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Information-oriented intensity-based cost functions 
are generally used for optimization frameworks in 
automatic satellite image registration. Optimization 
mechanics which updates the transform parameters in 
the iterative loop requires estimation of derivatives of 
the cost function to set-up update rules that retrieve 
the deformation model between the image pairs.  
Application of stochastic approximation of cost func-
tion and its derivatives for solving optimization prob-
lems while the objective function is non-differentiable 
or non-smooth or computed with noise is encountered 
in real-world problems. The known methods of  
approximation for solving these problems use the idea 
of stochastic gradient and certain rules of changing 
the step length for ensuring convergence. In this arti-
cle, satellite image coregistration problem is chosen 
for comparing the performance of two important sto-
chastic optimizers like adaptive stochastic gradient 
descent and simultaneous perturbation stochastic  
approximation. Coregistration datasets from Resource-
sat-2 LISS-4 MX sensor are chosen for different ter-
rains and features to study subpixel accuracies of 
order better than 1/20th of a pixel achieved in the 
comparison of two different optimization techniques 
employed in intensity-based automatic image registra-
tion framework. 
 
Keywords: Coregistration problem, remote sensing, 
satellite image, simultaneous perturbation, stochastic  
optimization. 
 
INTENSITY-based image registration optimization frame-
work (Figure 1) uses similarity metric such as mutual  
information (MI) as an objective function. The continu-
ous optimization loop executes to retrieve the geometric 
transformation parameters to overlay an image pair on 
each other. It updates the parameters using a stepsize and 
direction estimated in further using the gradient of the ob-
jective function. The objective function measurements 
could be noisy due to various factors in the imaging  
context such as data occlusion and unsteady or uncharac-

terized platforms. In such cases, stochastic modelling of 
the objective function, its gradient or gradient approxima-
tion using the noisy input data can be a valuable tool1–6. 
Algorithms where the gradients are estimated through  
explicit derivation such as Robbins–Monro approxima-
tion are faster and also capable of avoiding local minima1. 
However, there are cases where explicit derivation and 
estimation of gradients can be difficult or complex. Even 
otherwise it is important to use a technique for gradient 
approximation without explicit derivatives. A comparison 
is required between explicit and non-explicit cases, which 
is done in this study with more emphasis on the latter 
case. To state explicitly, in this article adaptive stochastic 
gradient descent (ASGD) and simultaneous perturbation 
stochastic approximation (SPSA) optimization schemes 
are compared for their performance in the overall image 
registration framework (Figure 1). 
 Klein et al.7 compared the performance of many opti-
mization methods, which includes gradient descent  
approaches with two different stepsize selection algorithms 
in the medical image registration domain. In the remote 
sensing image registration domain, evaluation/compa-
rison of optimization methods was performed by Manthira 
Moorthi et al.8. Cole-Rhodes et al.9 examined the per-
formance of SPSA with MI on satellite image registra-
tion. Li et al.10 have highlighted the performance of 
SPSA with MI on optical and microwave images obtained 
from satellite platforms. The present study compares the 
performance of ASGD and SPSA in the Resourcesat-2 
LISS-4 multispectral image coregistration problem  
recently reported by Manthira Moorthi et al.11, where 
ASGD approach was discussed in detail, including esti-
mation of MI, its derivative, optimization mechanics and 
deformation models handled by the registration approach. 
The comparison addresses relative performance of the 
stochastic optimization techniques with respect to objec-
tive function or the similarity measure search space, 
transformation choices, gradient estimation, optimization 
mechanics and the initial transform setting for a variety 
of landforms encountered in satellite images. Different 
data regions such as urban, land and sea, undulating ter-
rains, and occluded images are used for exercises to study
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Figure 1. Optimization-based multiview satellite image registration scheme. 
 
 
both techniques and check if they can handle different  
data conditions as well. 
 This article discusses technical details of the optimiza-
tion mechanics employed by two different approaches, 
and their performance on the LISS-4 MX coregistration 
problem in different terrains with emphasis on the SPSA 
technique. 

MI-based image registration 

Let fA be a reference or fixed image and fB be a moving or 
floating or input image. The moving image will be regis-
tered for geometric confirmation with a transform T.  
Intensity-based image registration is treated as a nonlin-
ear optimization problem. 
 
