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Low HDL-cholesterol and high LDL-cholesterol in 
plasma have long been associated with cardiovascular 
disease (CVD) risk. The quantity of cholesterol asso­
ciated with these lipoproteins is being traditionally 
used to predict CVD risk. However, recent studies 
have suggested that the quality and functionality of 
these lipoproteins are more important. The lipoprote­
ins -  HDL and LDL -  undergo both enzymatic and 
non-enzymatic modifications which impair their func­
tional capability and hence, test of such modification 
which reflects the quality of HDL can be a good pre­
dictor of CVD risk. The present article discusses oxi­
dation-associated dysfunctionality of lipoproteins and 
their potential in laboratory diagnosis of CVD.

Keywords: Cardiovascular disease, cholesterol, diag­
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Ca r d io v a s c u l a r  disease (CVD), a major cause of mor­
tality and morbidity, has become a leading public health 
problem. According to the statistical update (2017) by the 
American Heart Association, CVD is responsible for 
more than 17.3 million deaths per year and expected to 
increase to more than 23.6 million globally by 2030 (ref. 
1). More than 75% of such deaths are taking place in de­
veloping countries2. India is one of the countries having 
the highest number of CVD deaths3. Multiple approaches 
to diagnose this condition have been included to study its 
prevalence in India. The most common predictive factors 
of future cardiovascular event are age, sex, smoking, di­
abetics, lipid profile, various risk scores and variations in 
electrocardiogram of the patient4. Recently, various car­
diovascular risk prediction biomarkers are being incorpo­
rated and seem to be effective in forecasting CVD risk. 
The drastic increase of CVD risk among the young popu­
lation also demonstrates the urgent need of more accurate 
and consistent diagnostic biomarkers for early diagnosis. 
This will help to monitor disease status, initiate early 
management and thereby reduce further complications of 
CVD56.

The balance between lipid storage and its removal from 
cells and tissues has a major impact on cardiac health. 
The role of lipoproteins in maintaining cholesterol

*For correspondence. (e-mail: anandmanoharan@ctmrf.org)

homeostasis is apparent as they mediate the transport of 
lipids from intestine to liver and between liver and extra 
hepatic cells. The low density lipoprotein (LDL) is in­
volved in the distribution of triacylglycerol and choles­
terol to various extra hepatic systems as it binds to 
specific receptors on the cells surface. Apolipoprotein 
B 100, the main protein part of LDL, is essential for the 
stabilization of its structure and receptor-mediated endo- 
cytosis at the target cells7. The LDL receptors at the 
hepatic tissues are chiefly responsible for the elimination 
of LDL particles from the circulation, ensuring its serum 
level in normal physiological range. However, increase in 
serum LDL weakens the receptor-mediated uptake and 
initiates its accumulation in the arterial wall where it gets 
modified8,9. The modifications in LDL are found to pro­
mote atherosclerosis as it binds to scavenger receptors -  
SR-A1 -  rather than native LDL receptors in tissues. 
SR-A1, predominantly expressed in macrophages, can 
specifically interact with oxidized LDL (ox-LDL)10.

ox-LDL is considered as one of the major contributors 
of atherosclerosis lesion11-13. In the presence of lipid 
hydroperoxides, the transition metal ions and metal ions 
binding to heme protein can initiate the oxidation of LDL 
non-enzymatically14. The enzymes lipoxygenase and 
myeloperoxidase can also initiate oxidation of LDL. 
Myeloperoxidase can generate potent oxidants which in 
turn modify the major protein apolipoprotein B 100 of 
LDL15-17. Since the fatty acid composition of LDL influ­
ences plaque formation in the artery wall, diet may influ­
ence oxidative damage of LDL18. The macrophage SR-A1 
has the ability to recognize this ox-LDL leading to the 
formation of foam cells, a characteristic feature of athe­
rosclerotic lesions (Figure 1)19. It has been shown that the 
highly ox-LDL is resistant to lysosomal proteases- 
mediated degradation, leading to its accumulation in the 
macrophages; as a consequence, foam cells with pro- 
inflammatory property are formed20,21.

