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The mechanical characteristics of Longmaxi Forma-
tion shale with different degrees of fracturing-fluid  
saturation were characterized by applying triaxial 
compression tests at a confining pressure of 50 MPa. 
The test samples were collected from fresh outcrop 
shale in Dayou, Chongqing, China and the shale brit-
tleness was evaluated based on brittleness-drop coeffi-
cient, stress decrease coefficient and softening modulus. 
The weakening of related rock parameters of shale 
specimens being immersed in fracturing-fluid for dif-
ferent time periods was studied and discussed. The 
degree of deterioration of the peak strengths, elastic 
and softening moduli and brittleness were significant 
and varied exponentially when the samples were 
soaked in fracturing-fluid. The samples were found to 
fail by shear on the whole accompanied by varying 
degrees of bedding plane cracking. With increase of 
sample immersion time, the number of shear failure 
surfaces changes from one to two and finally to more 
than three. The length and number of cracks parallel 
to bedding planes increased gradually, however, no 
cracks were formed perpendicular to the bedding 
plane even when the shale was soaked for a long time. 
The weakening of the brittleness and mechanical para-
meters with sample fracturing-fluid saturation are 
mainly related to change of stress state at the crack 
tips caused by hydration swelling, the dissolution caused 
by alkaline fracturing-fluid and the formation of liquid 
film on the surface of shale particles, all of which are 
the results of mechanical–physical–chemical coupling. 
 
Keywords: Brittleness evaluation index, hydration 
swelling, immersion time, Longmaxi Formation shale, 
triaxial compression, weakening mechanism. 
 
IN 2013, the United States Energy Information Adminis-
tration (EIA) evaluated 137 shale formations in 41 coun-
tries other than United States (including China, Russia, 
Canada and other countries), and estimated the total  
resource of technically recoverable shale gas to be 

2.07 × 1014 m3, which accounts for 47% of the world’s  
total natural gas resources1. The resource of technically 
recoverable shale gas in China is 3.608 × 1013 m3 ranking 
it first in the world2. Due to the ultra-low permeability of 
shale, more than 90% of shale gas wells need to commu-
nicate with natural fractures through hydraulic fracturing 
to form highly permeable channels for commercial ex-
ploitation after completion of drilling3–5. During drilling, 
the drilling filtrate enters the shale formation along the 
bedding planes or micro-cracks pushed by capillary ac-
tion and drilling pressure differentials. Physical and 
chemical reactions between drilling fluid and clay mineral 
particles take place, which produce hydration stress and 
reduce shale strength6. Many complicated drilling acci-
dents such as sloughing, collapsing, pipe sticking, pipe 
packing and caving are caused by shale and aqueous  
filtration interactions7,8, which eventually lead to breakout, 
collapse and other borehole wall stability problems9,10.  
According to relevant statistics, the global annual loss 
caused by wellbore instabilities is up to 10 billion 
dollars11. Wellbore stability is a technology bottleneck, 
which restricts the development of shale gas and other 
unconventional oil and gas resources12. 
 Shale hydration and wettability have been studied in 
detail with interesting results. Studies about wellbore sta-
bility based on hydration characteristics can be divided 
into the following evolutionary stages: pure mechanics 
research13, chemical research of drilling fluid14, coupled 
mechano-chemical research15 and thermo-hydro-
mechanical–chemical–electrical multi-field coupled re-
search16. In recent years, some new materials like inhibitors 
and blocking agents such as polyethyleneimine17 and  
zizyphus spina-christi extract18 are being applied into 
drilling construction sites. With the advancement in  
science and technology, new methods, such as CT com-
puterized tomography7, nuclear magnetic resonance19 and 
microscopic examinations (such as mercury intrusion po-
rosity testing, nitrogen adsorption tests)20,21, are also used 
to study hydration characteristics of shale and changes of 
mineral composition and microstructure of shale after  
hydration. 
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Preparation of the fracturing-fluid 

The fracturing-fluid used in the tests is the same as the 
one employed in a shale gas reservoir well in Fuling  
district. It contained a drag reducer quality fraction of 
0.1%, anti-swelling agent quality fraction of 0.2%, syner-
gistic agent quality fraction of 0.1%, defoamer quality 
fraction of 0.02% and water. The fracturing-fluid has  
advantages of low damage, low viscosity, low friction, 
anti-swelling and dynamic floating. 