 ˆ arg min ( ( ), ( ( ))),A BC f x f T x


   (1) 

 
where C is the cost function such as MI that measures  
similarity of the fixed image and the deformed moving  
image. The solution ̂  is the parameter vector that mini-
mizes the cost function. MI is an intensity-based method, 
i.e. grey values belonging to two different images or sub-
images are directly engaged in estimating an information 
measure about how both images match well under the 
conditions set for the experiment. 
 The mutual information M(A, B) between two random 
variables A and B can be defined as: 
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It measures the Kullback–Leibler distance between the 
joint probability density function (JPDF) , ( , )A Bp a b  of 
two random variables A and B, and the product of their 

marginal PDFs, ( ). ( ).A Bp a p b  To solve eq. (1), an itera-
tive optimization procedure is employed. In every itera-
tion k, the current transformation parameters k are 
updated by taking a step in the search direction dk 
 
 1 ,k k k ka d     k = 0,1, 2, 3,…,K, (3) 
 
where ak is a scalar that determines the stepsize. A wide 
range of optimization methods can be formulated in this 
way, each having different definitions of ak and dk. The 
parameter space for search is restricted only by the choice 
of transformation we employ as part of the image regi-
stration scheme. For an affine transform, there are six  
parameters defining the search space. 
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The optimum transformation can be obtained by an  
exhaustive search. This can be computationally expensive 
as the number of parameters increases along with sub-
pixel accuracy requirement. Optimization scheme is a 
smart procedure to arrive at the optimum transform  
parameters in a guided manner. Additionally, any free-
form deformation field can be modelled as a B-spline 
transform. It is always preferable to employ a global 
transform before estimating an additional free-form  
deformation12. ITK based Elastix tool has configurability 
to carry out image registrations with several combina-
tions of intensity based registration components, which is 
used in the exercises reported here3. 

Adaptive stochastic gradient descent optimization 

A common choice for the search direction in eq. (3) is the 
derivative of the cost function /C    evaluated at the 
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current position defined by k, commonly known as gra-
dient descent. Under conditions, k  * in almost sure 
stochastic sense as k  . Using few samples rather than 
a full population, the derivative estimate may be called as 
stochastic estimate. If the gain sequence is made adap-
tive, the complete procedure may be called as ASGD  
optimization, which can be compared with the chosen  
optimizer for this study. The stochastic gradient descent 
method uses the following iterative scheme in place of 
eq. (3) 
 
 1 , 0, 1, 2,..., ,k k k kg k n       (6) 
 
 ( ) ,k k kg g     (7) 
 
where kg  denotes an approximation of the true derivative 

/g C     at k and k is the approximation error. The  
estimates of g, kg  and k are normally distributed with 
different mean and variance measures. The scalar gain 
factor k, the stepsize is determined by a predefined  
decaying function of the iteration number k. An often 
used choice for the gain factor is 
 
 ( ) /( ) .k k a k A      (8) 
 
The setting values for a, A and  involve the use of sto-
chastic gradient descent (SGD) for image registration 
with maximum stepsize being the initial value  (0). With 
user specified setting on constants (a > 0), (A  1) and 
(0 <  ≤ 1), and the choice of ( = 1) gives a optimum 
rate of convergence when k  . When a is too small, 
the SGD method suffers from slow convergence and if it 
is too large, the process may become unstable13. The al-
gorithm has been utilized for the adaptive stepsize in sto-
chastic gradient descent optimization for medical image 
registration7,14,15. For the  function, the same definition 
as in eq. (8) can be used. However, in ASGD, the  func-
tion is not evaluated at the iteration number k, but at time 
tk adapted depending on the inner product of the gradient 

kg  and the previous gradient 1.kg   If the gradients in two 
consecutive steps point in the same direction, the inner 
product is positive and therefore the time is reduced, 
which leads to a larger stepsize 1( ),kt   since  is a 
monotonically decreasing function. Thus, the ASGD 
method implements an adaptive step-size mechanism. 
LISS-4 MX coregistration using ASGD and MI was  
exclusively dealt in the work with theoretical and  
experimental results11. 

