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In this study we apply the African buffalo optimiza-
tion (ABO) to solve benchmark global optimization 
problems. Such problems which are artificial repre-
sentation of different search landscapes ranging from 
unimodal to multimodal, separable to non-separable, 
constrained to unconstrained search landscapes have 
become a veritable instrument to test the search  
capacities of optimization algorithms. After a number 
of experimental procedures involving 28 benchmark 
problems, results from ABO prove to be rather com-
petitive leading to the conclusion that it is a worthy 
addition to the body of swarm intelligence techniques. 
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mization, search landscapes, swarm intelligence tech-
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THE need for getting things done in a more effective and 
efficient manner makes optimization a favoured area of 
research. This trend has grown considerably in the last 
six decades leading to the development of several optimi-
zation search techniques whose contributions to scien-
tific, engineering and industrial development have been 
invaluable. To date, some of the popular methods have 
been the genetic algorithm (GA)1, particle swarm optimi-
zation (PSO)2, artificial bee colony optimization (ABC)3, 
firefly algorithm (FA)4, bat algorithm (BA)5, cuckoo search 
(CS)6, teaching–learning based optimization (TLBO)7 and 
Jaya algorithm (JA)8. The newly designed African buffalo 
optimization (ABO)9 has proven to be quite successful in 
the areas it has so far been applied10. Hence this study 
proposes to investigate the capacity of ABO in global  
optimization test functions. 
 Benchmark global test functions have now become 
popular for investigating the capabilities of newly designed 
optimization techniques. The popularity of benchmark 
test functions is due to the fact that they represent diverse 
search landscapes imaginable from multimodal to  
unimodal, separable to non-separable and constrained to 
unconstrained. Investigating the capacity of ABO in these 
diverse landscapes and comparing the outcomes with 
those obtained from other optimization algorithms is 
therefore worthwhile. 

Comparative algorithms 

In this study a number of newly designed optimization 
algorithms, also called 21st century algorithms, are  
examined with special regard to their search capacities of 
benchmark global optimization test functions. The results 
obtained from these algorithms were compared with those 
from ABO. It is necessary to examine each of the com-
parative algorithms. 

Firefly algorithm 

This population-based algorithm which was inspired by 
the flashing behaviour of fireflies was developed by 
Yeomans and Yang11. In this algorithm, a number of fire-
flies work together through bioluminescent glowing that 
enables them to efficiently solve problems. The solutions 
to problems are modelled as a firefly whose flashes are 
proportional to the quality of solutions they represent. As 
a result, a brighter firefly attracts others and this aids  
further exploration of the search space. The four main 
characteristics of the algorithm include12: 
 (a) All fireflies are unisexual; so they are attracted by 
brighter individuals, irrespective of the sex. 
 (b) The brightness of a firefly is a function of the dis-
tance between two fireflies: the nearer they are to one an-
other, the more the effect of the brighter firefly and vice 
versa. 
 (c) If there are no fireflies brighter than a particular 
firefly then it will move randomly. 
 (d) The landscape of the objective function affects the 
brightness of the firefly. The brightness of the firefly is 
proportional to the objective function in a maximization 
problem. Figure 1 presents the pseudocode of FA12. FA 
has been successfully applied to industrial optimization, 
image processing, travelling salesman problem, antenna 
design, business optimization, civil engineering, robotics, 
semantic web, chemistry, meteorology, wireless sensor 
networks, etc.13. The algorithm is considered to have least 
error percentage compared to many other metaheuristic 
algorithms such as GA and PSO. Moreover, it is relatively 
simple to implement and has proven to perform well in 
multi-modal search environments. FA is similar to PSO, 
except that it does not employ search velocities in its 
quest for solutions14. However, it has complicated fitness
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 Initialize algorithm parameters: MaxGen: the maximal number of generations: 
  : the light absorption coefficient; r: the particular distance from the light source; d: the domain space 
 
 Define the objective function of f (x), where x = (x1, …, xd)T 
  Generate the initial population of fireflies or xi (i = 1, 2, …, n) 
  Determine the light intensity of Ii at xi via f (xi) 
 
 End 
 While (t < MaxGen) 
  For i = 1 to n (all n fireflies); 
   For j = 1 to n (n fireflies) 
    If (ij > Li), move firefly i towards j using the firefly equation; 
     End if 
    Attractiveness varies with distance r via Exp[r; 
   Evaluate new solutions and update light intensity; 
   End for j; 
  End for i; 
  Rank the fireflies and find the current best; 
 End while; 
 Post 
 Process results and visualization 
End procedure 

 
Figure 1. Firefly algorithm pseudocode. 