Test methods and procedure 

According to the data from Fuling district and Jianghan 
Oil Field, the in situ horizontal stress at the site was about 
50 MPa and the formation temperature was about 80°C 
(ref. 35). In order to simulate the real formation condi-
tions, shale samples were soaked in fresh fracturing-fluid 
at 80°C. To determine the effect of the degree of fractur-
ing-fluid saturation, different samples were immersed at 
different times (t) 0, 2 and 8 h, and 1, 3 and 5 days. After 
soaking, triaxial compression tests were carried out on 
MTS815 loading machine using axial displacement con-
trol with a loading rate of 1 × 10–5 s–1 and the confining 
pressure was set to 50 MPa. 
 The steps followed in the experiments were: (1) prepar-
ing the fracturing-fluid according to actual quality  
fractioning practice; (2) sealing the fracturing-fluid to 
prevent evaporation; (3) heating the sealed fracturing-
fluid in an oven at 80°C; (4) soaking the samples once 
fracturing-fluid temperature reached 80°C and (5) con-
ducting triaxial compression test after soaking the sample 
for t hours. 

Analysis of test results 

Stress and strain response 

Figure 2 shows the deviatoric stress–strain curves of 
soaked shale at different immersion times t. These curves 
have clear initial concave-up compression phases. The 
longer the sample saturation time, the more obvious the 
compaction phase, indicating that the micro-cracks within 
the shale gradually develop and expand, resulting in larg-
er initial damage of shale with the increase of t. When 
t = 0 h, the curves have longer elastic stage, larger peak 
strength and residual strength, but the yield stage is not 
obvious. After reaching the peak strength, the curves drop 
rapidly. At this point, failure is a non-stable fracture 
propagation type, i.e. the test machine no longer produces 
work, and the released energy of the specimen itself 
makes fractures continue to expand uncontrollably. This 
process is unstable, indicating that shale has a high brit-
tleness and is suitable for hydraulic fracturing. With the 
increase of t, the elastic phase gradually becomes shorter, 

and the plastic phase becomes longer. The elastic mod-
ulus, peak and residual strengths gradually decrease.  
After reaching the peak strength, the stress decrease rate 
slows down rapidly. The brittleness of the shale is wea-
kened and its ductility is enhanced. This is because, a  
series of physical and chemical reactions take place be-
tween siliceous minerals and fracturing-fluid (discussed 
in the later sections). The grain structure of shale is dam-
aged and the bonding between mineral particles is wea-
kened, resulting in a decrease in cohesion and internal 
friction angle of shale. The micro-cracks within the shale 
gradually develop and expand under the action of capil-
lary force and hydration stress. Thus, mechanical para-
meters and brittleness characteristics of the shale show 
the phenomenon of weakening. 

Mechanical properties of shale soaked in  
fracturing-fluid 

The mechanical properties of shale under different im-
mersion times t are shown in Table 1 in terms of peak 
strength σa, residual strength σr, elastic modulus E,  
softening modulus M and Poisson’s ratio μ. 
 Figure 3 a shows the mean of peak strength (σa) versus 
immersion time t curve. As can be seen, σa decreases 
with increase of t. When t = 0 h, σa is as high as 
211.79 MPa. When 0 < t ≤ 72 h, σa decreases almost  
linearly. When t ≥ 72 h, the decrease rate of σa gradually 
slows down and σa finally stabilizes at (about) 
113.49 MPa. Thus σa is reduced by 46.414%, which indi-
cates that shale is damaged under hydration swelling. In 
Figure 3 a, σa varies exponentially with t with the follow-
ing best-fit equation 
 

