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Soliton theory is an interdisciplinary area at the inter
face of mathematics and physics. It studies a special 
class of nonlinear partial differential equations 
(NLPDEs) having solutions that are waves which be
have like particles. Amazingly, unlike most NLPDEs, 
we can write exact formulas for the solutions to these 
‘soliton equations’. This article is a review providing 
the historical context necessary to appreciate these 
spectacular developments, a brief overview of the 
early history of the field, and a list of references to 
consult for additional information.
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T h er e  are m any d ifferen t phenom ena in  the real w orld  
w hich  w e describe as ‘w av es’. B ecause o f  tsunam is, 
m icrow ave ovens, lasers, m usical instrum ents, acoustic 
considerations in  auditorium s, ship design, collapse o f  
b ridges due to v ibration , solar energy, etc., th is is clearly 
an  im portan t subject to study and understand. G enerally, 
s tudying w aves involves deriv ing and solving som e d iffe
rential equations. A s these involve derivatives o f  func
tions, they are a part o f  the b ranch  o f  m athem atics know n 
to professors as analysis and to students as calculus. But, 
in  general, the d ifferen tia l equations involved  are tough  
to w ork  w ith, tha t one needs advanced techniques to even 
get approxim ate in form ation  about the ir solutions.

It w as therefore a b ig  surprise in  the 1960s and 1970s 
w hen  it w as realized  fo r the firs t tim e tha t som e o f  these 
equations w ere m uch easie r than  they firs t appeared. 
These equations that are not as d ifficu lt as people m ight 
have though t are called  ‘soliton  equations’ because 
am ong the ir solutions are som e quite in teresting  ones that 
w e call ‘so litons’. The orig inal in terest in  solitons w as 
because they behaved  a lo t m ore like particles than  we 
w ould  have im agined. B u t shortly afte r that, it becam e 
clear tha t there w as som ething about these soliton  equa
tions tha t m ade them  not only interesting, b u t also too 
easy com pared to m ost o ther w ave equations.

*The article is adapted by the author from the book Glimpses of Soliton 
Theory: The Algebra and Geometry of Nonlinear PDEs, with permis
sion of the publisher. 
e-mail: kasmana@cofc.edu

The tex tbook  G lim pses o f  Soliton T heory1 w as w ritten  
to provide an  elem entary explanation  o f  the m athem atics 
responsible fo r these ‘m iracles’. The p resen t article w as 
adapted  from  tha t book  (especially  chapter 3) specifically 
fo r the readers o f  C urren t Science . Its purpose is to p ro 
v ide a  b r ie f  overview  o f  the history, scientific sign ific
ance and m athem atical structure o f  so liton  theory. F or 
additional details, p lease consu lt the reading resources 
listed  at the end o f  this article.

The observation

In  A ugust 1834, Scottish  ship designer John Scott R ussell 
w as sitting  on his horse beside the U nion  C anal near 
E dinburgh  and staring at the w ater w hen  he saw som e
th ing  that w ould  change his life.

‘I w as observ ing  the m otion o f  a boat w h ich  w as ra 
p id ly  draw n along a narrow  channel by a p a ir o f 
horses, w hen  the boat suddenly stopped -  not so the 
m ass o f  w ate r in  the channel w hich  it had pu t in  m o
tion; it accum ulated  round the prow  o f  the vessel in  a 
state o f  v io len t agitation, then  suddenly leav ing  it b e 
hind, ro lled  forw ard  w ith  great velocity , assum ing the 
fo rm  o f  a large solitary elevation, a rounded, sm ooth 
and w ell-defined  heap o f  w ater, w hich  continued  its 
course along the channel apparently  w ithout change o f  
fo rm  o r d im inution o f  speed. I fo llow ed it on  horse
back, and overtook it still ro lling  on  at a rate o f  some 
eigh t o r nine m iles an  hour, p reserv ing  its orig inal 
figure som e th irty  fee t long and a foo t to a foo t and a 
h a lf  in  height. Its heigh t gradually  dim inished, and 
afte r a  chase o f  one or tw o m iles I lost it in  the w ind 
ings o f  the channel. ’

- J .  S. R ussell2

In  o ther w ords, he saw a hum p o f w ater created  by  a boat 
on  the canal and fo llow ed it fo r several m iles. Certainly, 
o ther people had seen such w aves before since the 
circum stances that created it were not particularly unusual. 
But, it m ay be tha t nobody before gave it such careful 
thought.

The po in t is tha t the w ave he saw d id  not do w hat one 
m ight expect. S im ilar to w aves in  a  sw im m ing pool o r at

1486 CURRENT SCIENCE, VOL. 115, NO. 8, 25 OCTOBER 2018

mailto:kasmana@cofc.edu


REVIEW ARTICLES

the beach, one m ight expect a  m oving hum p o f w ater to 
either:

•  G et w ider and shallow er and quickly d isappear into 
tiny ripples like tha t o f  a w ave generated  in  a sw im 
m ing pool or

•  ‘B reak ’ like the w aves at the beach, w ith  the peak 
becom ing  pointy , racing  ahead o f  the rest o f  the w ave 
until it has nothing left to support it and com es crash 
ing down.