 
 

 

Objective function: f(x) x = (x1, x2 …. xj) 
Determine initial population of nests 
While termination not reached: 
 Randomly generate a cuckoo by Levy flight 
 Evaluate the cuckoo fitness 
 Randomly select a nest among available host nests 
  If (fi > fk); replace k by the new solution 
  End if; 
 Abandon a fraction of worse nets and replace with new  
   ones 
  Keep the best solutions; 
  Rank the best solutions and obtain the current best; 
End while; 
Output the best result 

 
Figure 2. Cuckoo search pseudocode. 

 
function and highly depends on correct parameter setting 
to achieve good results. These drawbacks make FA less 
user-friendly, and the use of several parameters places a 
huge demand on computer resources, thus making it a 
relatively slow algorithm compared to PSO, for instance. 
In fact, as if to emphasize the complexity of FA, PSO is 
referred as a simplified version of FA15. So there is need 
for a more user-friendly and less complex metaheuristic  
algorithm. 

Cuckoo search 

CS which is a simulation of the crafty attitude of the 
cuckoos was designed by Yang and Deb16. These birds 
lay their eggs in the nests of other birds, sometimes of 

other species too. The host bird either incubates the 
cuckoo’s eggs, throws it away or simply relocates its own 
eggs to another nest. In response to this, the cuckoo bird 
by making its own egg look as much as possible as the 
host’s. In CS, the host eggs in a nest represent an optimi-
zation solution, while the cuckoo egg is a representation 
of a newer solution with the objective of using it to re-
place the existing one. 
 In CS, it is assumed that a cuckoo lays an egg at a time 
in any nest chosen randomly. Next, the nest with the best 
quality/number of eggs carries on to the next generation. 
Moreover, there are a fixed number of nests and the cuckoo 
egg is discovered by the host bird with a probability usually 
between 0 and 1. Figure 2 presents the CS pseudocode. 
 The algorithm, though relatively young, has enjoyed 
wide applications in different areas such as travelling  
salesman problems, document clustering, wireless sensor 
networks, speaker recognition, flood forecasting, shortest 
path in distributed system, image processing, classifica-
tion task in health sector, job scheduling, etc.17. CS is 
fairly effective, obtaining results where other algorithms 
fail17,18. In spite of its wide applications, CS has the prob-
lem of speed due to the use of several parameters and 
sometimes falling into local optima18. Hence, the emer-
gence of several types of the algorithms such as discrete 
CS, improved CS, etc.19. 

Bat algorithm 

BA which is inspired by the echolocation of micro-bats 
that employ different pulse rates of loudness and
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Objective function f(x), x = (x1 ... xk)T 
Initialize the population of bats, velocity Vi and position Xi 
Determine the pulse frequency fi at position xi 
Define the pulse rates r1 and the loudness Ai 
While (not termination) do 
 Generate new solutions by adjusting frequency, updating velocities and positions using the  
   frequency, velocity, position equations 
  If (rand >rl) 
   Select a solution among the best solutions 
  Select a local solution (position) around the selected best position (solution) 
   End if 
  Select another solution by getting the micro-bats to fly randomly 
   If (rand < Ai and f (Xi) < f(x∗)), do 
   Accept the new solutions 
   Increase the value of rl and reduce Ai 
   End if 
End while 
Rank the bats and determine the current best solution x∗ 
Output the position of the best micro-bat 

 

Figure 3. Pseudocode of Bat Algorithm. 
 
 

Initialize 
 PS  Population size 
  NDV  Number _of design variables 
 TER _ COD  Termination _ condition 
End 
Until the termination condition, do repeat the next steps 
Evaluate the best and worst solution 
 Set best  Best solution population 
 Set worst  Worst solution population 
 Modify the solution 
Update the previous solution 
 Until No update in the previous solution 
Output the best result 

 

Figure 4. Jaya algorithm pseudocode. 
 