High density lipoprotein (HDL) plays an important role 
in reverse cholesterol transport (RCT), a process of carry­
ing cholesterol from the cells of the artery wall back to 
the liver for its excretion, which is mediated by the mem­
brane lipid transporter adenosine-triphosphate-binding 
cassette transporter A1 (ABCA1)22. It has been reported 
that HDL can inhibit the oxidation of LDL and contribute 
to cardiac protection23. These processes are governed by

1276 CURRENT SCIENCE, VOL. 115, NO. 7, 10 OCTOBER 2018

mailto:anandmanoharan@ctmrf.org


REVIEW ARTICLE

Figure 1. Oxidized lipoproteins HDL and LDL are dysfunctional and proatherogenic. Cholesterol present in macrophages is transported across 
the plasma membrane by ATP-binding cassette transporter ABCA1. Nascent apoliprotein (Apo) AI, a major component of HDL, interacts with 
ABCA1, extracts cholesterol from macrophages and develops into discoidal HDL (1). HDL activates an enzyme LCAT and converts cholesterol 
into cholesteryl ester (2). In this process native discoidal HDL matures into HDL particles. These HDL particles constantly exchange cholester- 
ol/cholesteryl ester for triglycerides with LDL/VLDL (3). In addition, these HDL particles transport cholesterol and cholesteryl ester to the liver 
through scavenger receptor and convert them into bile which is excreted in faeces (4). Thus HDL lowers the accumulation of cholesterol in extra 
hepatic tissues and in blood vessel such as the arteries. This process is known as reverse cholesterol transport and it is cardio-protective. LDL also 
transports cholesterol and cholesteryl ester. They bind to LDL-receptor in various cell types of the body and supply cholesterol required for the var­
ious functions of a cell (5). ApoB100 is a major component of LDL. Under chronic inflammatory conditions, macrophages and neutrophils secrete 
myeloperoxidase (MPO). This enzyme, in the presence of hydrogen peroxide, oxidizes HDL and/or LDL and converts them to oxidized lipoprotein 
particles (6). These lipoprotein particles are not only dysfunctional, but also proatherogenic in nature. This dysfunctional HDL/LDL allows choles­
terol build-up in macrophages and converts it to foam cells, which results in chronic inflammation. As a result atherosclerotic plaques are formed 
leading to increased risk of cardiovascular disease (CVD) and stroke. Thus, the quality of lipoprotein particles determines the health of the cardi­
ovascular system. The oxidized lipoprotein particles in blood, especially HDL, have been suggested to serve as a diagnostic marker of CVD risk. 
ABCA1, ATP-binding cassette transporter A1; Apo1 AI, Apolipopprotein A1; ApoB100, Apolipoprotein B100; HDL, High density lipoprotein; 
LCAT, Lecithin cholesterol acyl transferase; LDL, Low density lipoprotein; LDLR, LDL receptor; MPO, Myeloperoxidase; SRA1, Scavenger 
receptor A1; SRB1, Scavenger receptor B1; C, Cholesterol; CE, Cholesteryl ester; TG, Triglyceride; CETP, Cholesteryl ester transfer protein.

apolipoprotein A1, a major protein part of HDL. Apart 
from the RCT activity and antioxidant property, HDL 
possesses anti-inflammatory, anti-thrombotic and healing 
activities in endothelial cells24,25. It has long been recog­
nized that the LDL-HDL profiles have tremendous 
impact on the risk of atherosclerosis26. HDL is also sus­
ceptible to modifications in its structure during athero­
sclerosis, which enhances the progression of this 
process27,28. Figures 1 and 2 indicate the key steps res­
ponsible for pro-atherogenesis and anti-atherogenesis. 
The focus of this article is to provide an overview on
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dysfunctional lipoproteins (LDL and HDL), the underly­
ing mechanism and its impact on CVD. Understanding 
dysfunctional lipoproteins and their causes may provide 
biomarkers for potential diagnosis and management of 
CVD.

Enzym atic and non-enzym atic m odifications 
of LDL

Many lines of evidence suggest that enzymatic and non- 
enzymatic oxidation of LDL can be considered as a
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Monocyte

Figure 2. Oxidized LDL and HDL initiate atherosclerosis. LDL gets oxidized in the sub-endothelial space (1). During inflammation, monocyte 
adheres to the artery wall and migrates to the sub-endothelial space where it gets differentiated into macrophages (2). The ox-LDL gets attracted to 
scavenger receptors of the macrophages and forms foam cells (3). The smooth muscle cells migrate to this region and initiate matrix formation (4). 
Steps 2 and 3 together form major components of the atherosclerotic plaque (5). The oxidation of LDL is usually prevented by the antioxidant 
property of HDL. However, the oxidation of HDL makes it dysfunctional (6).