 299.13exp( /14.13) 114.02,  0.937.a t Rσ = − + =  (1) 
 
 

 
 

Figure 2. Deviatoric stress–strain curves of soaked shale (h, hours; 
D, days; confining pressure: 50 MPa). 
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Effect of hydration swelling on the failure  
characteristics of shale 

As shown in Figure 5, after different immersion times,  
the shale failure eventually becomes shear failure on the 
whole, accompanied by varying degrees of bedding plane 
cracking. Cracks parallel to bedding planes are produced 
by the soaking effect of fracturing-fluid, and whose 
length and number are increased with t. However, there 
was no crack formation perpendicular to the bedding 
planes even if the shale was soaked in fracturing-fluid for 
a long time. When t = 0 h, the failure mode of shale was a 
typical single plane shear failure and no bedding plane 
cracking was found. When t = 2 h, the failure mode was 
still a typical single plane shear failure, but bedding plane 
cracking was observed, albeit in a small number. When 
t = 8 h and t = 1 day, the number of shear surfaces in-
creased from one to two, the length and number of cracks 
parallel to bedding planes increased, centering on the two 
end faces of the samples. When t ≥ 3 days, the number 
 
 

 
 

Figure 4. Mean of residual strength and that of the absolute value of 
softening modulus versus immersion time. 

 
 

 
 

Figure 5. Failure modes of shale under triaxial compression test and 
after different immersion times in the fracturing-fluid. 

of shear planes increased to more than three. The number 
of cracks also increased noticeably. All the cracks spread 
over the entire specimen and eventually formed a com-
plex fracture network. 
 When t is smaller, the degree of cementation between 
bedding planes is stronger and the bedding plane is hard-
er to be cracked. Eventually shale is more prone to shear 
failure under high confining pressure. However, with  
increase in t, the situation is opposite. Under hydration 
swelling, the degree of cementation between bedding 
planes, internal friction angle and cohesion decline grad-
ually and the bedding plane is more likely to be cracked. 
Thus, in addition to increase in the number of shear 
planes, there are more cracks opening parallel to bedding 
planes. 
 To summarize, with increasing immersion time, the 
mechanical properties of shale experienced significant 
degradation. It took almost 72 h of soaking before degra-
dation became complete. Hydration swelling can lead to 
significant decrease of peak strength, residual strength 
and elastic modulus, significant increase of the softening 
modulus and Poisson’s ratio. Comparing the data from 
uniaxial and triaxial compression experiments2,36, it was 
found that the effect of immersion time on mechanical 
properties of shale was more important than that of the 
bedding plane orientation and confining pressure. There-
fore, studying the influence of hydration on the mechani-
cal properties of shale is of practical significance to 
realize high efficiency and stable production of shale gas. 
In addition, influence of hydration on the failure modes 
of shale is also significant. 

Effect of hydration on the brittleness of shale 

Brittleness is a comprehensive property of rock, which 
reflects an unsteady dynamic failure process under load-
ing. A reasonable brittleness index should not only be 
able to express this characteristic but also the ability of a 
material to deform inelastically under unstable condi-
tions. Shale brittleness can significantly affect wellbore 
stability and fracturing, which is important for selecting 
exact well section for perforation and designing fractur-
ing scale. 

Formulation of brittleness index parameters 

The brittleness-drop coefficient R can be defined as fol-
lows (Figure 6)37 
 
 )/( )( ,B A M AR ε ε ε ε= − − −  (3) 
 
where εA and εB are axial strains corresponding to peak 
strength σa and residual strength σr respectively. εM is the 
axial strain when the stress reaches σM at the time of 
loading and σM = σr. 
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 From the generalized Hooke’s law 
 
 32 ,M r MEσ σ ε μσ= = +  (4) 
 
where E, μ and σ3 are elastic modulus, Poisson’s ratio 
and confining pressure respectively. The parameter εM 
can be obtained from eq. (4) as  
 
