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Owing to their versatile optical and electrical proper-
ties, semiconductor quantum dots are attracting atten-
tion as a material of choice for solar energy 
conversion. The quantum dot sensitized solar cells  
are considered as one of the most promising next-
generation solar cells as they have the advantage of 
tunable band-gap energy and multiple exciton genera-
tion. We present here a study on quantum dot sensi-
tized solar cells considering their construction and 
working, impact of incorporation of nanomaterials in 
solar cells and various structures for improving the 
performance of solar cells. 
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ENERGY generation in the modern era always had a pro-
blem in keeping pace with the increased demand of the 
ever burgeoning population. The world is changing; the 
standard of living of the people is resulting in rapid  
increase in the global consumption of energy (10 trillion 
kWh at present) and the US Energy Information Adminis-
tration predicts global energy demand of 35 trillion kWh 
in 2035 (ref. 1). The amount of energy that is showered 
by the sun on the earth in an hour is enough to fulfil the 
global need of energy for a year2. The need of the  
hour, therefore, is some innovation that will provide elec-
tricity using the abundantly available solar energy at  
minimal expenses to support the base of the pyramid 
population. 
 As a cost-effective alternative to silicon-based photo-
voltaic systems, recently, quantum dot sensitized solar 
cells (QDSSCs) have gained considerable popularity. 
QDSSCs, an evolution from dye sensitized solar cells 
(DSSCs) which were first reported by O’Regan and 
Grätzel in 1991, are considered to have great potential as 
the next generation of solar cells (SCs). Several efforts 
have been made to obtain an ideal organic dye as a sensi-
tizer to absorb photons in the full visible spectra. It has 
been a challenge to obtain such an ideal organic dye. 
Hence, narrow band-gap semiconductor quantum dots 
(QDs), such as CdSe, InAs, CdS and PbS became more 
popular as photosensitizers due to their versatile optical 
and electrical properties, such as higher stability towards 
oxygen and water, tuneable band gap depending on the 

QD size, multiple exciton generation (MEG) with single-
photon absorption and larger extinction coefficient3,4. 
 Light absorption and exposure of the photon-sensitive 
material to light are the two main factors that govern the 
efficiency of a SC. Very high light absorption can be 
achieved using QDs adsorbed on nanostructured mate-
rials. Through tuning of the band gap of the QDs, absorp-
tion of various wavelengths of the visible spectrum  
of light can be achieved. Coupling QDs with semicon-
ducting nanorods which have high surface area allows 
better tapping of sunlight as more photon-absorbing QDs 
can be coupled to the surface. The incorporation of  
nanomaterials improves photoenergy absorption owing to 
high available surface area. In this article, the impact  
of nanomaterials in QDSSCs and various possible struc-
tures for improving the performance of QDSSCs are pre-
sented. 

Construction of QDSSCs 

Figure 1 shows the typical construction schematic  
of QDSSC. It consists of a photoanode and a counter 
electrode separated by a redox couple5,6. The photoanode 
consists of a wide band gap, mesoporous semiconductor 
layer attached to conducting glass and QDs adsorbed onto 
the semiconductor layer. QDs work as sensitizer in which 
electron–hole pairs are created upon exposure to light. 
Mesoporous structure of the semiconducting layer  
provides enhanced surface-to-volume ratio, which in turn 
facilitates enhancement in the adsorption of QDs onto it. 
The redox couple scavenges the photogenerated holes and 
produces electrical equilibrium in the semiconducting 
layer. Sulphide/polysulphide redox couple is most widely 
used because of its higher open circuit voltage and better 
stability for photovoltaic operation7,8. Various additives 
have been explored with sulphide/polysulphide redox 
couple9. In fact, a new record of average power conver-
sion efficiency of 12.3% of Zn–Cu–In–Se QD-based 
QDSSCs has been reported9, where 6 vol% tetraethyl or-
thosilicate is used as an additive in polysulphide electro-
lyte. CdS10,11, CdSe12,13, ZnSe14,15, PbS16,17, Ag2S18,19, 
CuInS2

20,21, CdTe22,23, InP24,25 and CdHgTe26,27 are mate-
rials of choice for QDs to be used as sensitizer in QDSSC 
design. The most popularly used wide band gap semicon-
ductor in QDSSCs is TiO2 (ref. 28). ZnO, SnO2 and 
Nb2O5 are also reported to be used as mesoporous semi-
conducting layer in QDSSCs29–31. 
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light energy harvesting. CdS50 and CdSe51–53 QDs have 
been reported quite often for tunable band gap. With de-
crease in the size of QDs, the effective band gap energy 
increases. As a result, light absorption and emission shift 
towards higher energies. Blue shift in the optical spectra 
of CdSe54 and CdS55 QDs with decrease in size has been 
reported. Photocurrent increases with decrease in QD size 
owing to the shift of conduction band towards more nega-
tive potential, which in turn improves the condition for 
charge injection. On the contrary, with increase in the 
size of QDs, better absorption in the visible region is ob-
served. However, smaller sizes have better electron injec-
tion into the transporting layer than the bigger ones. A 
demonstration of size-based optimization of efficient 
charge separation can be found in Vogel et al.56. Im-
proved photoelectrochemical response and photoconver-
sion efficiency have been reported by Kongkanand et 
al.52 by varying the size of CdSe QDs. So a combination 
of different sized ODs must improve the photon absorp-
tion scenario, which will definitely improve the efficien-
cy of SCs. Figure 2 is a schematic of photoanode which 
will absorb the entire visible spectrum; hence it can be 
termed as photoanode of rainbow SC. 