 
emission was designed by Yang in 2010. In this algorithm, 
individual artificial bats fly randomly as they employ a  
velocity vi at and at position (solution) xi at a given dynamic 
frequency (wavelength) and loudness Ai. As the search 
process progresses, the micro-bats find a prey and change 
their frequency, pulse emission r and loudness. The local 
search component in this algorithm is done via a random 
walk. At each iteration, the algorithm selects the position of 
the best-performing bat as its solution until the stopping 
condition is reached. 
 So far, BA has been successful since its design and has 
enjoyed considerable applications such as in combinato-
rial optimization problems, parameter estimation and 
classification, image processing, data mining, etc. Its  
effectiveness is traceable to its simplicity, flexibility and 
straightforward implementation strategy. Moreover the 
algorithm provides quick convergence at the initial stages 

through switching from one exploration to another20. The 
pulse emission and loudness components of the algorithm 
help it to control and zoom into new regions (explora-
tion). However, there is inherent danger in allowing BA 
to switch to exploitation stage too early by varying rl and 
Ai too fast; then, the algorithm settles into premature con-
vergence. Moreover, the speed of BA is affected by sev-
eral parameters since it appears to be a simplification of 
PSO. Invariably, it inherits the basic parameters of PSO, 
in addition to some of its own algorithm-specific parame-
ters21. Figure 3 presents the pseudocode of BA5. 

Jaya algorithm 

JA which was developed by Rao8 is in furtherance of the 
new paradigm in algorithm development, namely parame-
ter-less algorithms following the successful design of 
TLBO, a novel approach to optimization. JA operates on 
the premise that solutions are obtainable for any problem 
moving towards the best results and deliberately avoiding 
the worst solutions. Like other optimization algorithms, 
JA requires few control parameters such as population 
size, maximum number of generations and number of de-
sign variables. It does not require any problem-specific 
parameters that need to be tuned to get appropriate re-
sults. Figure 4 presents the pseudocode JA. 
 JA is a simple-to-implement algorithm and has been 
successfully applied to solve benchmark global optimiza-
tion functions, travelling salesman problem as well as 
power flow problems22. Although JA is parameter-less, 
controlling the algorithm-specific parameters is not as 
easy task (see for example, Pandey23). 
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Set k = 1; 
Objective function f (x), x = (xi … xk)T 
Generate initial students of the classroom randomly xi i = 1 – n 
Calculate the objective function f (x) for the whole of the students in the classroom 
While (not termination) do: 
  Calculate the average fitness value of each design variable xmean 
  Select the best solution (teacher) 
 
  Teacher phase 
  Calculate the mean of each design variable xmean 
  Identify the best solution (teacher) 
   For i = 1 … n 
   Calculate teaching factor F

iT  round [1 + rand (0, 1) 2 – 1] 
   Update solution based on the best solution (teacher) 
    new teacher F mean rand(0,1)[ ( )i i ix x x T x     
    Calculate objective function for new mapped student new( )if x  
    If new

ix  is better than xi, 
    Then new

i ix x  
    End if, that is, end of the teacher phase 
 
  Student phase 
 Choose another student (learner) xj randomly 
   If xi has better fitness than xj, Then new rand(0,1)...( ),i j ix x x x    
   newElse  rand(0,1) ( )j i jx x x x    
   End if. 
  If new

ix  is better than xi, Then new
i ix x  

  End if (student phase ends) 
  End for. 
  Set k = k + 1; 
End while. 
Output the best result 

 
Figure 5. Teaching learning-based optimization pseudocode. 

 
 
Teaching–learning based optimization 

TLBO is a recently developed population-based optimiza-
tion algorithm that searches for solutions through each 
learner’s deliberate effort to attain the knowledge level of 
his/her teacher7,24. The algorithm approximates the view 
of teachers as the most knowledgeable individuals in the 
society. In TLBO, therefore, the teacher represents the 
optimum solution and a group of learners constitutes the 
population. The design variables in TLBO are the differ-
ent subjects being offered to the learners and the learners’ 
results represent the fitness. The search process of TLBO 
is divided into two phases – ‘teacher phase’ and ‘learner 
phase’. In the former phase, the learners learn from the 
teacher, but in the ‘latter phase’ learners interact among 
themselves. Therefore, a learner with the minimum objec-
tive function value is deemed a teacher for the subsequent 
iteration. The algorithm obtains good results through a 
careful interplay of the teacher and learner phases. Figure 
5 presents the pseudocode of TLBO25. 
 TLBO has proven to be efficient and has enjoyed wide 
application since its development. The algorithm has  
input capacities that ensures wide exploration of the 
search space. TLBO has been applied to solve the travel-

ling salesman problem, constrained and unconstrained 
global optimization test functions, robotics, motif discovery 
problems, vehicle routing, etc.26 with good results. Though 
TLBO has been found to be good at exploration, it  
performs poorly in exploitation, resulting in premature 
convergence in complex problems27. 