 3 3( 2 )/ .M r Eε σ σ μσ= + −  (5) 
 
Figure 6 shows that lesser the value of R, more pro-
nounced is the brittleness of rock. Hence, to a certain  
extent, R can reflect the brittleness of rock, which has 
been proved by relevant experiments37,38. However, it is 
not sufficient to express the brittleness of shale just by 
the brittleness-drop coefficient. The stress–strain curves 
of two types of brittle shale are shown in Figure 7 to  
illustrate this. Accordingly if we assume that εM1 = 4c, 
εM2 = 6c, εB2 = 9c, εB1 = 10c and c is a constant, we can  
 
 

 
 

Figure 6. Complete stress–strain curve of a brittle rock (hypothetical 
curve). 

 
 
 

 
 

Figure 7. Stress–strain curves of two kinds of brittle shale (hypothet-
ical curves). 

then calculate the brittleness-drop coefficient of curves 1 
and 2, which is 0.5 for both. However, the brittleness of 
curve 1 is stronger. Thus, the brittleness of shale is not 
only decided by R, but also depends on the stress  
decrease rate after the peak stress. 
 As shown in Figure 6, the slope of stress–strain curve 
from peak strength (A) to residual strength (B) is defined 
as the softening modulus M. To a certain extent, M can 
represent the stress decrease rate after the peak stress. M 
can be defined as  
 
 )/(( ).Ara BM σ σ ε ε−= −  (6) 
 
Depending on the value of M, shale brittleness can be  
divided into the following four categories (Figure 8; ref. 
39): (1) ideal brittleness: M → –∞; (2) Ordinary brittle-
plasticity: when –∞ < M ≤ –E, brittleness is stronger than 
plasticity; when –E < M < 0, plasticity is stronger than 
brittleness; (3) ideal plasticity: M = 0 and (4) strain-
hardening: M > 0. When E is a constant, the brittleness  
of shale gradually increases with the decrease of M  
(Figure 8). 
 In Figure 8, although curves of category (2) (ordinary 
brittle plasticity), L1 and L2 have the same elastic mod-
ulus and stress decrease rate after peak stress, their brit-
tleness is different since they have different stress 
decrease quantities after peak stress. Stress decrease is a 
phenomenon of stress reduction from peak strength to re-
sidual strength when the rock is damaged. It is generally 
believed that when the stress decrease rate is the same, 
greater the stress drop, stronger is the brittleness. From 
Figure 6, the stress decrease coefficient P can be defined 
as  
 
 ( )/ .a r aP σ σ σ= −  (7) 

 
Thus, brittleness is closely related to brittleness-drop  
coefficient, stress decrease coefficient and softening 
modulus. Brittle-drop coefficient can reflect the difficulty 
of brittle failure, while stress decrease coefficient and 
softening modulus can stand for the strength of brittle-
ness. 
 Due to the strong brittleness of shale, it is difficult for 
strain-hardening phenomenon to appear. Therefore, only 
the first three cases ((1), (2) and (3)) in Figure 8, are ana-
lysed in this study. In order to establish a quantitative and 
comprehensive brittleness index, the brittleness indices 
corresponding to R, P and M, are defined as B1, B2 and B3 
respectively. 
 It can be seen from eq. (3) and Figures 6 and 8, that the 
range of R is (0, +∞). After normalization, the brittleness 
index B1 corresponding to R can be defined as in eq. (8), 
where B1 range is (0, 1). 
 