corner stone in atherogenesis. The peroxidation of lipids 
in LDL by arterial smooth muscle cells was determined 
through its increased electrophoretic mobility and the 
presence of malondialdehyde, an oxidation product. The 
transition metal ions such as iron (Fe) and copper (Cu) 
are found to contribute to oxidative modifications of LDL 
in human arterial smooth muscle cells. Chelating agents 
of these metals were found to block metal ions-mediated 
LDL modifications under in vitro conditions29,30. Bicar­
bonate in the buffer system was also found to enhance the 
formation of reactive free radicals which facilitate LDL 
oxidation31. Acidic pH in the atherosclerotic lesion might 
have a role in extensive LDL modifications by the cells 
and transition metal ions32,33. Metal ions catalyse oxida­
tive damage on the surface of LDL to generate minimally 
ox-LDL, which has an affinity towards normal LDL re­
ceptor rather than scavenger receptors of macrophages. 
However, highly ox-LDL binds to scavenger receptor and 
initiates atherosclerotic lesion. The oxidation at the core

of LDL changes the function of minimally ox-LDL and 
enhances its binding affinity to macrophage scavenger 
receptors with noticeable alterations in apolipoprotein
B34,35.

Lipoxygenase (LOX) is one of the cellular oxygenation 
enzymes found to incorporate oxygen in polyunsaturated 
fatty acids36. The inhibitors of this enzyme are shown to 
reduce 70-80% LDL oxidation, indicating the role of 
LOX in oxidative modifications of LDL37. Based on the 
location of oxygenation in arachidonic acid, four LOXs 
(5-, 8-, 12- and 15-LOX) were identified in mammalian 
tissues. Though a variety of cells such as blood cells, 
cardiomyocytes, adipocytes and macrophages are found 
to produce 12/15 LOX, macrophages-produced LOX is 
reported to have dominant potential in the progression of 
atherogenesis38.

The role of 12/15-LOXs seems to be double-faced 
as these enzymes showed contradictory results in diffe­
rent animal models39. Overexpression of monocyte/
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Table 1. Effect of 12/15-LOX in atherosclerosis in transgenic animals

Gene (knock-in or knock-out) Status of atherosclerosis

12/15-LOX (human LOX transgenic rabbit) Overexpression of monocyte/macrophage
12/15-LOX gene protects transgenic rabbits from atherosclerosis

15-LOX (knock-out mice) Absence of 15-LOX protects mice from atherosclerotic plaque formation
12/15-LOX and ApoE-/- (double knock-out mice) Absence of 12/15-LOX in ApoE-deficient mice protects them from atherogenesis
12/15-LOX and LDL receptor (double knock-out mice) Disruption of 12/15-LOX in LDL receptor-deficient mice protects them from

atherogenesis

macrophage-specific 15-LOX in transgenic rabbits 
showed anti-atherosclerotic effects4 0 , 4 1 . Similar results 
showing atheroprotective effects of 15-LOX were 
observed in knock-out mice4 2 . However, disruption or ab­
sence of 12-/15-LOX noticeably reduced atherosclerotic 
lesion in apoE-/- and LDL receptor-deficient mice, show­
ing the prominent role of these enzymes in atherosclero- 
sis4 3 , 4 4 . Table 1 summarizes studies in transgenic animals 
with regard to the effect of 12-/15-LOX in atherosclero­
sis. Sukhanov et al.4 5  showed that insulin-like growth fac­
tor-1 negatively regulates lipoprotein oxidation through 
macrophage-specific 12-/15-LOX in apoE-/- mice. Gene­
tic studies in humans did not show consistency in the 
results. This may be due to the presence of different iso­
forms of 12-LOX and 15-LOX that may show difference 
in expression and substrate specificity4 6 .

Myeloperoxidase (MPO), a heme-containing peroxi­
dase enzyme, is related to both oxidative stress and 
inflammatory reactions. Granulated neutrophils and mono­
cytes express MPO abundantly when exposed to inflam­
mation, which ultimately results in the generation of 
reactive oxygen species. The MPO expressed in macro­
phages has been involved in the beginning and progres­
sion of atherosclerosis, and initiates new possibilities in 
the management of the same. Epidemiological studies 
have shown the relationship of higher levels of MPO with
CVD risk4 7 - 4 9 .