The African buffalo optimization algorithm 

Figure 6 presents the ABO algorithm, where wk represents 
the waaa (move on/explore) signals of the buffalos with 
particular reference to buffalo k; mk is the maaa signal 
(stay to exploit); kw  is the request for further explora-
tion; km  represents requests for further exploitation; lp1 
and lp2 are the learning parameters; r is a random number 
that takes a value of 0 and 1 depending on the problem 
under investigation – higher the value, more the exploita-
tion and less the exploration. 
 Since its design, ABO has been successfully applied to 
solve several optimization problems, such as the travel-
ling salesman problem, strategic management27, numeri-
cal function optimization, parameter-tuning of PID 
controllers for automatic voltage regulators, etc.28. 
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Initialization: randomly place buffalos to nodes at the solution space; 
 

Update the buffalos’ exploitation using equation: 
 

 lp1( ) lp2( . )k k k km m bg w bp k w       
 

 where mk and wk represents exploitation and exploration moves respectively, of the kth buffalo  
 (k = 1, 2 ... N); lp1 and lp2 are learning factors; bg is the herd’s best fitness and  
 bp is the individual buffalo’s best location 
Update the location of buffalos using the equation: 
 

 (  ) .k k
k

w mw
r
   

 

Is bgmax updating? Yes, go to 5. If No, go to 2 
If the stopping criteria is not met, go back to update buffalos, else go to next step 
 

Output best solution. 
 

Figure 6. African buffalo optimization algorithm. 
 
ABO for global optimization 

In this study, ABO was implemented on a set of 16  
standard global optimization test problems28. These 16 
benchmark global optimization test functions are de-
scribed28. These functions were chosen because they rep-
resent diverse global optimization landscapes and 
problems ranging from constrained to unconstrained, uni-
modal to multimodal, separable to non-separable. More-
over, previous studies have used these functions to test 
and compare various algorithms29–31. The experimental 
results obtained were compared with those from FA and 
intelligent firefly algorithm (IFA)32. These algorithms cho-
sen to be compared with ABO have provided some of the 
best results in the literature. 

ABO solution strategies for global optimization  
problems 

In a global search space, two equations control the 
movement of buffalos within the solution space. These 
are the democratic equations: 
 

 lp1( ) lp2( . ),k k k km m bg w bp k w       (1) 
 
and decision equation: 
 

 
( )

.k k
k

w m
w




   (2) 

 
Equation (2) provides for the actual movement of the 
herd using the maaa (move on) signal. Eq. (1) provides 
an avenue for interaction among the competing buffalos 
tapping into two competing forces bp and bg. The actual 
movement equation is the decision (eq (2)) taking into  
cognizance the result obtained from the democratic  
eq. (1). In practical terms, the solution steps are as  
follows: 

 Step 1: Randomly initialize the buffalos within the  
solution space. 
 Step 2: Initialize ABO parameters, namely lp1 and lp2. 
 Step 3: Update buffalo’s exploitation and determine the 
prevailing bp for each buffalo and bg for the entire herd 
using eq. (1): 
 Step 4: Update the location of the buffalos using  
eq. (2). 
 Step 5: Verify if bg is updating. If yes, go to step 6; if 
no, return to step 2. 
 Step 6: Validate stopping criteria. If yes, go to step 7; 
otherwise, return to step 3. 
 Step 7: Output the best result. 

Experimental setting 

The experiments performed were implemented in 
MATLAB on an Intel Duo CoreTM i7-3770 CPU, 
3.40 GHz with 4 GB RAM. The 16 benchmark global op-
timization test functions listed above were investigated. 
Table 1 presents the experimental parameters. 