 1 exp( ).B R= −  (8) 
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Substituting eqs (3) and (5) into (8), yields 
 

 1
3 3

( )
exp ,

2
B A

r A

E
B

E
ε ε

σ σ σ εμ
⎡ ⎤−

= ⎢ +⎣ − ⎥− ⎦
 (9) 

 
where εA, εB and εM are axial strains corresponding to 
points A, B and M respectively. 
 Since the range of the stress decrease coefficient P is  
(0, 1), its corresponding brittleness index B2 can be  
directly defined as  
 
 B2 = P. (10) 
 
Substituting eq. (7) into eq. (10), yields 
 
 /a2 .=( )r aB σ σ σ−  (11) 
 
The range of B2 is also (0, 1). 
 The range of softening modulus M of the first three 
cases in Figure 8 is (–∞, 0). After normalization, its  
corresponding brittleness index B3 whose range is also  
(0, 1), can be defined as  
 
 3 1 exp( / ).B M E= −  (12) 
 
Figure 8 shows that, from curve (1) (ideal brittleness) to 
(3) (ideal plasticity), the brittleness of shale gradually  
increases and plasticity decreases. At the same time,  
brittleness indices B1, B2 and B3 increase gradually from 0 
to 1, which shows that there is a positive correlation  
between them and the brittleness of shale. In other words, 
these indices can reflect the brittleness of shale. Greater 
the value of the three indices, stronger is the brittleness of 
shale. Based on these three parameters, the following 
comprehensive brittleness index Bd is proposed 
 
 1 2 3,dB B B Bα β γ= + +  (13) 
 
where α + β + γ = 1 and α, β and γ denote the relative 
weights of B1, B2 and B3 in Bd respectively. The values of 
α, β and γ can not only be considered according to the 
same standard, but also according to different purposes or 
applications. Substituting eqs (9), (11) and (12) into  
eq. (13) yields 
 

 
3 3

( )
exp

2
B A

d
r A

E
B

E
ε ε

α
σ σ εμσ
⎡ ⎤−

= ⎢ ⎥+ −⎣ ⎦−
 

 

   1 1 exp .r

a

M
E

σ
β γ

σ
⎛ ⎞ ⎡ ⎤⎛ ⎞+ − + −⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦⎝ ⎠

 (14) 

Validation of brittleness index parameters 

In order to verify the validity of brittleness index Bd, the 
experimental results of Shuai et al.40 were utilized. These 

experimental tests were carried out on MTS815 loading 
machine using axial displacement control, with a loading 
rate of 0.18 mm/min, and the confining pressure was set 
to 0, 10, 20 and 30 MPa. From the experimental results, 
relevant parameters were obtained, and then B1, B2 and B3 
were calculated based on eqs (9), (11) and (12). As 
shown in Table 2, if α, β and γ are given different values, 
we can get the corresponding Bd. By considering all the 
parameters from eq. (14), we can obtain the value of Bd 
as shown in Figure 9. 
 
 

 
 

Figure 8. Classification of brittleness (hypothetical curve). 
 
 

 
 

Figure 9. Average of the brittleness indices versus confining pressure 
curves. 
 
 

Table 2. Brittleness index indices 

Values of (α, β, γ ) Corresponding Bd 
 

(1, 0, 0) Bd1 
(0, 1, 0) Bd2 
(0, 0, 1) Bd3 
(1/3, 1/3, 1/3) Bd4 
(1/4, 1/2, 1/4) Bd5 
(1/6, 1/2, 1/3) Bd6 
(1/4, 3/8, 3/8) Bd7 
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 As shown in Figure 9, the shale brittleness index Bd 
decreases with the increase of confining pressure σ3 and 
drops more quickly under low confining pressure than at 
high pressure. Under low σ3, Bd is more sensitive to σ3 
and a small pressure change can cause a rapid decrease of 
the brittleness index. However, under high pressure, the 
index is not sensitive and the change range is small. Bd1, 
Bd2 and Bd3 are the same as B1, B2 and B3 respectively. 
They are the special cases of Bd and can individually  
reflect the shale brittleness. But their forms are relatively 
simple which tend to cause large errors. The indices Bd4 
and Bd7 are general cases of Bd, which express the shale 
brittleness more comprehensively. They reduce the  
impact of experimental as well as data collection errors 
during the calculation of brittleness index. As shown in 
Figure 9, the curves for Bd4 to Bd7 are similar in their  
variation laws. Therefore, under normal circumstances, 
the brittleness index Bd4 with α = β = γ = 1/3 can be used 
to express the brittleness characteristics of shale. 