Multiple exciton generation 

If a photon with energy greater than the bandgap (Eg) of a 
semiconductor is incident on it, then the energy in excess  
 
 

 
 

Figure 2. Schematic structure of photoanode of a rainbow solar cell. 

of Eg gets lost after generating a single exciton. Based on 
this assumption, the maximum thermodynamic conver-
sion in SCs is observed to be 43.9% (ref. 57). 
 This thermodynamics conversion limitation can be 
overcome by harnessing the carrier multiplication of the 
cells58–60, which is considered an attractive technique to 
improve solar energy conversion. Carrier multiplication 
can be achieved in nano semiconductor crystals through 
impact ionization, a kind of inverse Auger process, where  
an exciton generated in a semiconductor by absorption of 
photo-energy greater than 2Eg relaxes by energy transfer 
of at least 1Eg to the band edge, thereby generating  
another exciton61. To increase the solar energy conver-
sion through carrier multiplication, the rate of impact  
ionization has to be greater than the exciton relaxation by 
means of emission of phonons. The relaxation dynamics 
is largely affected by quantization effect, which can be 
produced in a semiconductor by dint of quantum con-
finement62–64. When the size of the nanosemiconductor 
crystals is comparable to Bohr radius, the rate of impact 
ionization increases extensively and becomes comparable 
to the rate of cooling of the hot carriers. Schaller and 
Klimov57 carried out a detailed study on carrier multipli-
cation in PbSe nanocrystals through impact ionization. 
Figure 3 a shows the generation of biexcitaton. In  
the Auger process, two excitons recombine and produce 
highly energetic single excitons (Figure 3 b). Figure 3 c 
shows the immediate consequences of high photon exci-
tation (hω/Eg > 3); initially high-energy excitons form in 
nano semiconducting crystals and then some (nxx) of the 
excitons go through impact ionization and produce biex-
citons while some (nx) simply relax to the band edge and 
remain as single excitons and with time biexcitons go 
through the Auger process and produce single excitons. 
The change in population of exciton for low pump photon 
energies shows a step function with time while those with 
high energies exhibit an exponentially decaying function 
(Figure 3 d). 

Structures of QDSSCs 

Apart from the structure discussed earlier in the text, 
many structures of SCs have been evolved based on QD 
sensitizers. Among them tandem SCs, core-shell SCs and 
plasmonic SCs have been able to draw the attention of  
researchers. 

Tandem solar cells 

The tandem SCs simultaneously address two key prob-
lems of SCs, viz. energy loss due to thermalization of hot 
charge carriers and sub-band gap transmission. It was  
reported that stacking multiple sub-cells in series can 
provide theoretical efficiency more than that of the 
Shockley–Queisser limitation65. With increase in the 
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design. Nanostructured TiO2 and ZnO are widely used as 
semiconducting material for the transport layer in 
QDSSCs. Though the efficiency obtained with TiO2 is 
better than ZnO at present, the latter is gaining popularity 
as it has the advantage of higher electron mobility 
(200 cm2/V/s) than the former (30 cm2/V/s). Many struc-
tures of SCs have evolved based on QD sensitizers. Ener-
gy loss due to thermalization of hot charge carriers and 
sub-bandgap transmission can be addressed using tandem 
structures. A tandem structure of TiO2/CdS/Cu–ZnS is 
reported to have an improved efficiency of 3.35%, which 
is 82% higher than TiO2/CdS-based QDSSCs71. It is re-
ported that cell efficiency increases by 600% with double 
layer of passivation compared to cells containing only 
CdTe. In core–shell structure, cooling of the hot carriers 
is slower, which helps in carrier multiplication and hence 
improves efficiency. Lai et al.75 studied PbS core and 
CdS shell, and found four times higher efficiency than 
that obtained with simple PbS QDs coated with ZnS after 
deposition. CdSe/(CdSexS1−x)5/(CdS)1 core/shell QD-
based QDSSCs are reported to have a maximum photo-
conversion efficiency of 6.86% (ref. 76). An optically 
thick but physically thin structure of a SC is highly desir-
able. It can be achieved by means of plasmonic SCs, 
where light trapping mechanism is introduced in already 
designed cells. This review will be helpful to SC enthu-
siasts working on novel designs. 
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