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Presenting soil heterogeneity precisely in various  
spatial scales is the main key to simulate water and  
solute transport through it. The method described by 
Richards is mostly used to study water flow through 
vadose zone. It requires spatial representation of  
hydraulic functions and water retention relationship 
in the soil. To represent the spatial relationship of soil 
hydraulic functions, scaling approach is being used 
since the last few decades. In this study, a simple scaling 
method using nonlinear least squares minimization 
technique has been used to scale soil matric potential, 
hydraulic conductivity as well as simultaneous scaling 
of soil matric potential and hydraulic conductivity  
data. Simultaneous scaling is necessary as it reduces 
the volume of data by producing a single set of scale 
factors for hydraulic functions in a heterogeneous soil. 
Van Genuchten’s semi-empirical expressions were 
used in this study to parameterize soil hydraulic func-
tions. Results showed that correlation coefficient from 
raw and descaled data was superior when soil matric 
potential and hydraulic conductivity data were scaled 
separately than simultaneously. Improvement of corre-
lation coefficient in simultaneous scaling can be obtai-
ned by adding more weight to the soil matric potential 
data than unsaturated hydraulic conductivity data, 
which enhances the overall correlation coefficient in 
simultaneously scaling. Statistical analysis of the scale 
factors showed that they are lognormally distributed. 
Scale factors calculated by solving simple equations 
obtained using the method described in this study can 
be used to simulate water movement through hetero-
geneous soil conditions using HYDRUS model. 
 
Keywords: Effective saturation, lognormal distribution, 
scaling, soil matric potential, unsaturated hydraulic con-
ductivity. 
 
INFORMATION about hydraulic functions of the soil is  
important for studying water and solute transport in the 
vadose zone. Soil scientists have been using deterministic 
and stochastic modelling to simulate water flow and  
solute/nutrient transport through the soil in different  
spatial scales. The hydraulic functions signify the rela-
tionship of soil water content with matric potential and  

hydraulic conductivity. Both these functions vary even in 
a field plot which apparently seems homogeneous. The 
differences in soil hydraulic functions are generally at-
tributed to the variability in soil bulk density, texture and 
organic matter content. In large spatial scale, i.e. watershed, 
different simulation models are used to study water and 
solute transport. The efficiency of water flow prediction 
through the soil depends on the spatial representation of 
hydraulic properties. Irrespective of the scale, Richards’ 
equation is used to simulate unsaturated water flow in the 
soil, which requires soil water potential, unsaturated  
hydraulic conductivity and water content as a function of 
time and space1. Both soil water potential and unsaturated 
hydraulic conductivity functions are nonlinear and these 
nonlinearities make the application of Richards’ equation 
inherently problematic across the scales. Until last cen-
tury, tabular forms of average hydraulic functions derived 
from different soil groups were used for different pur-
poses such as land evaluation, environment and hydro-
logical studies, etc. However, it was necessary to quantify 
and represent the variability of hydraulic functions  
derived from soil groups with minimum number of func-
tions. In this study, van Genuchten’s model (VGM)2 
based on statistical pore size distribution model3 has been 
used to represent the soil hydraulic functions. It param-
eterizes the soil hydraulic functions and represents soil 
water potential and unsaturated conductivity as a function 
of soil moisture content. The ‘scaling approach’ is exten-
sively used to scale and represent spatial variability of the 
soil hydraulic properties. 
 The concept of scaling approach has been developed 
from the similar media concept based on the hypothesis 
of microscopic geometric similitude4. It construes that the 
distribution of the spatial variation of soil hydraulic func-
tions is described by a set of scale factors r, relating to 
the soil hydraulic properties at each location r to a repre-
sentative mean5. Various methods have been evolved to 
compute scaling factors on using regression analysis6,7, 
polynomial functions6 and logarithmic expressions8. Most 
of these studies reported that the scale factors are log-
normally distributed. Water flow through the soil was 
simulated using the distribution function of scale factors 
in heterogeneous soil from field to basin scale9–13. The 
soil hydraulic functions proposed by Brooks and Corey14 
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have also been used by several studies for scaling15.  
Earlier, the soil matric potential and unsaturated hydraulic 
conductivity were scaled and used separately. The scale 
factors computed separately are not necessarily identical6,7. 
However, it was necessary to describe soil hydraulic 
functions by a single set of scale factors for simulating 
water flow in spatially variable field soils. Recent works 
on simultaneous scaling are available in the literature5,16–19. 
 The present study was carried out with the aim to com-
pute scale factors separately as well as simultaneously for 
both soil hydraulic functions using nonlinear least 
squares minimization technique, by minimizing the sum 
of residuals in a laboratory experiment. The HYDRUS 
model can be used to feed these three types of scale factors 
to simulate infiltration through soil using Richards’ equa-
tion under different situations, such as constant or falling 
head conditions, etc.20. Apart from infiltration, scaling 
factors are used to study distribution of water in soil pro-
file in irrigation experiments. However, calculation of 
scale factors using nonlinear least squares minimization 
method alone is considered in this study. Simple equations 
are proposed here for computing scale factors in compari-
son to other studies5,18; these may be used effectively to 
study soil water budget in irrigation experiments. The  
efficiency of the scaling technique expressed in terms of 
correlation coefficient (r) by Clausnitzer et al.5, is com-
parable with the results obtained in this present study. 