Brittleness index of shale for different  
fracturing-fluid immersion times 

Figure 10 shows the brittleness index of shale under dif-
ferent immersion times t. The brittleness index decreases 
with the increase of immersion time. When t ≤ 72 h, Bd4 
decreases linearly and is sensitive to immersion time. 
When t ≥ 72 h, Bd4 declines slowly, its range of change is 
small, and finally tends to a constant value. The indices 
Bd1, Bd2 and Bd3 also show similar variation with t. They 
individually reflect their shale brittleness, since their 
form is relatively simple and cause significant errors. 
Thus, Bd4 is relatively superior and can express the brittle 
characteristics ore comprehensively. The average value of 
brittleness index Bd4 has a significant exponential function 
with immersion time t, which can be explained as  
 
 2

4 0.562exp( /23.692) 0.142,  0.985.dB t R= − + =  (15) 
 
From eq. (15), it is clear that with an infinite increase of 
immersion time, the shale brittleness index will eventually 
stabilize at 0.142. 
 Hydration swelling caused by fracturing-fluid causes 
damage to microstructure of shale, resulting in different 
degrees of degradation of macro-mechanical parameters. 
When the immersion time is less than 72 h, the macro-
mechanical properties of shale, such as peak strength,  
residual strength, elastic modulus, softening modulus, 
Poisson’s ratio and brittleness index change rapidly, 
showing a linear upward or downward trend. When the 
immersion time is more than 72 h, all the macro-
mechanical parameters are relatively stable, their varia-
tion range is small, and they ultimately tend to a constant 
value. This shows that hydration swelling of shale is 
time-intensive and tends to be stable after about 72 h, 

which provides relevant parameters for studying the  
weakening mechanism of shale after soaking in fractur-
ing-fluid. 

Discussion on mechanisms of weakening of  
brittleness and mechanical properties of shale  
soaked in fracturing-fluid 

Under the effect of soaking, fracturing-fluid enters into 
the voids of the shale along bedding planes and micro-
cracks, and then advances rapidly by capillary force and 
hydration swelling stress. Micro-cracks form, extend and 
increase gradually, resulting in significant deterioration of 
mechanical properties and brittleness of shale. It is demon-
strated that three factors can weaken the brittleness and  
mechanical parameters and these are discussed below. 

Changes in stress state at the crack tip caused by  
fracturing-fluid 

It is assumed that the shale sample contains elliptical 
cracks with the major axis of 2a as shown in Figure 11. 
In the micro-fracture, the length of the liquid column of 
the fracturing-fluid is 2b and the length of the infiltration 
 

 
 

Figure 10. Average of the brittleness indices versus immersion time. 
 
 

 
 

Figure 11. Stress and fracture toughness distributions at the crack-
face. 
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zone is 2c. Under the effect of fracturing-fluid infiltra-
tion, the stress intensity factor KI at the crack tip is  
determined by in situ stress σ, pore pressure pf, hydration 
stress σw and capillary force (F). Assuming that the indi-
vidual stress intensity factors corresponding to the above 
four stresses are KI1, KI2, KI3 and KI4 respectively, the  
following equation can be obtained6,41 
 
 1 2 3 4.K K K K KΙ Ι Ι Ι Ι= + + +  (16) 
 
If the in situ stress perpendicular to the fracture surface is 
σ and according to fracture mechanics, the stress intensity 
factor KI1 can be written as 
 

 1 π .aK σΙ = −  (17) 
 
If the fluid pressure in the fracture is pf, the stress intensity 
factor KI2 can be written as41 
 

 2 2 / arcsin( / ).fp a b aK πΙ =  (18) 
 
Hydration stress is generated by the hydration swelling of 
clay minerals in shale. If the clay minerals are evenly  
distributed and the hydration stress acts evenly on the  
fracture surface, then using eq. (18), KI3 can be written as  
 