Simultaneous perturbation stochastic  
approximation 

The SPSA algorithm developed by Spall10,16 is used here 
as an optimization technique in image coregistration 

problem. This optimization is used where it is difficult to 
analytically estimate the gradient of the objective func-
tion15. Such situations are often encountered while com-
puting MI between a pair of images from the probabilities 
measured from discrete joint histograms. SPSA is a  
powerful optimization technique that is based on a highly 
efficient gradient approximation that can be easily  
implemented and that relies on only two measurements of 
the objective function. It does not rely on explicit knowl-
edge of the gradient of the objective function, or on mea-
surements of this gradient as required in gradient descent 
optimizers such as ASGD. Thus we need to study the 
SPSA technique in detail. The update law mentioned in 
eq. (3) is more general, shared by many first-order gradi-
ent optimization methods and used by the SPSA method 
as well. The gradient vector for m-dimensional parameter 
space can be defined by 
 
 1 2 [ ] ., , m T

k k k kg g g g   (9) 
 
{ak} in the update rule in eq. (3) is a non-negative gain 
sequence. Let k be a vector of p independent random  
variables at the kth iteration. 
 
 1 2 [ ] ,, , , T
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where k is typically generated using the Monte Carlo 
method. All the components of k are randomly perturbed 
to obtain two measurements of the objective function. 
Each component of the gradient vector is then formed  
using the ratio of the difference in these measurements 
and the individual components in the perturbation vector. 
Let {ck} be a sequence of positive scalars. For consecu-
tive iterations k  k + 1, measurements 
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  are measurement noise terms, and implemen-

tation of SPSA often exploit a common case, when these 
terms are zero irrespective of the iteration number 
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 ˆkg  is determined by a standard simultaneous perturba-
tion (SP) form 
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It may be noted that only two measurements of C(.) are 
required to compute the derivative independent of trans-
formation parameters k. Simultaneous perturbation form 
contrasts with standard finite difference approximation 
taking 2p (or p + 1) measurements. The following intui-
tive reason validates the form described above. 
 
 ˆ |  ( ) ( ).k k k k kE g g      (13) 
 
Essential conditions for setting up SPSA optimizer  
include smoothness criteria on C to be thrice continu-
ously differentiable, k symmetric distribution around 0 
and 2 2( )   ,   ( )   ,k kE E      gain sequences ak and ck as  
decaying functions to assume zero value neither too fast 
nor too slow, and noise expectation to take zero value. 
SPSA is a stochastic analogue to deterministic algorithms 
if ˆkg  is ‘on average’ the same as true gradient for any 
transformation parameter vector .k  The performance of 
SPSA is compared to that of ASGD in the following. 

Datasets and experiments 

The aim of this study is to demonstrate the performance 
of SPSA optimizer in automatic satellite image registra-
tion tasks, especially LISS-4 MX coregistration, and also 
compare its performance to the standard gradient opti-
mizer. We have chosen datasets from LISS-4 MX sensor 
on-board Resourcesat-2 platform8,17. Different spectral 
band data are acquired at different times within few sec-
onds, large enough to manifest band-to-band registration 
differences due to various factors such as terrain  
relief, attitude differences, etc. Apparently, the imaging 
time difference may result only in fixed offsets along the 
track direction. However, in satellite image acquisition 
this is not true, owing to the fact that time difference of a 
few seconds has to account for satellite position, velocity, 
the attitude profiles being continuously updated or chang-
ing and terrain relief. However, in an image-to-image 
registration model philosophy, these issues can be tackled 
by using rather different techniques than modelling as 
satellite sensor navigation issues18. Feature and naviga-
tion model-based satellite image registration exercise en-
counters choice of navigation model, correction levels 
and object condition and earth model. Earth is modelled 
as an ellipsoid and the apparent topography is dealt using 
elevation data above ellipsoid11. This approach makes use 
of neither the navigation model nor DEM for registration, 
but is able to model the deformation fields represented by 
affine and B-spline transformations together. Typical ter-
rain conditions such as urban, plain, undulating, cloudy 
scenes are also important issues while addressing regis-
tration performance limits. To study few such aspects, 
representative datasets were chosen (Table 1) belonging 
to various dates of imaging with coverage in urban, 
ocean, snow and cloudy situations (Figure 2). The sub-