Material and methods 

Theory 

According to Miller and Miller4, it is possible to obtain 
detailed similitude of interface shapes and microscopic 
patterns between two media whose solid geometries dif-
fer only by a constant magnifying factor. Two such media 
will be called ‘similar media’. When the interface geo-
metries are also similar, the two media are said to be in 
‘similar states’. Peck et al.9 expressed scaling factor as 
the ratio between microscopic characteristic length r of a 
soil at location r to the characteristic length ̂  of a refer-
ence soil 
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scaling of hydraulic functions represents soil matric  
potential (hr) and unsaturated hydraulic conductivity (kr) 
of any location r with respect to the mean soil matric  
potential ˆ( )h   and hydraulic conductivity ˆ( )k   of the 
reference soil as follows 
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It is to be noted that though hr is negative in the vadose 
zone, it is considered to be positive for notational  
convenience. Soil matric potential and unsaturated  
hydraulic conductivity functions can be parameterized 
following VGM2 
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where  (in volume basis) is expressed in terms of the 
dimensionless form Se, r, s, , n and Ks are the effective 
water content, residual and saturated water content,  
inverse of the bubbling pressure, pore size distribution 
index and saturated hydraulic conductivity respectively. 
These are used as fitting parameters for soil hydraulic 
functions in VGM expressions. For similar media, eqs (4) 
and (5) hold for equal water content. Owing to the fact 
that soils in general are not strictly similar, h and k are 
written as a function of the degree of saturation S 
(S = /S) or as a function of Se rather than the volumetric 
water content5. 

Experimental measurements 

A 26.4 m long, 0.88 m wide and 1.0 m deep experimental 
tank was constructed using steel profiles combined with 
Plexiglas at Hubert-Engels Laboratory, Dresden Univer-
sity of Technology, Germany (Figure 1). The tank was 
carefully filled with soil layer by layer and compacted 
uniformly with 50 tonnes of silty loam soil to achieve, as 
far as possible, a homogeneous distribution of soil pro-
perties (s = 41%, r = 14%, bulk density = 15.1 kN m–3, 
particle density = 25.7 kN m–3). A parabolic furrow with 
a top of width of 0.35 m and initial depth of 0.184 m was 
formed along the central longitudinal axis of the tank. A 
magnetic-inductive flow meter was used to record inflow 
into the furrow. Tensiometers and time-domain reflecto-
metry (TTDR) probes were placed at three cross-sections 
at a distance of 6.3, 12.3 and 18.3 m respectively, in the 
tank to measure soil matric head and moisture content 
(Figure 1). Irrigation was applied at a rate and time  
of 0.0012 m3 s–1 and 2.55 h respectively. Water extraction 
from the soil was controlled by rye grass (Lolium  
multiflorum). The experimental tank was illuminated for 
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10 h per day in order to ensure optimal plant growth. Soil 
hydraulic parameters were calculated by ‘inverseparame-
ter estimation’ using pressure head measurements. The 
objective function Z was expressed as follows 
 

 mea sim
probe = 1

( , , ) 0.5 [ ( , ) ( , )] min,
n

sZ K n h t x h t x     (8) 