Benchmark global optimization test functions 

To continue our validation process, ABO, FA and IFA 
were tested on 16 popular but difficult global optimiza-
tion test functions. Table 2 provides a description of each 
of the 16 benchmark test functions. 
 A close examination of Table 2 reveals that the 
benchmark functions have been carefully chosen to repre-
sent diverse search landscapes such as unimodal  
to multimodal, constrained to unconstrained, separable to 
non-separable functions. This is necessary to provide a 
good testbed for the different algorithms under considera-
tion. Table 3 presents the comparative performance  
results of the three algorithms under investigation. The 
table reveals that the three algorithms perform exceedingly 
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Table 1. Experimental parameters 

African buffalo optimization Firefly algorithm Intelligent firefly algorithm 
 

Parameter Value Parameter Value Parameter Value 
 

Population 40 Population of ants  D*  Population D* 
lp1 0.6  2 Mutation rate 0.5 
lp2 0.5 MaxGen  1000 Crossover rate 1 
N/A  –  0.5   2 
N/A  Q 200 Wind strength [0, 1] 
N/A –  0.9 Wind angle (0, 360) 
N/A – N/A – MaxGen 1000 
N/A – N/A – N/A – 
N/A – N/A – N/A – 
N/A – N/A – N/A – 
N/A – N/A – N/A – 
N/A – N/A – N/A – 
Total no of runs: 50 50 50 

D* represents dimension of the optimization problem which, in this case is the number of nodes; Q is the 
pheromone amount;  is the exploitation ratio. 

 
Table 2. Benchmark functions 

Objective function Xter nvar Search domain Global minimum 
 

Ackleyu US 2 [−35, 35] 0 
Bealeu MS 2 [−4.5, 4.5] 0 
Boothu MS 2 [−10, 10] 0 
Carrom tablec MS 2 [−10, 10] −24.157 
Cross-leg tablec MN  2 [−10, 10] −1 
Himmelblauc MS  2 [−5, 5] 0 
Levy 13c MS 2 [−10, 10] 0 
Schafferc MN 2 [−100, 100] 0 
Powellu UN 4 [−1000, 1000] 0 
Cubec UN 5 [−100, 100] 0 
Sphereu US 5 [−100, 100] 0 
Egg holderc MN 50 [−512, 512] –959.6407 
Griewanku MN 50 [−600, 600] 0 
Rastriginu MS 50 [−5.12, 5.12] 0 
Rosenbrocku UN 50 [−50, 50] 0 
Zacharovu MN 50 [−5, 10] 0 

nvar, Number of variables required to optimize the function; Search domain, Search range; Global mini-
mum, Benchmark global minimum of the function; Xter, Characteristic of the benchmark function; US, 
Unimodal and separable; MS, Multimodal and separable; MN, Multimodal and non-separable; UN, uni-
modal and non-separable. Note that superscripts c or u after each function name indicate whether the 
benchmark function is constrained or unconstrained respectively. 

 

well, obtaining optimal results in all of the runs as  
indicated by the standard deviation of zero in some of the 
global optimization test cases. For instance, all the algo-
rithms obtained optimal solution in f1, f3, f7 and f11. This 
is commendable, especially when one considers the fact 
that these are varying landscapes of constrained and  
unconstrained functions. A closer observation, however,  
reveals that the above four benchmark functions represent 
three unconstrained and one constrained function. This 
outcome is in agreement with earlier findings that the 
constrained function requires a longer procedure for  
optimization, because it may have to be first converted to 
unconstrained function33–35. 
 Conversely, all the algorithms had their worst perform-
ance in the egg-holder function (Figure 7). The global 

minimum of this function is –959.6407. Mean results of 
the algorithms show that they are far-off from the global 
minimum. For example, FA was hovering around  
–1.5200, IFA around –2.5000 and ABO around –66.7834. 
From these results, it can be argued that ABO is nearer to 
the optimum, though still very far-off. 
 The egg-holder is indeed a difficult function to optimize 
and has a deceptive landscape that easily misleads search 
agents because of the large number of local minima30. 
 Another difficult benchmark function for all the algo-
rithms under investigation here is the cross-leg table 
function. The global optimum of this multimodal function 
is –1. Again, due the flat nature of this artificial land-
scape (Figure 8), it provides misleading information lead-
ing to poor results. 
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Table 3. Simulation results 