MPO is considered as one of the enzymes catalysing 
the formation of highly reactive superoxide radicals. A 
major part of the catalytic activity of MPO is assigned to 
the microenvironment of sub-endothelial space. The high­
ly cationic enzyme, MPO, can interact with LDL and 
enhance its oxidation. MPO can also enhance the oxida­
tive potential of H2 O2  in reaction with chlorinating and 
nitrating agents. This reaction would generate reactive 
species such as hypochlorous acid (HOCl), tyrosyl radi­
cals, chloramines and nitrogen dioxide that oxidize LDL. 
Most of these oxidation products are unstable, which 
catalyse further oxidation of LDL and are responsible for 
its accumulation in the artery wall. The stable oxidation 
products generated can be used as biomarkers for 
MPO-mediated LDL oxidation. Best among them are 
3-nitrotyrosine and 3-chlorotyrosine5 0 , 5 1 .

MPO is known to catalyse the formation of cytotoxin 
HOCl from substrates H 2 O2  and chloride. The HOCl 
initiates 3-chlorotyrosine formation from protein-bound

or free tyrosine, and MPO is considered as the unique 
human enzyme which catalyses these reactions. The 
HOCl produced by MPO/H2 O2 /chloride system is found 
to generate oxidative modifications in the major protein 
part of LDL, apoB100, in vascular intima, and this could 
be proatherogeneic5 2 , 5 3 . The reaction product of super­
oxide and nitric oxide, peroxynitrite, is involved in the 
formation of 3-nitrotyrosine1 5 . MPO and its stable pro­
duct 3-chlorotyrosine are noticeably expressed in human 
atherosclerotic lesions5 4 , 5 5 , which authenticates the possi­
bility of these stable oxidation products as diagnostic 
markers of CVD.

Malondialdeyde (MDA), a lipid peroxide product 
formed from prostanoids can react with exposed e-amino 
groups of apo B-100 lysine residues and cause oxidation 
of LDL under oxidative stress. This MDA-LDL (collec­
tively referred as ox-LDL) can induce lipid accumulation 
in macrophages leading to the formation of foam cells 
(Figure 2). Thus, this ox-LDL in circulation is proposed 
to be the biomarker of CVD risk in humans5 6 , 5 7 . Amino 
acids such as methionine, tyrosine and tryptophan are 
oxidized in both in vitro and in vivo conditions, resulting
in the generation of ox-LDL. In Table 2, only those amino 
acids of apo B-100 isolated from haemodialysis patients 
are shown5 8 . Since a large number of methionine, tyrosine 
and tryptophan are post-translationally modified, it is dif­
ficult to pinpoint which of them will be critical for diagno­
stic or prognostic purposes in the clinic. Recently, there 
has been increased interest in understanding the role of 
oxidized HDL, as the quality of HDL is affected and has 
high potential in predicting CVD risk in clinical settings.

M odified HDL and atherosclerosis

High plasma HDL levels have a solid negative influence 
on atherosclerotic CVD through reverse transport of cho­
lesterol from arteries to hepatic tissue. An imbalance be­
tween cholesterol deposits in the arterial wall and its 
removal for excretion leads to atherosclerotic lesion5 9 . 
Macrophages are primary cell types responsible for 
atherosclerosis; hence, the cholesterol efflux from macro­
phages by HDL is known as macrophage RCT. HDL bio­
synthesis and its metabolism are mainly maintained by 
the cholesterol efflux from non-macrophage tissues. The 
major protein involved in RCT is ABCA1, which uses the
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Table 2. Post-translational modifications of ApoB-100 found in circulation

Oxidized amino acids Amino acid position in apo B-100

3-Hydroxy-tyrosine 76, 249, 425, 693, 713, 1579, 1753, 1747, 1965, 1972, 2189, 2405, 2732, 3206, 3268, 3533, 
3653, 3744, 4055, 4057, 4184, 4205, 4242, 4424

Chlorinated-tyrosine 125
Oxidized methionines (methionine sulphoxide) 507, 1022, 1162, 1239, 1560, 2481
Oxidized (mono) tryptophan 936 and 4063
(Di)oxidized trytophan 1114 and 3536

These modifications are found in ApoB-100, a major component of LDL isolated from haemodialysis patients who had elevated levels of MPO and 
MPO-LDL as reported by Delporte et al. No such exhaustive information is available on oxidized modifications o f LDL in other metabolic diseas­
es such as diabetes, CVD and obesity. However, the above information provides putative sites of ApoB-100 where it could get potentially modified 
by MPO in diabetes, CVD and obesity.