 
where hmea(t, x) denotes the measured pressure head at 
time and location t and x respectively, whereas hsim(t, x) 
is the corresponding pressure head simulated by 
HYDRUS-2D21. The VGM parameters Ks,  and n were 
used as decision variables during optimize run. The val-
ues of s and r were determined from soil analysis and 
kept constant during the optimization process. HYDRUS-
2D includes a routine for inverse parameter estimation. 
Inverse modelling is a form of model calibration which is 
frequently used in hydrology. It requires a set of observed 
data such as measured pressure heads. In model calibra-
tion, the objective is usually to obtain better predictions. 
In case of parameter optimization, the objective is to  
determine the best estimate of the parameters as an alter-
native to directly measuring them. Minimization of the 
objective function is accomplished in HYDRUS using the 
Levenberg–Marquardt nonlinear minimization22. Before 
the start of the experiment, initial soil water content and 
corresponding matric potential were noted at the TTDR 
probe locations. Average soil matric potential readings in 
each depth obtained from tensiometer reading probes 
were fed into HYDRUS-2D as initial conditions. Initial 
parameter values were assumed to solve for water flow 
through the soil in HYDRUS using known soil matric  
potential at different points of time after the experiment 
started. In this way, VGM parameter set for the soil  
hydraulic functions for each TTDR location was  
optimized and later scaled. Details of the methodology 
can be found in Schmitz et al.23. 
 Figure 1 shows the locations of the TTDR probes. It 
can be seen from the figure that nine TTDR probes were 
 
 

 
 

Figure 1. Location of tensiometers and time-domain reflectometry 
probes in the experimental tank. 

installed in the first and second sections, whereas 14 
probes were installed in the third section. It was found 
that one, two and eight probes in the first, second and 
third sections respectively, were malfunctioning during 
the experiment and thus data from these probes were not 
considered for the study. Hence, data recorded from 21 
probes in all three sections were used for scaling. Appen-
dix 1 shows the optimized VGM parameters of 21 probes. 

Scaling procedure 

The scaling procedure minimizes the sum of squared dif-
ferences (SS) between hydraulic data of the experimental 
probes and the mean curve. First, hydraulic data corre-
sponding to each probe are parameterized using VGM 
expressions. The same expressions were used to fit the 
mean curve using nonlinear least squares minimization 
method for soil matric potential, hydraulic conductivity 
as well as simultaneous scaling. This requires the upper, 
lower and initial values of VGM parameters (n,  and Ks). 
The range of each VGM parameter was obtained from the 
experimental TTDR probes. Fitted mean curves take 
combinations of the VGM parameters during soil matric 
potential and hydraulic conductivity scaling. However, 
the value of VGM parameter n was kept the same for 
both the mean curves fitted during simultaneous scaling 
of soil matric potential and hydraulic conductivity. The 
total sum of squared differences in all observed locations 
R (number of probe locations) is defined by 
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here, three cases of scaling were considered. Soil matric 
potential (case A) and hydraulic conductivity data (case 
B) were scaled separately. In the third case (case C),  
matric potential and hydraulic conductivity data were 
scaled simultaneously. The method of calculating SSr 
(sum of squared differences at the rth location) varies for 
the three cases as follows 
 

Case A – SSr is calculated from h versus Se 
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where p and Whr refer to the number of h(Se) data pairs and 
a weighting factor respectively, for the sampled location r. 
 
Case B: SSr is expressed as ln k versus Se 
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where q and Wkr refer to the number of k(Se) data pairs and 
a weighting factor respectively, for sampled location r. 
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

Table 1. Optimized values of van Genuchten’s parameters for different types of scaling 

Soil matric potential scaling Conductivity scaling Simultaneous scaling 
 

 n Ks (m/day) n  n Ks (m/day) 
 

