( )V z  the average wind speed at ith floor, ui the 
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Figure 2. Comparison of the structural responses to 8th floor and the AMD parameters, controlled by an original controller (a) 
displacements and (c) accelerations, controlled by a state observer (b) displacements and (d) accelerations. e, AMD control forces; 
f, AMD strokes. 

 
 

Table 1. Key parameters of AMD 

Index AMD 
 

Auxiliary mass (kg) 4000 
Effective stroke (m) 1.1 
Maximum driving force (kN) 27.5 

 
 
 
Table 2. Modal mass participating ratios and natural frequencies of  
 the frame 

Order Modal mass participation ratio Frequency (Hz) 
 

1 0.7940  0.1435 
2 0.0985  0.4577 
3 0.0410  0.8479 
4 0.0237  1.3404 
5 0.0156  1.9514 

fluctuating wind speed that is associated with height and 
time. s and S are the shape factor of a building and the 
area of windward side respectively. 
 Under the above ten-year return period wind load, an 
original controller and a state observer, both based on  
regional pole-assignment algorithm are designed for the 
ten-storey frame. The structural responses of the eighth 
floor, and AMD parameters of different systems are 
shown in Figure 2. Table 3 presents the maximum  
responses, control effects and values of AMD parameters. 
In this paper, the control effect is quantified as the ratio 
between dynamic responses of the structure with and 
without control, and AMD parameters include control 
force and stroke. 
 Figure 2 and Table 3 show that the original controller 
and the state observer, both based on pole-assignment  
algorithm, obviously reduce the wind vibration response. 
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Table 3. Comparison of control effects 

 An original controller A state observer 
 

Index  Displacement Velocity Acceleration Displacement Velocity Acceleration 
 

Control effect (%) 8th floor 34.4676 34.8078 30.4391 34.3121 34.7876 29.6056 
 9th floor 34.4944 34.9371 30.0382 34.2934 34.7240 28.2551 
 10th floor 34.5024 34.8192 27.5249 34.2621 34.6135 24.8263 
AMD control forces (kN)   6.1413   6.3121 
AMD strokes (m)   0.1333   0.1324 

 
 
 
Specifically, the maximum variations of the displace-
ment, velocity and acceleration control effects between 
two different systems are only 0.24%, 0.21% and 2.70%, 
and the AMD parameters of the state observer increase by 
0.1708 N and –0.0009 m. Therefore, the acceleration  
response obtained from the optimal placement scheme of 
sensors is rationally used as a feedback signal for the 
state observer that also can guarantee that the system has 
the same superior control effect and stable AMD parame-
ters as the original controller. 
 A dynamic FTC controller with a state observer and a 
FDI filter is then designed for the ten-storey frame. The 
accelerometer in the seventh floor is assumed to fail to 
work, and three forms of artificially added fault signals 
are assumed, i.e. square wave (the amplitude of 1 m/s2, 
the period of 2 s and the width of 1 s), sine wave (the 
amplitude of 1 m/s2, the period of 2 s) and white Gaus-
sian noise (the power is 0.1 dBW, the load impedance is 
0.1 ), as shown in Figure 3 a–c. The dimension of the 
fault signal f (t) of the ten-storey frame is 11  1. The 
signals shown in Figure 3 a–c are added in the seventh 
floor’s accelerometer. Time history analysis is achieved 
by simulink toolbox in Matlab, and the duration of the 
whole process is 600 s. 
 Under these scenarios, the effectiveness of the dynamic 
FDI filter is verified by comparing the detected fault  
signal with the artificially added one. The detected fault 
signals in seventh floor’s accelerometer are shown in 
Figure 3 d–f, and the errors of added and detected fault  
signals in seventh floor’s accelerometer are shown in 
Figure 3 g–i. Based on the results, under both conditions, 
the detected trend and amplitude of signals from the fault 
accelerometer are equal to the assumption. Moreover, 
Figure 3 g–i shows that the amplitudes of the errors are 
almost zero. Therefore, the FDI filter CD designed in this 
paper is used to detect the location and the amplitude of 
the fault signal correctly. 
 The performance of the designed FTC controller is 
then verified by comparing with the system without fault 
signal (No fault signal). Under a ten-year return period 
wind load, the structural responses and the AMD parame-
ters of different control systems with and without fault 
signal are shown in Figure 4. Fault signals with dynamic 
FTC stand for control systems with different time-

varying fault signals (square wave, white Gaussian noise) 
and a dynamic FTC controller. In the figures, dashed 
lines represent the response of the structure without con-
trol under the wind load, and the solid lines show the re-
sponse of the structure with control. The corresponding 
control effects (defined as the ratio between controlled 
and uncontrolled responses) and AMD parameters are 
listed in Table 4. 
 It can be seen that from Figure 4 and Table 4; (i) When 
the sensor has no fault signal, the controller based on re-
gional pole-assignment algorithm effectively reduces the 
structural response. When the sensor fails, the control 
system that does not take the isolation measure is to di-
verge. Therefore, the fault signal in sensor cannot be ig-
nored. The design of the dynamic FDI filter can isolate 
the fault signal, which is very important for the control 
system. (ii) When the sensor has a sine wave fault signal, 
the dynamic FTC controller effectively restrains the 
structural response, and its control effects are nearly 
equivalent to the system without a fault signal. Specifi-
cally, the maximum variations of the displacement, velocity 
and acceleration control effects between two different 
systems are only 0.06%, 0.05% and 0.17%. Therefore, the 
developed dynamic FTC controller effectively detects 
and isolates the fault signal. Also, the dynamic FTC con-
troller maintains the stability of AMD parameters, which 
are consistent with the system without fault signal. Spe-
cifically, AMD parameters of the FTC controller increase 
only by 0.0046 N and 0.0086 m. The same result is  
obtained when the fault signal is white Gaussian noise. 