Table 3. Amino acid modifications o f HDL-ApoA1

Type of modification Amino acid ApoA1 modified Functional consequences

Chlorination of tyrosine100,101 
Nitration of tyrosine100,101 
Oxidation of methionine101,102

Hydroxylation o f tryptophan103 
Carbamoylation of lysine104

Tyr-166 and Tyr-192 
Tyr-166 and Tyr-192 
Met 86, Met 112 and Met 148

Trp-8, Trp-50, Trp-72 and Trp-108 
Lys 225

Loss of cholesterol acceptor activity 
Loss of LCAT activation
Loss of cholesterol acceptor activity and of LCAT activation
Maturation of HDL particles
Loss of cholesterol acceptor activity
Generates proatherogenic and pro-inflammatory particles

These modifications of ApoA1 are found in atherosclerotic plaques and also generated during in vitro biochemical reactions of ApoA1 amino acids
with MPO.

energy source ATP for transport of substrates. The trans­
port of cellular cholesterol and phospholipid to apolipo- 
protein A1 (ApoA1), the major initial acceptor, is 
mediated by the ABCA1 transporter and hence, this pro­
tein is considered as representative of rate-regulatory step
in RCT6 0 - 6 3 .

Apart from cholesterol transport, HDL possesses anti- 
atherogeneic, anti-inflammatory and antioxidant activi- 
ties6 4 . Coronary artery disease (CAD) patients with high 
HDL level showed less anti-inflammatory activity com­
pared to HDL from healthy controls, indicating that the 
lipoprotein is dysfunctional in CAD patients6 5 . The anti­
oxidant activity of HDL is mainly due to its interaction 
with human serum enzyme paraoxonase 1 (PON1). HDL- 
bound PON1 protects the lipoproteins -  LDL and HDL -  
from oxidation6 6 . Shih et al.61 showed that PON1 knock­
out mice fed with high-fat diet were more prone to 
atherosclerosis, providing evidence for the antioxidant 
property of PON1. The injection of recombinant PON1 in 
mice enhances the anti-atherogeneic potential of HDL
and macrophages6 8 , 6 9 .

Alterations in the composition of protein and lipid part 
of HDL might make it dysfunctional. The oxidative mod­
ifications of the protein ApoA1 are the dominant factor 
responsible for the dysfunctionality of HDL. Like LDL, 
Cu ions mediate the oxidation of HDL, which leads to the 
proteolysis of ApoA1 subsequently reduces the ability of 
HDL in RCT1 0 . The major contributor MPO, secreted by 
macrophages, generates HOCL in reaction with H2 O2  

which has the capacity to chlorinate the tyrosine residues,

especially at position 192 (Tyr-192) in ApoA1 to 3- 
chlorotyrosine11,12. 3-Nitrotyrosine, another product of 
oxidative modification mediated by the MPO-HOCL sys­
tem derived from nitric oxide, was also found in athero­
sclerotic lesion73. Apart from site-specific modifications 
in tyrosine residue, MPO modifies amino acids methio­
nine, lysine and tryptophan residues of the ApoA1 to 
methionine sulphoxide, carbamoylated lysine and mono-/ 
di-hydroxytryptophan respectively (Table 3)14-16. Mod­
ified ApoA1 in HDL is found to reduce its reverse cho­
lesterol efflux and become atherogeneic11. Even though 
both 3-chlorotyrosine and 3-nitrotyrosine are reported to 
be higher in CVD patients, the former shows more nega­
tive correlation with reverse cholesterol efflux capacity of 
HDL18. Recently, two studies have shown that nitrated 
166tyrosine and hydroxylated 71tryptophan in HDL- 
ApoA1 are abundant in atherosclerotic plaques and these 
modified HDLs are dysfunctional19,80.