 3 2 / arcsin( / ),w a aK bσ πΙ =  (19) 
 
where σw is the hydration stress acting on the crack sur-
face. 
 Using Figure 12, the capillary force F is calculated as42 
 

 2 cos( ) ,/F γ θ β ω= −  (20) 
 
where γ is the interfacial tension for the fracturing-fluid, 
θ is the fluid contact angle, and β is the angle between 
the crack surface and long axis of the crack, 2ω is the 
aperture at the centre of the fracture and R is the equiva-
lent radius of the fluid at the contact. 
 In Figure 12, the capillary force acting on the crack 
surface is Fcosθ. Thus, KI4 under Fcosθ can be written 
as6,42 
 

 2 24
4 cos( )cos( ) ,

( )
a

a c
K γ θ θ β

ω πΙ
−

=
−

 (21) 

 

where the length of the liquid column of fracturing-fluid 
is 2c. 
 

 
 

Figure 12. Capillary force at different locations in a fracture. 

 Substituting eqs (17)–(21) into eq. (16) yields 
 

 2( ) arcsinf w
a ba p

a
K σ π σ

πΙ =
⎛ ⎞− + + ⎜ ⎟
⎝ ⎠

 

 

   
( )2 2

4 cos( )cos( ) .a
a c

γ θ θ β
ω π

−
+

−
 (22) 

 
For immersion tests, since both the in situ stress σ and 
pore pressure pf are almost zero, it can be concluded that 
both KI1 and KI2 are also almost zero. So in eq. (22), KI is 
decided by KI3 and KI4. According to the laboratory expe-
riments, relevant parameters in eq. (22) can be considered 
as follows: 2a = 0.004 m, 2c = 0.003 m, 2b = 0.0002 m, 
2ω = 0.000006 m, γ = 0.005 N/m, θ = 30°, β = 0° and 
σw = 1 MPa. Using these values, the stress intensity factor 
KI = 0.98 MPa m1/2 is obtained. The fracture toughness 
KIC parallel to and perpendicular to shale bedding planes 
are 0.57 MPa m1/2 and 1.15 MPa m1/2, respectively43. The 
value of KI is comparatively larger than 0.57 and less 
than 1.15. Therefore, under the effect of fracturing-fluid 
soaking, micro-cracks extend only parallel to the bedding 
plane and rarely extend perpendicular to it. 
 Equation (22) shows significant positive linear correla-
tions between KI and σ, pf, σw and γ, and an inversely 
proportional relationship between KI and ω. For the im-
mersion test, σ = pf = 0, the relationships between KI and 
(b/a)(c/a) and θ are shown in Figure 13. When the im-
mersion time is 0, b = c = 0 and θ = 90°, KI is small and 
insufficient to cause micro-cracks propagation. When 
immersion time is increased, (b/a)(c/a) gradually increas-
es and θ decreases, resulting in a gradual increase of KI 
and increased stress concentration at the crack tip. When 
KI at the crack tip reaches the fracture toughness KIC,  
micro-cracks gradually develop and expand, resulting in a 
decrease in stiffness and strength of shale and a decline in 
post-peak stress decrease rate, eventually leading to the 
decline of brittleness and enhancement of plasticity. 

Dissolution due to fracturing-fluid 

Shale is rich in quartz, feldspar, clay minerals (such as  
illite and montmorillonite) and other silicate minerals. 
Under the action of alkaline fracturing-fluid, the follow-
ing chemical reactions occur44 
 

 2
2 3 2SiO + OH SiOQuartz  :  + H O,− −→  

 

 3 8K[AlSiOrt Ohoclase ] +: OH−  

           + 2
3 3K +Al(OH) + SiO ,−→  

 

 0.9 2.9 3.1 10 2 2K Al Si O OHIllite: ( )  + H On  
 

          0.9 2.9 3.1 10 2 2K Al Si O O O( )H · H .n→  
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