Experimental verification 

An experimental system of a four-storey steel frame with 
an AMD control device installed on the fourth floor is 
given in ref. 16. The acceleration signals of the second 
and fourth floors were used as the feedback signal for a 
controller to calculate the real-time control forces. A  
servo motor acquired the forces from an EtherCAT bus 
system and was used to add these forces to control the 
structure. The structural response signals of the second, 
third and fourth floors were used to verify the control  
effectiveness. 
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Figure 3. The artificially added fault signals in 7th floor’s accelerometer: a, Square wave; b, Sine wave; c, White Gaussian noise. The detected 
fault signals in 7th floor’s accelerometer: d, Square wave; e, Sine wave; f, White Gaussian noise. The errors zp between two types of fault signals in 
7th floor’s accelerometer: g, Square wave; h, Sine wave; i, White Gaussian noise. 
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Figure 4. Comparison of the structural responses to 8th floor and the AMD parameters: a, b, Under uncon-
trolled and controlled without fault signal; c, d, Considering sine wave fault signal and controlled with dynamic 
FTC; e, f, Considering white Gaussian noise and controlled with dynamic FTC; g, AMD control forces; h, AMD 
strokes. 

 
 
 To verify the efficiency of the developed method, the 
FTC controller is applied to the experimental system. The 
original signal is monitored by the second, fourth floor 
acceleration response of the controlled structure. Then the 
observer is used to get estimated states to calculate the 

control forces. The loading frequency of the system is 
1 Hz, that is, the peak value of the corresponding excita-
tion force is 45.89 N, and the wave form of this force is 
sinusoidal. Under the above excitation load, the estimated 
and measured values of the structural responses are 
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Table 4. Comparison of control effects of the system with dynamic FTC (%) 

 With dynamic FTC 
   Without fault With fault 
Floor Index signal signal Sine wave White Gaussian noise 
 

8th Displacement 33.6256  Divergent 33.5638  33.6434 
 Velocity 33.8730  Divergent 33.8273  33.8723 
 Acceleration 25.9426  Divergent 25.7753  25.7912 
9th Displacement 33.6092  Divergent 33.5480  33.6184 
 Velocity 33.5387  Divergent 33.4949  33.4524 
 Acceleration 25.4334  Divergent 25.5477  24.7110 
10th Displacement 33.5755  Divergent 33.5151  33.5761 
 Velocity 32.9823  Divergent 32.9408  32.8127 
 Acceleration 21.2427  Divergent 21.3326  20.2103 
Control force (kN)  6.8985  Divergent 6.9031 6.7337 
Stroke (m)  0.0925 Divergent 0.1011 0.1024 

 
 

 
 

Figure 5. Comparison between measured and estimated system state in 4th floor: a, Displacements; b, Velocities. 
 
 
showed in Figure 5. The duration of each scenario is 
300 sec, and Figure 5 only gives data in 30 sec. 
 From Figure 5, it is seen that (i) The design method of 
the state observer based on the accelerations of partial 
floors is proposed in this paper, which estimates the 
whole state vectors of the system accurately. (ii) In the 
estimation results, the estimated displacement of  
the fourth floor is 0.0385 m, and in the actual results, the 
measured displacement is 0.0385 m, the displacement  
observation error is 0.4  10–3 m. The estimated velocity 
is 0.1479 m/s, the measured velocity is 0.1429 m/s, the 
velocity observation error is 0.5  10–2 m/s. Both the 
above two observation errors are really minor. (iii) There 
are two main reasons causing the observation errors of 
the displacement and velocity, (a) When the floor is 
moved to the place that has maximum horizontal dis-
placement, the model has a slight and rapid vibration due 
to the coupling effect of vertical and horizontal sinusoidal 
loads. (b) There is a noise signal around the experimental 
system. It will affect if sensors can accurately measure 
the feedback signal or not. 
 When the accelerometer at the second floor fails to 
work, three forms of artificially added fault signals are 