O xidized products of M PO  in atherosclerosis: 
Studies in knock-out and knock-in m ice

Although there is a clear-cut enhancement of oxidation of 
ApoA1 in human atherosclerotic plaques and in plasma/ 
serum, the extent of ApoA1 modifications is less clear in 
mouse models. For instance, both acute and chronic 
manifestation of atherosclerosis seems to occur due to 
the action of pro-oxidants developed by MPO. The inhi­
bition of MPO in vivo by a variety of drugs has been
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Table 4. Lessons learnt from mouse models o f atherosclerosis regarding the oxidation of lipoproteins

Gene Knock-in/knock-out
Status of atherosclerosis 

and CVD risk Conclusion

Myeloperoxidase (murine MPO knock-out mice)8 Murine MPO knocked-out in:
(a) LDL receptor-deficient mice

fed with high-fat diet
(b) ApoE-deficient mice fed with 

high-fat diet

Lack of oxidized products 
in atherosclerotic plaque 

Increased atherosclerotic 
plaque

Mouse MPO protects 
against murine 
atherosclerosis, 
unlike human 
atherosclerosis

MPO (human MPO transgenic mice expressing 
MPO in macrophages)83

MPO (human MPO transgenic mice expressing 
MPO in macrophages)84

Human MPO was knocked-in for 
LDL receptor-deficient mice fed

with high-fat diet

Human MPO was knocked-in for 
LDL receptor-deficient
mice fed with
high-fat diet

Atherosclerotic plaques 
larger in size and 
abundant oxidized 
product o f MPO in 
atherosclerotic plaque 
and circulation 

Promotes atherogenesis, 
builds high levels of 
cholesterol and 
triglycerides. 

Oxidation products in 
atheroma

Human MPO promotes 
atherosclerosis

Human MPO promotes 
atherogenesis and 
increases CVD risk 
in murine models

found to reduce the atherosclerotic plaque size and num- 
ber81.

Various mouse models have provided key insights into 
the development of atherosclerosis; however, some dis­
crepancies have been noticed. This includes detection of 
very low levels of characteristic products of MPO that 
have been identified in human atherosclerotic lesions and 
the development of atherosclerosis even in MPO knock­
out mice82. Further, the inhibition of murine MPO did not 
have any consequence in the development of atheroscle­
rosis in LDLR-deficient mice. In contrast, transgenic 
mice expressing human MPO gene have attained greater 
importance in the studies related to macrophage-specific 
MPO and associated atherosclerosis. LDL receptor- 
deficient transgenic mice expressing human MPO in 
macrophages are found to enhance atherosclerosis when 
fed with high-fat diet83,84. Thus, there are evidences 
available regarding the human myeloperoxidase enzyme 
directly playing a role in the oxidation of both LDL 
ApoB-100 and HDL ApoA1 (Table 4). Such oxidation 
renders these lipoproteins dysfunctional. Moreover, some 
of these modifications also render these lipoprotein par­
ticles proinflammatory and proatherogenic. Thus, these 
oxidized modifications of both ApoB-100 and ApoA1 
may serve as a useful marker for predicting CVD risk in 
humans.

Role o f lipids in cardiom yopathy and m yocardial 
infarction

Cardiomyopathy refers to the diseased heart muscles 
leading to heart failure and arrhythmias (irregular heart 
beat), resulting in the inability of heart to pump blood re­

quired for various parts of the body. There has been a 
sharp increase in death due to heart failure associated 
with aging, diabetes and obesity85,86. In general, individu­
als with diabetes mellitus carry 2-4 times higher risk of 
cardiomyopathy and myocardial infarction86,87. The clini­
cal outcome of myocardial infarction and cardiomyopathy 
in diabetic patients is far worse than in patients without 
diabetes86. The causes have been attributed to a variety of 
factors. For myocardial infarction, the oxidation of 
lipoproteins and its consequences have been extensively 
discussed in this article. With regard to diabetic cardio­
myopathy, a number of factors such as hyperglycaemia 
and mitochondrial dysfunction along with increased fatty 
acid and triacylglycerols in circulation have been re­
ported to collectively contribute to poor functioning of 
heart muscle and eventually to death85.