1.086 1.29 0.59 1.17 1.086 1.29 0.40 

 
Case C – SSr is calculated from h and ln(k) simultaneously 
versus Se 
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Weighting factor is used to account for and balance the 
variability between data value ranges and number of data 
points of the sampled locations, and is defined as follows 
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where h and ln k are the difference between the maxi-
mum and minimum h value and ln k respectively. Scal-
ing factors and scaled mean curves are determined by 
minimizing SS. The scale factor varies spatially. Scale fac-
tors are calculated for different cases by minimizing SS 
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Scale factors obtained for different cases are shown  
below 
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Case B 
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Case C 
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Equation (18) is nonlinear equation and can be solved by 
the Newton–Raphson method using MATLAB software. 
 Finally, extra weights assumed arbitrarily apart from 
the weighing functions mentioned in eqs (13) and (14) 
were used in soil matric potential as well as conductivity 
data in simultaneous scaling (case C) to observe the  
effect of weight factors on the results. It was found that 
more weights applied to the soil matric potential data  
improved the correlation coefficient of these data, but 
slightly decreased the correlation coefficient of the con-
ductivity data. 

Results and discussion 

For each location of TTDR probes (21 numbers) in the 
soil profile, soil matric potential functions were scaled 
over eight equally divided matric potential increments  
(0, 28.57, 57.14, 85.71, 114.29, 142.86, 171.43 and 
200.00 cm). Hydraulic conductivity curves were scaled 
on the same Se data points corresponding to the same  
matric potential increments. The lower limit of conduc-
tivity for scaling was assumed as 10–7 m/day, as below 
this limit the soil is considered to be impermeable. The 
measure of degree of success of scaling approach is the 
‘correlation coefficient’ between the original and the  
descaled soil matric potential and conductivity data. 

Soil matric potential scaling 

Soil matric potential functions (hereafter raw soil matric 
potential curves) for different TTDR locations were  
parameterized using optimized VGM parameters at fixed 
soil matric potential points as mentioned above and  
corresponding Se values were calculated. A mean curve 
was fitted through the raw soil matric potential curves  
using nonlinear least squares minimization technique in 
MATLAB. It was assumed that the mean curve also fol-
lows eq. (4) and the range of VGM parameters (, n and 
Ks) adopted from the raw soil matric potential functions 
was used during the least square minimization process. Ta-
ble 1 provides the optimized VGM parameter values of the 
mean curves for three types of scaling. Next, the mean 
curve soil matric potential values corresponding to each 
Se were calculated. Scale factors were calculated after
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Figure 2. (a) Unscaled data with mean curve, (b) scaled curve and (c) original and descaled data in soil matric potential 
scaling. 

 
 
solving eq. (16). Scaled soil matric potential value for 
each TTDR location was calculated after multiplying 
scale factor with raw soil matric potential data. Descaled 
soil matric potential data for each TTDR probe location 
were obtained by dividing mean curve soil matric poten-
tial data with the respective scale factor. Figure 2 a–c 
shows the raw soil matric potential functions with mean 
curve, scaled curves, and original and descaled data  
respectively. Equation (10) was used for calculation of 
SS. The first SS calculated using eq. (10) signifies the 
sum of square difference between mean and raw curve 
soil matric potential data, whereas the second SS calcu-
lated using eq. (10) signifies the sum of square difference 
between mean and scaled raw curve soil matric potential 
data. Sum of squares was reduced from 5.270 to 0.007  
after scaling in this case. The correlation coefficient (r) 
between the raw and descaled data was obtained as 0.95. 

Hence, the scaling method presented here represents the 
raw data well after descaling. 

Soil hydraulic conductivity scaling 

Soil hydraulic conductivity functions were parameterized 
using VGM parameters corresponding to Se values that 
were obtained in soil matric potential scaling. The same 
procedure was followed as mentioned above for fitting 
the mean curve through raw conductivity curves. Table 1 
shows optimized VGM parameters of the mean curve  
(Ks, n). Figure 3 a–c shows the unscaled mean curve, scaled 
curve, and original and descaled data respectively. In this  
scaling, SS is reduced from 0.66 to 0.09. The value of the 
correlation coefficient (r) between the original and  
descaled data was 0.97, which is considered excellent in 
terms of retrieving the original raw conductivity values. 
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Figure 3. (a) Unscaled data with mean curve, (b) scaled data and (c) original and descaled conductivity 
data in conductivity scaling. 