assumed as shown in Figure 3 a–c. The detected fault  
accelerometer signal at second floor is shown in Figure 6. 
The detected fault accelerometer signals (square and sine 
wave) at the second floor changes with time, and the  
amplitudes (1.055989 m/s2 and 1.055783 m/s2) of the  
detected fault signals are close to the artificially added 
fault signal (1 m/s2). For white Gaussian noise, the  
detected one is pretty close to the origin one. Therefore, 
the FDI filtered signed in this paper is used to detect the 
location and the amplitude of the fault signal correctly. 
 Choosing two types of fault signals (sine wave and 
white Gaussian noise) as an example, the structural re-
sponses of different control systems with and without 
FTC are shown in Figure 7, and the corresponding con-
trol effects and AMD parameters are listed in Table 5. 
 Based on the results, (1) AMD control system increases 
the structural response and plays a negative role when the 
sensor fails, if designers do not take any isolation meas-
ures. Specifically, the displacement and acceleration con-
trol effects of the system with fault signal are all negative 
numbers. Therefore, it is important to design a FTC con-
troller with a state observer and a FDI filter to detect and 
isolate the fault signal. (2) For sine wave fault signal, 
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Figure 6. The detected fault signal in 2nd floor’s accelerometer of the experimental system: a, Square wave; b, Sine 
wave; c, White Gaussian noise. 

 

 

Figure 7. Comparison of the structural responses to 4th floor of the experimental system: a, b, Under uncon-
trolled and controlled without fault signal; c, d, Considering sine wave fault signal and controlled with dynamic 
FTC; e, f, Considering white Gaussian noise and controlled with dynamic FTC. 
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Table 5. Control effectiveness of structural responses (%) 

 With fault signal (Sine wave) With fault signal (White Gaussian noise) 
 

Index Without fault signal Without FTC With FTC Without FTC With FTC 
 

Displacement (m) 2nd floor 27.0551  –4.9037  24.1543  –11.1040 27.6251 
 3rd floor 27.9837  –4.7445  24.7997  –10.6274 27.7734 
 4th floor 28.1198  –4.7445  24.7997  –9.8088 29.5676 
 
Acceleration(m/s2) 2nd floor 76.4537  –10.1991  74.2183  –8.0170 72.9299 
 3rd floor 40.7535  –7.5637  43.5798  –2.6597 47.3597 
 4th floor 73.7438  –11.4507  70.2725  –7.4639 76.5141 
 
Control forces (N)  32.2191  31.4122  34.8742  30.9310 29.0907 
Strokes (m)  0.1692  0.1878  0.1484  0.1671 0.1429 

 
 
control effects and AMD parameters of the FTC system 
are close to the system without fault signal. Specifically, 
the maximum variations of the displacement, velocity and 
acceleration control effects between two different sys-
tems are 3.32% and 3.47%, and the AMD parameters of 
the FTC controller increase by 2.66 N and –0.0208 m. 
For white Gaussian noise, the maximum variations of the 
different control effects between two different systems 
are 1.44% and 6.60%, and the AMD parameters decrease 
by 3.13 N and 0.0263 m. Therefore, the FTC controller 
detects and isolates the fault signal effectively, and also 
restrains the structural responses and maintains the AMD 
parameters in the appropriate range. (3) The structural  
response does not completely obey the sine law due to the 
interaction between the AMD system and the structure, 
and the coupling of the horizontal and the vertical struc-
tural vibrations. (4) AMD device is placed in the fourth 
floor of the structure. Further, the acceleration control 
needs high frequency control force that will mitigate the 
structural high-order modes. Therefore, the control effect 
of third floor, which has an opposite high-order phase 
with the fourth floor, is significantly less than the control 
effect of second and fourth floors. 

Conclusions 

In this paper, a state observer is designed for the considered 
problem, i.e. state vectors of the control system are diffi-
cult to directly measure. Moreover, the fault signal has a 
negative influence on the designed state observer. To ad-
dress this issue, a dynamic FDI filter design method is pre-
sented to achieve the detection and isolation of the fault 
signal. Finally, a dynamic FTC controller design method 
that combines a state observer and a FDI filter is finished. 
A numerical example and an experiment are presented to 
verify the effectiveness of the proposed method. Based on 
the results, the following conclusions are drawn. 
 (1) A well-designed dynamic FDI filter is used to de-
tect the location and the amplitude of the fault signal cor-
rectly. 

 (2) The state observer based on the accelerations of 
each floors, accurately observes the whole states of the 
system, and has superior control effect and stable AMD 
parameters. 
 (3) When the sensor fails to work, the system is  
regarded as introducing a new input signal that brings 
negative interference to the system. AMD control system 
without consideration of this issue increases the structural 
response when the fault signal in the sensor presents. 
 (4) The FTC controller is combined with a state  
observer and a dynamic FDI filter. It tolerates the fault 
signal in accelerometers, effectively controls the structural 
response and maintains the stability of AMD parameters. 
Its control effects and AMD parameters are close to the 
system without fault signal. Therefore, it enhances the 
robustness of the control system. 
 Even with fault signals, the control performances are 
still stable, as demonstrated by the above results. There-
fore, the dynamic FTC controller described in the paper is 
regarded as robust control. The dynamic FDI filter  
designed in this paper is applied widely, but may have 
difficulties in achieving the process of fault-tolerance 
control in engineering practices through hardware devices. 
Thus, future efforts in this direction are focused on a  
static FDI filter shown as a gain matrix to achieve the 
conversion between the measuring output with fault  
signal and the real output. 
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