image regions marked in the figure are identified with ur-
ban, land–ocean, terrain and cloud patches. Three spectral 
bands are identified as Band 2 (B2), Band 3 (B3), Band 4 
(B4) corresponding to wavelengths 420–470 nm, 520–
580 nm and 620–680 nm respectively. 
 It is important to understand how the chosen optimiza-
tion schemes view the objective function terrain. Figure 3 
shows the similarity metric surface encountered by the 
optimization procedures against simple translations for 
the urban features-dominated images shown above. The 
contours of the metric surface projected sideways indi-
cate how sharp both the optimizers are while finding the 
minima, and bottom plane contours show the smoothness, 
continuity and regularity of the search space. 
 Figure 4 shows MI, its derivative and the displacement 
to register the images and it indicates that ASGD reaches 
optimum in fewer iterations than SPSA. Nevertheless, 
they match at the final iterations. It is important to note 
that, without any initial transform ASGD has performed 
in lesser number of iterations than SPSA, but with an ini-
tial transform (18.0 pixel shift in sample direction) closer 
to the actual solution, ASGD as well as SPSA exhibit 
similar performance. These exercises confirm that ASGD 
and SPSA are similar techniques; the latter may require 
more iterations than the former when the initial solution 
is far away from the final solution. 

Results and analysis 

Optimization mechanics is efficient when the initial con-
dition is closer to the final or optimum solution at the  
final scale of data which the user wants. When the opti-
mization for registration is performed directly at the final 
resolution/scale of the data, the number of iterations has 
to be sufficiently large, which is difficult to estimate. 
This problem is overcome by setting up multiresolution 
optimization procedure; i.e. image pair is represented in a 
multiresolution pyramid and registration starts with the 
lowest pyramid bringing the advantage of capturing the 
displacement at a scaled-down level, which is progres-
sively refined at finer resolution. This has an additional 
advantage of avoiding local minima. The full-size image 
(12,000  17,000 pixels) registration was done using  
affine transformation for global deformation and B-spline 
field for local deformation together. Four levels of image 
pyramids from one eighth to original pixel resolution 
were set-up with the above-mentioned choices of trans-
formation along with ASGD and SPSA optimizers. While 
we perform image registration with global and local defor-
mation models represented by affine and B-spline transfor-
mations, evaluation of the registration performance is 
reported as mean residuals along two image axes, namely 
line and pixel directions (translations) by independent ex-
ercises. The same image registration model can be used 
to measure the residuals by repeating the model execution
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Table 1. Coregistration performance measured by the registration algorithm 

 Unregistered ASGD SPSA 
 

Dataset Terrain Scan Pixel Scan Pixel Scan Pixel 
 

30 May 2012 C, 107/58 Urban-2 1.869 21.101 0.057 –0.028 0.044 –0.004 
 Urban-4 –1.134 –13.98 0.108 –0.03 0.106 –0.014 
 

8 November 2011 B, 95/62 Ocean-2 –0.110 22.152 0.225 0.0781 0.011 0.012 
 Ocean-4 0.862 –14.477 –1.064 –0.835 –0.876 –0.900 
 

3 November 2011 D, 94/46 Terrain-2 7.391 20.096 –0.056 –0.04 –0.033 0.014 
 Terrain-4 –6.216 –13.36 0.0153 0.019 0.011 –0.030 
 Cloud-2 11.312 20.272 0.206 –0.132 0.228 0.288 
 Cloud-4 –8.787 –13.499 –0.11 0.072 –0.207 0.152 

ASGD, Adaptive stochastic gradient descent; SPSA, Simultaneous perturbation stochastic approximation. 
 
 

 
 

Figure 2. LISS-4 B3 images acquired on 30 May 2012, 8 November 2011 and 3 November 2011 corresponding to  
urban, land–ocean and snow–cloud coverages marked by boxes. 

 
 

 
 

Figure 3. Urban subimages of B3 and B2 (first row left and right)  
data with mutual information search space. 

once more, this time with registered set only for taking a 
performance measure. This can be ascertained for sub-
images marked over full images as shown in Figure 2 and 
in Table 1. Urban2/4 indicates that image region belongs 
to urban feature and the registration task attempted was 
Band 2/Band 4 data to Band 3 coregistration. 
 Table 1 shows translations estimated by the image  
registration model. Large translations are seen in the  
unregistered input images for different datasets, and 
translations alone may not be sufficient to overlay images 
precisely, as stated earlier. However, the estimated trans-
lations for the registered cases are of the same order using 
both the optimizers, indicating that their performances are 
comparable. An independent assessment of registration 
performance is required which is not biased by the same 
approach used to achieve the results. Fourier domain-
based phase correlation is a robust and global shift estima-
tor for overlapping images19. Table 2 also shows residual 
translations but after employing affine and B-spline trans-
form models together and estimated by phase correlation 
technique, another independent way of estimating
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Figure 4. ASGD and SPSA optimization relative performance with and without initial transform set-up for urban region. 
 