 
 
Simultaneous scaling of soil hydraulic functions 

In simultaneous scaling, soil matric potential and hydrau-
lic conductivity functions were scaled together. Table 1 
shows the optimized value of soil matric potential mean 
curve parameters (, n) and hydraulic conductivity mean 
curve parameters (Ks, n). The VGM parameter n acts as  
a bridge between two mean curves, and in this case  
the value of n was 1.294. Figures 2 a and 4 a, b show  
the unscaled functions with mean curve, scaled curve, 
and original and descaled data for soil matric potential 
scaling respectively, whereas Figure 4 c–e shows the  
unscaled functions with mean curve, scaled curve, and 
original and descaled data for hydraulic conductivity data 
scaling respectively. Figure 4 c shows a poor fit to the 
conductivity data due to the fact that both soil hydraulic 
functions are tied together by common parameter n.  
In simultaneous scaling, SS value was reduced from 
5.270 to 0.056 for soil matric potential scaling and from 
1.07 to 0.26 for conductivity scaling. The correlation  
coefficients were 0.78 and 0.92 between original and  
descaled soil matric potential and hydraulic conductivity 

data respectively. Though the results showed that the 
scale factors obtained from individual scaling of soil  
hydraulic functions represented the original data more 
accurately than simultaneous scaling, it is highly desir-
able to get a single set of scaling factors for generating 
single random fields for calculating water flow through 
the soil. Several workers studied the scaling approach for 
soil water flow and reported similar results5,16,17. Nasta et 
al.16 adopted the root mean square error as the success of 
scaling whereas Clausnitzer et al.5 considered correlation 
coefficient and percentage reduction of the sum of 
squares as the success of scaling. The scaling method 
presented here is straight forward and simple, and the  
results obtained are comparable with those from other 
studies. 

Effect of weight factors on simultaneous scaling 

Incorporation of weighting factor balances data ranges 
and the number of data points in individual as well as  
simultaneous scaling. Results show that correction
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Figure 4. (a) Scaled data and (b) original and descaleds oil matric potential with mean curve. (c) Unscaled data with 
mean curve, (d) scaled data and (e) original and descaled conductivity data in simultaneous scaling. 

 
 

Table 2. Effect of weight factors on simultaneous scaling 

 Correlation coefficient (with weight) 
 

Correlation coefficient (without weight) 0.75 0.9 
 

Pressure scaling Conductivity scaling Pressure scaling Conductivity scaling Pressure scaling Conductivity scaling 
 

0.72 0.89 0.760 0.882 0.818 0.886 

 
 
coefficient obtained in individual is superior that in  
simultaneous scaling. However, simultaneous scaling is  
required as it reduces the volume of data by generating a 
single set of scaling factors. To enhance the correlation 
factor in simultaneous scaling, additional arbitrary 
weights have been incorporated here. Different propor-
tions of weights were applied to both components in  
simultaneous scaling (Table 2). More weights applied to 
soil matric potential data result in better correlation coef-
ficient between the original and descaled data. Table 2 
shows that 0.9 weight to soil matric potential data and 0.1 
weight to conductivity data improve the correlation coef-
ficient both for original and descaled soil matric potential 
as well as conductivity data compared to 0.75 weight to 
soil matric potential and 0.25 to conductivity data respec-
tively. When weights of 0.95 and 0.05 were imposed on 
soil matric potential and conductivity data respectively, 

correlation coefficient in case of original and descaled 
data of soil matric potential increased to 0.83; however, 
for conductivity data it reduced to 0.85. Therefore, it has 
been generalized that incorporation of weights up to  
certain proportions is effective in increasing the effi-
ciency of scaling. 

Statistical analysis 

As mentioned previously, most of the studies reported 
that scale factors are lognormally distributed. Therefore, 
scale factors obtained from the three cases (A–C) were 
checked for their lognormal distribution. The following 
steps were performed for the determination of lognormal 
distribution of the scale factors: 
 (1) Rank the values of scale factors from low to high in 
ascending order. 
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 (2) Compute the cumulative probability distribution of 
logarithm of scale factors (ln) as approximated by 
P = (i – 0.5)/N, i = 1,…, N, where N is the total number 
of observations. 
 3. Determine the standard normal deviate (i) for the 
distributed variable from the standard normal probability 
table, i.e. P [ < i], for each value computed above. 
 4. Plot the standard normal deviate (i) determined in 
step 3 versus the variable ln. 
 5. If the plot can be described by a straight line, then 
the scale factors are considered to be lognormally distrib-
uted. 
 