Dyslipidaemia refers to the abnormal lipid levels, 
which include triacylglycerols, free fatty acids, choleste- 
rols, phospholipids, sphingolipids, etc. This abnormality 
is often associated with coronary heart diseases, diabetes, 
and obesity which are linked by inflammation. Often dys- 
lipidaemia is one of the major factors for both myocardial 
infarction and cardiomyopathy, which are highly preva­
lent in diabetic patients. This is further complicated by 
the oxidation of lipids by LOX, etc., wherein liver, ske­
letal muscle and adipose tissue do not utilize both glucose 
and fatty acids for storage as glycogen and triglycerides 
respectively. Moreover, the presence of higher levels of 
triglyceride-enriched lipoproteins such as VLDL and chy­
lomicrons in the circulation results in lipotoxicity89. 
Increased levels of both glucose and lipids in diabetes 
mellitus causes glucolipotoxicity to pancreas, adipose 
tissue, liver, heart, etc., resulting in increased risk of 
coronary artery diseases and cardiomyopathy.
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A number of modified fatty acids and lipids have also 
been observed. For instance, there has been increased 
prevalence of esterified fatty acid peroxides (13-hydroxy- 
linoleic acid 13-hydroperoxy octadecadienoic acid), este­
rified fatty acid hydroperoxide (13-hydroxylinoleic acid, 
13-hydroxy octadecadienoic acid); prostaglandin-like 
products such as isopentane and its esterified forms, 
aldehydes such as malondialdehyde (MDA), aldehydes 
containing esterified lipids, etc. modified lipids such as 
lysophosphatidyl choline, 7-keto cholesterol and internal­
ly modified lipids such phosphatidyl serine and phospha­
tidyl ethanolamine products (reviewed in Parthasarathy et 
al.13). The precise roles of these oxidized lipids have not 
been well defined. However, it is observed that these oxi­
dized lipids have been found to prevent proper insulin 
signalling and energy homoeostasis. It has also been iden­
tified that the oxidized phospholipids such as oxidized 
phosphatidyl choline and phosphatidyl inositol generated 
during LDL oxidation by the reactive species, play a 
significant role in proatherogenic effects of ox-LDL89.

Recently, there has also been increased interest in un­
derstanding the role of various sphingolipids, especially 
sphingomyelin, glycosphingolipids, ceramides and sphin- 
gosine 1-phosphate. The levels of sphingomyelin, certain 
glycosphingolipids and ceramides are found to be ele­
vated in blood plasma of patients with myocardial infarc­
tion and diabetics. In contrast, lysosphingolipid and 
sphingosine 1-phosphate, which are usually associated 
with HDL, are reduced. There has been tremendous in­
crease in understanding the cellular, physiological and 
pathophysiological roles of two bioactive sphingolipids, 
viz. ceramide and sphingosine-1-phosphate90,91.

It is clear that sphingosine 1-phosphate activates at 
least five G-protein coupled receptors (GPCRs) known as 
S1P receptors (S1PR1-5), and they have a cardio­
protective role. Sphingosine 1-phosphate is known to ac­
tivate endothelial nitric oxide synthase, insulin sensitivi­
ty, vascular integrity, immune cell trafficking and 
reducing inflammation through S1PRi, etc.91. However, 
ceramides are known to inhibit phosphoinositide signal­
ling, and also play a role in the inhibition of Akt, and in­
creasing insulin resistance. The circulating fatty acids, 
especially saturated fatty acids, are known to be chan­
nelled into the ceramide pathway91. Since these lipids are 
known to be associated with both LDL and HDL, they 
may play a role in the pathogenesis as well as disease 
outcome in clinical settings. Phosphoinositides, cera- 
mides, and sphingosine 1-phosphate have clear biological 
roles and there is an increased need for understanding the 
role of these lipids in clinical settings in order to be effec­
tively utilized as diagnostic or prognostic markers of 
diabetes, obesity and CVD.

Although various forms of familial cardiomyopathy are 
seen, most predominant forms are dilated cardiomyopa­
thy and hypertrophic cardiomyopathy. In both these cases 
muscles of the ventricles are thickened and the ventricle

wall is enlarged. Due to this, there is lack of proper blood 
flow in and out of the ventricle often leading shortness of 
breath, dizziness, increased arrhythmias, etc. In familial 
cardiomyopathies, the modified lipids are found to be 
accumulated and contributed for the patho-physiology of 
cardiac muscles. These inherited disorders are mostly due 
to defective lipid metabolism (either synthesis or degra­
dation). In cardiac muscle disorders, cardiolipin -  a major 
mitochondrial lipid -  synthesis is affected. In contrast, in 
lipid storage diseases, the gene(s) responsible for certain 
lipids are defective resulting in excessive accumulation of 
various lipids in heart muscles92.