 FA ABO IFA 
 

Objective function Mean SD Mean SD Mean SD 
 

f 1 Ackley  0 0 0 0 0 0 
f 2 Beale  0 0 6.3446 4.42 0 0 
f 3 Booth  0 0 0 0 0 0 
f 4 Carrom table  −23.43 1.75 −18.18 0 −24.16 0 
f 5 Cross-leg table  −0.066 0.10 –0.80433 0 −746 0.26 
f 6 Himmelblau  0 0 92.9882 79.63 0 0 
f 7 Levy 13  0 0  0 0 0 0 
f 8 Schaffer  0.085 0.034  0 0 0.0035 0.034 
f 9 Powell  1.8400 2.7000 0 0 0.000017 0.00003 
f 10 Cube  88.69 77.05  0 0 41.39 65.09 
f 11 Sphere  0 0  0 0 0 0 
f 12 Egg holder −1.5200 1.600 –66.7834 0.003 −2.5000 0.021 
f 13 Griewank  0.0162 0.00061 0 0 0 0 
f 14 Rastrigin  45.47 12.7  0 0 66.63 16.44 
f 15 Rosenbrock  296.8 652.3  0 0 70.57 109.6 
f 16 Zacharov  36.68 13.2  0 0 0 0 

Mean, The mean score after 30 independent runs of the algorithms; SD, Standard deviation from the mean of the 
run. 

 

 
 

Figure 7. Egg-holder function. 
 

 
 

Figure 8. Cross-leg table function. 
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 From the simulation outcomes, again, ABO was closer 
to the optimum with –0.80433 to –0.066 of FA and –746 
of IFA. Actually, IFA was totally off-the-mark in track-
ing the global minimum of this function; however, the  
performance of ABO here is commendable. 
 On algorithm-by-algorithm basis, ABO showed the 
best performance with 11 optimal solutions out of the 16 
test cases; followed by IFA with nine optimal solution 
and then FA with six optimal solutions. Since effective-
ness in obtaining the optimal solution is one of the  
 
 

Table 4. Chi-square test output from FA, ABO and IFA 

 Observed N Expected N Residual 
 

FA 
 –2.4300 1 1.5 –0.5 
 –1.5200 1 1.5 –0.5 
 –0.0660 1 1.5 –0.5 
 0.0000 6 1.5 4.5 
 0.0162 1 1.5 –0.5 
 0.0850 1 1.5 –0.5 
 1.8400 1 1.5 –0.5 
 36.6800 1 1.5 –0.5 
 45.4700 1 1.5 –0.5 
 88.6900 1 1.5 –0.5 
 296.8000 1 1.5 –0.5 
 Total 16   
 
ABO 
 –66.7834 1 2.7 –1.7 
 –18.1800 1 2.7 –1.7 
 0.0000 11 2.7 8.3 
 0.8043 1 2.7 –1.7 
 6.3446 1 2.7 –1.7 
 92.9882 1 2.7 –1.7 
 Total 16   
 
IFA 
 –24.1600 1 1.8 –0.8 
 –2.5000 1 1.8 –0.8 
 0.0000 8 1.8 6.2 
 0.0000 1 1.8 –0.8 
 0.0035 1 1.8 –0.8 
 41.3900 1 1.8 –0.8 
 66.6300 1 1.8 –0.8 
 70.5700 1 1.8 –0.8 
 746.0000 1 1.8 –0.8 
 Total 16 

 
 

Table 5. Test statistics results 

  FA ABO IFA 
 

Chi-square 15.625a 31.250b 24.500c 
df 10 5 8 
Asymp. sig. 0.111 0.000 0.002 

a11 cells (100.0%) have expected frequencies less than 5. The minimum 
expected cell frequency is 1.5. bSix cells (100.0%) have expected fre-
quencies less than 5. The minimum expected cell frequency is 2.7. 
cNine cells (100.0%) have expected frequencies less than 5. The mini-
mum expected cell frequency is 1.8. 

aspects of a good algorithm36, ABO can be rightly adjudged 
as a better algorithm here. Similarly, in terms of standard  
deviation from the mean results, ABO has the minimum 
deviation among the three algorithms with total standard 
deviation of 84.053 to 191.45 of IFA and 671.43 of FA. 
 The output of the three comparative algorithms  
were statistically computed using Chi-square test (Tables 
4 and 5). 
 Ho: The output of ABO is significantly better statisti-
cally than those of FA and IFA. 
 HA: There is no significant difference between the  
outputs of ABO, FA and IFA. 
 Statistically, as can be seen from Table 5, with 0.5  
degree of freedom, showed a value of ABO 0.000 to 
0.002 of IFA and 0.111 of FA. From this result, it is  
obvious that there is significant difference in the per-
formance of ABO in obtaining solutions to the 16 
benchmark test cases under investigation; so we reject the 
null hypothesis. 