The scale factors obtained from soil matric potential, 
conductivity and simultaneous scaling were calculated 
and plotted using the above procedure (Figure 5). Figure 
5 shows that the best fit of scale factors can be described 
by a straight line. Hence, it can be deduced that scale  
factors calculated from this study are lognormally dis-
tributed. Table 3 shows the statistical parameters of the 
lognormally distributed scale factors as well as coeffi-
cient of determination (R2) when fitted with straight line. 
The scale factors were also tested for other distributions 
such as Pearson, Dagum, Burr, log-logistic, gamma, Gum-
bel, etc. along with lognormal. However, chi-squared test 
statistics was compared for these distributions and found 
 
 

 
 

Figure 5. ln versus standard deviation plot. 
 
 

Table 3. Lognormally distributed parameters of the scale factors 

Case Mean Variance Mode Median R2 
 

A 0.258 0.33 0.024 0.126 0.93 
B 1.219 2.16 0.317 0.778 0.94 
C 0.533 1.08 0.051 0.243 0.97 

minimum in case of lognormal distribution. This con-
firms that the distribution function of scale factors can be  
described as lognormal type. Thus, scale factors calcu-
lated using the scaling approach presented in this study 
can be utilized in HYDRUS to simulate and study water 
flow through heterogeneous soil. 

Conclusion 

In this study nonlinear least squares method was used to 
scale soil hydraulic functions in a laboratory experiment. 
Van Genuchten’s semi-empirical expressions were used 
to parameterize soil hydraulic functions. This requires the 
following parameters: residual water content (r), satu-
rated water content (s), saturated hydraulic conductivity 
(Ks), inverse of the air entry value or bubbling pressure 
() and pore size distribution index (n). Soil matric  
potential and hydraulic conductivity data were scaled 
separately as well as simultaneously. Correlation coeffi-
cient (r) between the original soil hydraulic data and  
descaled data was adopted as the measure of success of 
the presented scaling approach. The descaled soil hydrau-
lic data were obtained by incorporating scale factors on 
the mean curves. More the r value, better would be the  
degree of success of scaling. When soil matric potential 
and hydraulic conductivity data were scaled independently, 
the correlation coefficient obtained between the original 
and descaled data was more compared to simultaneous 
scaling. The correlation coefficients obtained from simul-
taneous scaling can be improved after incorporating  
additional weight factors. The best weight was found to 
be 0.9 to soil matric potential and 0.1 to conductivity  
 
 

 

Appendix 1. Van Genuchten parameters for experimental probes 

Probe no.  (m–1) n Ks (cm day–1) r s 
 

 1 0.600 1.289 47.696 0.140 0.410 
 2 1.535 1.105 142.108 0.140 0.410 
 3 0.523 1.122 12.814 0.140 0.410 
 4 2.761 1.112 56.744 0.140 0.410 
 5 0.676 1.293 64.071 0.140 0.410 
 6 2.780 1.116 116.305 0.140 0.410 
 7 5.580 1.172 135.204 0.140 0.410 
 8 17.080 1.135 143.711 0.140 0.410 
 9 4.734 1.078 26.059 0.140 0.410 
10 3.945 1.187 38.918 0.140 0.410 
11 1.846 1.135 49.694 0.140 0.410 
12 2.544 1.129 6.735 0.140 0.410 
13 4.515 1.090 47.740 0.140 0.410 
14 2.764 1.228 93.048 0.140 0.410 
15 0.799 1.192 9.155 0.140 0.410 
16 2.436 1.118 8.820 0.140 0.410 
17 3.493 1.124 16.880 0.140 0.410 
18 1.838 1.337 57.946 0.140 0.410 
19 10.528 1.135 29.578 0.140 0.410 
20 1.815 1.293 40.694 0.140 0.410 
21 6.432 1.256 107.264 0.140 0.410 



RESEARCH ARTICLES 
 

CURRENT SCIENCE, VOL. 114, NO. 5, 10 MARCH 2018 1054 

data. The scale factors obtained from soil matric poten-
tial, hydraulic conductivity and simultaneous scaling 
were lognormally distributed. 
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