 
 

Figure 5. Residuals plot map using ASGD (left column) and SPSA (right column) registered cases with white-
space representation for no value spots. 

 
 
the residual translations, and exhibits similar order of  
accuracies. 
 Figure 5 shows registration performance using another 
independent exercise of automatic landmark feature 
matching by spatial domain image correlation sensitive 
up to 0.1 pixel and calculating residuals thereafter in scan 
and pixel directions individually. The residuals (bounded 

within 0.5 pixels) plot map indicates that the perform-
ance scale is similar for both the gradient-based optimizer 
techniques and either of them can be used in automatic 
satellite image registration exercises. The continuous  
residual map is constructed from irregular grid data by 2D 
binning and interpolation. The white legend indicates there 
are no matching data available for interpolation. This could
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Table 2. Coregistration performance global score by phase correlation 

 Unregistered ASGD SPSA 
 

Dataset Scan Pixel Scan Pixel Scan Pixel 
 

Urban-2 1.682 21.077 0.003 –0.065 –0.010 –0.032 
Urban-4 –1.245 –13.825 0.014 –0.002 0.021 0.020 
Ocean-2 –0.129 22.057 0.024 –0.181 0.032 –0.082 
Ocean-4 –0.781 –14.983 –0.034 –0.149 –0.482 –0.421 
Terrain-2 7.477 20.073 –0.007 –0.023 –0.031 –0.069 
Terrain-4 –6.226 –13.279 0.024 0.054 0.027 0.093 
Cloud-2 10.631 20.716 –0.120 0.108 –0.194 0.152 
Cloud-4 –8.312 –13.743 0.122 –0.084 0.208 –0.139 

 
 

 
 

Figure 6. Colour composites of different terrain data for unregistered, 
ASGD-registered and SPSA-registered sets. 
 
 
 
be an efficient way of assessing the performance of the reg-
istration across image regions instead of calculating RMSE 
figures as generally followed. 
 Colour composite displays are important for visual 
scrutiny of coregistered multispectral datasets. The un-
registered multispectral images show colour artifacts in 
the overlapping features, more pronounced in the con-

trasting image regions (Figure 6). The registered colour 
composites do not show any such artifacts in either of the  
registration approaches. The difference in imaging time 
in LISS-4 multispectral data is of the order of only  
1–1.4 sec relative to the central band 3. Thus there is very 
little cloud movement during that time duration and snow 
is a static feature in that time difference, and hence they 
are registered. If there are moving clouds, they exhibit 
colour fringes indicating cloud motion. The local distor-
tions are represented by a B-spline field to take care  
free-form deformations. Registration of static features is 
assured by doing repeated stochastic sampling and the 
rest of procedures in a number of iterations. It is to be 
understood that moving pixel population is less compared 
to unchanging background features. Therefore the mov-
ing samples do not influence the cost function derivative 
so much compared to the static or permanent features. If 
data occlusion is more (say >50%), then the registration 
is unstable as found in our experiments. 
 The advantage in SPSA in comparison to ASGD is that 
no exclusive gradient needs to be estimated; only cost 
functions are evaluated and perturbed to estimate the 
same. Otherwise, they belong to similar stochastic opti-
mization regimes, however, SPSA may require additional 
iterations as mentioned earlier. 

Conclusion 

Gradient-based optimizers have been studied in intensity-
based satellite image registration using ASGD and SPSA. 
These exercises confirm that the performance scales are 
similar to both the optimizers; however, SPSA has the 
advantage of not estimating the gradient analytically as in 
the case of ASGD. SPSA can also be used when direct  
estimation of derivatives is not possible or noisy. SPSA is 
a good optimizer choice for any image registration task 
aiming for subpixel accuracy performance. This can be 
validated for different terrains data sets. Muti-resolution 
pyramid, random sampling for cost function estimation to 
overcome noisy input data should be in place for good 
performance. For highly undulating terrains, in addition 
to global transformations such as affine, B-spline  
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represented deformation models are necessary to ensure 
acceptable satellite image registration performances. The 
performance of registration is better assessed by a con-
tinuous map rather than projecting a single RMSE value. 
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