More experimental evaluations 

In view of the competitive outcomes of the three swarm-
based techniques in the first set of experiments, it is  
necessary to assess the performance of ABO with other 
population-based algorithms on global optimization func-
tions. The comparative population-based algorithms  
represent some of the most successful optimization algo-
rithms, namely GA and PSO as well as some newly  
designed optimization methods like ABC, TLBO and JA. 
The benchmark functions investigated are the sphere, 
beale, Easom, Matyas, Zakhorov, Schwefel1.2, Rosen-
brock, Branin, Bohachevsky1, Booth, Michalewicz2,  
Michalewicz5, Bohachevsky2, Bohachevsky3, Goldstein 
Price, Perm and Langerman2 functions. The comparative 
results are obtained from Rao8. Table 6 presents experi-
mental outcomes. It records the performances of some of 
the best algorithms in the literature. Out of the 17 bench-
mark functions considered, JA produced the best result 
since it was able to obtain optimal solutions in all test 
cases, except in f14 and f18, followed by ABC with 13 
and TLBO with excellent results in 12 out of the 17 in-
stances. TLBO did not do so well in f9, f11, f14, f18 and 
f22. ABO followed closely with excellent results in nine 
out the 17 instances, except in f3, f4, f10, f17, f18, f21, 
f22 and f23. PSO and GA did well too, obtaining opti-
mum outcomes in eight instances each. 

Conclusion 

In this study we examined the application of ABO to 
solving global optimization benchmark functions. A 
number of experiments on different landscapes ranging 
from unimodal to multimodal, constrained to uncon-
strained, separable to non-separable functions were carried 
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Table 6. ABO with genetic algorithm, particle swarm optimization, artificial bee colony, teaching learning-based  
 optimization and Jaya algorithms 

Functions Statistics GA PSO ABO ABC TLBO Jaya 
 

f 1 M 1.11E+03 0 0 0 0 0 
 SD 74.214474 0 0 0 0 0 
 

f 3 M 0 0 6.34 0 0 0 
 SD 0 0 4.42 0 0 0 
 

f 4 M –1 –1 –0.9 –1 –1 –1 
 SD 0 0 0 0 0 0 
 

f 5 M 0 0 0 0 0 0 
 SD 0 0 0 0 0 0 
 

f 9 M 0.013355 0 0 0.0002476 0 0 
 SD 0.004532 0 0 0.000183 0 0 
 

f 10 M 7.40E+03 0 830 0 0 0 
 SD 1.14E+03 0 0 0 0 0 
 

f 11 M 1.96E+05 15.088617 0 0.0887707 1.62E–05 0 
 SD 3.85E+04 24.170196 0 0.07739 3.64E–05 0 
 

f14 M 0.998004 0.9980039 0.5424 0.9980039 0.9980039 0.998004 
 SD 0 0 0 0 0 0 
 

f15 M 0 0 0 0 0 0 
 SD 0 0 0 0 0 0 
 

f 16 M 0 0 0 0 0 0 
 SD 0 0 0 0 0 0 
 

f 17 M –1.8013 –1.5728692 –0.9824 –1.8013034 –1.801303 –1.801303 
 SD 0.00E+00 0.11986 0.0159 0 0 0 
 

f 18 M –4.64483 –2.4908728 1.000 –4.6876582 –4.6726578 –4.680138 
 SD 0.09785 0.256952 0 0 4.74E–02 1.58E–02 
 

f 19 M 0.06829 0 0 0 0 0 
 SD 0.078216 0 0 0 0 0 
 

f 20 M 0 0 0 0 0 0 
 SD 0 0 0 0 0 0 
 

f 21 M 5.870093 3 23.9691 3 3 3 
 SD 1.071727 0 14.2657 0 0 0 
 

f 22 M 0.302671 0.0360516 0.2751 0.0411052 0.0006766 0 
 SD 0.193254 0.048927 0.2058 0.023056 0.0007452 0 
 

f 23 M –1.08094 –0.679268 –4.1271 –1.0809384 –1.080938 –1.080938 
 SD 0 0.274621 0 0 0 0 
 

f 24 M 14.67178 0.1646224 0 0 0 0 
 SD 0.178141 0.493867 0 0 0 0 

 
 
out. The results thus obtained were compared with 
those from other techniques. The outcome revealed the 
capacity of ABO to obtain competitive results in solving 
global optimization test cases. It is, therefore, recom-
mended that ABO be applied to solve other optimization 
problems such as graph-colouring problem, N-queen and 
urban transportation problems to further validate its 
search capacity. 
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