In primary cardiac muscle disorders, collectively a 
number of genes are found to be defective which results 
in both dilated and hypertrophic cardiomyopathy, in addi­
tion to alterations in various other tissues, including liver. 
Primarily, in these inherited muscle disorders, the 
accumulation of carnitine esters, and fatty acids along 
with defective beta-oxidation of very long chain fatty 
acids and decreased cardiolipin were observed. A number 
of lipid storage diseases have been attributed to familial 
cardiomyopathy, which includes Fabry’s disease (accu­
mulation gangliosides), gangliosidosis (accumulation of 
glycosphingolipids), mucolipidosis (phospholipids accu­
mulated in vacuoles); Gaucher disease (accumulation of 
glucocerebroside), neutral storage lipids with cardiomyo­
pathy (accumulation of triglycerides) and neutral lipid 
storage disease with ichthyosis (accumulation of triglyce- 
rides)92,93. Often the symptoms of various cardiomyopa­
thies arising out of complications due to diabetes and 
obesity or inherited disorders can be distinguished based 
on the familial history and accordingly treatment regi­
mens could be devised and administered to patients.

Patients with myocardial infarction, a very acute condi­
tion, experience extreme chest pain without any prior in­
dication. However, the situation is different in the case of 
cardiomyopathy, since these patients experience chest 
pain as well as other abnormalities characterized by 
altered lipid metabolism. These abnormalities in lipids 
can be correlated with the dysfunctionality of lipoproteins 
such as LDL and HDL. Thus, the measurement of 
dysfunctional LDL and HDL along with the levels of 
lipoproteins and triacylglycerol in circulation may also 
indicate heart failure, which may provide options for 
better treatments.

Diagnostic potential o f dysfunctional LDL/HDL

The increased prevalence of CVD events in the age group 
between 35 and 60 years has become pronounced with 
major public health and socio-economic consequences. 
Numerous risk scores have been proposed to predict CVD 
risk. The most common risk prediction is made by Fra­
mingham ten-year risk score (FTRS), which predicts 
events over the next ten years as a primary preventive
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method. In addition, FTRS offers a practical approach to 
identify patients at higher risk of CVD using clinical 
information, basic biochemical analysis of biomarkers 
such as troponin I, B-type natriuretic peptide and high- 
sensitivity C-reactive protein as well as more specialized 
tests such as coronary artery calcium scoring and carotid
ultrasound94.

Since both HDL and LDL are the major lipoproteins 
involved in cholesterol homeostasis, their oxidative mod­
ifications may be valuable for finding subjects at risk of 
CVD. The plasma level of MPO is positively correlated 
with CVD risk and subsequent cardiac events95,96. Like­
wise, increase in modified ApoA1 with chlorotyrosine 
and nitortyrosine has been detected in serum and athero­
ma samples of CVD patients by mass spectroscopy, indi­
cating that it can also be a predictor of adverse cardiac 
event91. Presence of both chlorotyrosine and nitrotyrosine 
indicates the extent of loss of function of HDL. However, 
quantification by mass spectrometry is not suitable for 
routine clinical use as it is tedious, requires sophisticated 
equipment and trained manpower and it is not amenable 
for high throughput screening of patient samples. There­
fore, more sensitive and usable diagnostic method must 
incorporate the identification of specific modified amino 
acids and MPO related to dysfunctional lipoproteins98. 
Clinical assays based on high-affinity monoclonal anti­
bodies produced against MPO or oxidized amino acids of 
ApoA1 can be useful to detect their levels in plasma of 
subjects at CVD risk18,94,99. Early diagnosis of abnormali­
ties in these lipoproteins -  HDL and LDL -  using immu­
noassays can be a good predictor of future CVD risk. 
Thus, successful validation of measuring MPO and oxi­
dized ApoA1 levels in the blood in high-throughput clini­
cal assays is the immediate need. If this is achieved, both 
MPO and oxidized ApoA1 could be included in the rou­
tine diagnostic methods to identify CVD risk at an early 
stage and improve disease management.

Conclusion

The absence of specific and sensitive diagnostic markers 
in routine clinical practice has been a major hurdle in the 
early diagnosis of CVD. To reduce the mortality and 
severity of CVD, better early diagnostic markers are 
essential. The functionality of LDL and HDL has to be 
considered since there are cases with exceptions in the 
association of these lipoproteins and CVD risk. Identifi­
cation of more specific serum markers like MPO and 
modified apolipoproteins is valuable for early detection 
of CVD. More studies focusing on the development of 
antibody-based systems to examine these specific serum 
markers are essential.
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