It w as therefore o f  g reat in terest to  R ussell tha t the 
w ave he w as w atch ing  d id  neither o f  these things, bu t 
basically  kep t its shape and speed as it travelled  dow n the 
canal unchanged  fo r m iles. B eing  a ship designer, he 
m ust have b een  th ink ing  ‘L ook at tha t w ave go and go 
w ith  ju s t  one little push. I w ish  that I could  get a  boa t to 
do th a t!’

Terminology and backyard study

R ussell used  the w ords ‘solitary w av e’ and ‘w ave o f 
transla tion ’ to describe the phenom enon he observed that 
day. By ‘solitary w av e’, he w as clearly  referring  to the 
fac t tha t th is w ave has only a single hum p, unlike the 
m ore fam iliar repeating  sine w ave pattern  tha t one m ight 
f irs t im agine upon  hearing the w ord  ‘w av e’. A lthough 
th is m ay not be quite w hat R ussell intended, fo r our p u r
poses ‘transla tion ’ refers to the fac t tha t the w ave profile, 
i.e. the shape it had w hen  v iew ed  from  the side, stays the 
sam e as tim e passed, as if  it w as a cardboard  cu tou t that 
w as m erely being  pu lled  along.

To study his solitary w aves, R ussell bu ilt a  30-foot 
long w ave tank  in  his back  garden. A m ong the m ost 
in teresting  th ings he d iscovered w as tha t there w as a 
m athem atical relationship  am ong the heigh t o f  the w ave, 
the depth  o f  the w ater w hen  at rest and the speed at w hich  
the w ave travels. H e believed  tha t th is phenom enon 
w ould  be o f  g reat im portance and so reported  on it to the 
B ritish  A ssociation  fo r the A dvancem ent o f  Science2.

A less-than-enthusiastic response

A lthough  w e can  say w ith  h indsight tha t he w as correct to 
have had h igh  expectations fo r the future o f  the solitary 
w ave, his ideas w ere not w ell received by the scientific 
establishm ent o f  his day. In  particular, m athem atical 
physicists G eorge B iddell A iry and G eorge G abriel 
Stokes each  argued that R u sse ll’s w ave theory w as com 
pletely inaccurate.

Perhaps R u sse ll’s real problem  w as tha t although  he 
w as clearly  a  g reat thinker, he had little expertise in  
m athem atics. A side from  the relationship  betw een  w ave 
heigh t and speed reported  above, he did not attem pt any 
serious m athem atical analysis o f  the phenom enon. Stokes

and A iry, how ever, w ere experts in  the use o f  d ifferential 
equations to m odel w ave phenom ena. And, unfortunately , 
they b o th  m istakenly believed  tha t the ir analysis had 
dem onstrated  that R u sse ll’s theory w as incorrect.

In  his an  article3, A iry derives a  d ifferen t fo rm ula fo r 
the speed o f  a w ave tha t he believed  w as in  disagreem ent 
w ith  R u sse ll’s and wrote: ‘W e are not disposed to recog
nize [Russell’s Solitary W ave] as deserving the epithets 
“g reat” or “prim ary” .’

Stokes w rote an  article4 about w aves w ith  a periodic 
profile (e.g. sine w aves) and presen ted  a form ula fo r such 
a w ave w ith  infin itely  m any hum ps w hich  he claim ed ‘is 
the only form  o f  w ave w hich  possesses the property  o f  
being  p ropagated  w ith  a constant velocity  and w ithout 
change o f  fo rm  -  so that a  solitary w ave cannot be p ropa
gated in  th is m anner. Thus the degradation  observed by 
R ussell is ... an  essential characteristic o f  the solitary 
w av e’.

Other known wave phenomena

C onsidering som e o f  the m athem atical analysis o f  w ave 
phenom ena tha t w as know n a t the tim e provides an 
insigh t into w hy Stokes and A iry w ould  have found 
R u sse ll’s observations d ifficu lt to believe.

L in e a r  s o li ta r y  w a v e s  

The equation

uxx -  utt = 0 (1)

is so fundam ental, it is often  called  ‘the w ave equa tion ’. 
It w as studied by Jean  le R ond d ’A lem bert in  the 18th 
century as a  m odel o f  a v ib rating  string on  a m usical 
instrum ent. F or exam ple, it is possib le to see the solu tion  
u(x, t) = sin(x + t) + sin(x -  t) to th is equation  show n in 
F igure 1 as being  such a string  tied  to the x -axis at the 
points x = 0 and x = n  and v iew ing  the graphs fo r d iffe r
en t values o f  t  as being  like the fram es in  a  movie.

As th is is a linear d ifferen tia l equation, one can  ta lk  
about having a basis o f  solutions and form ing other so lu
tions as linear com binations o f  them . U sually , trigonom e
tric functions such as those above are being  used  to w rite 
solutions o f  this equation. A lthough  it is no t necessary to 
w ork  upon  w ith  that basis, in  o rder to com pare th is equa
tio n  w ith  the one show n in  the nex t section  below , le t us 
try  to fo rm  a so lu tion  out o f  a trigonom etric basis w hich  
w ould  look like the solitary w ave tha t R ussell observed 
on the canal.

F or any value o f  the param eter k, the function

u* (x, t) = cos(kx + kt)

is a so lu tion  o f  eq. (1). N ote tha t the speed w ith  w hich  the 
w ave translates left is independent o f  the choice o f  the
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Figure 1. D’Alembert’s wave eq. (1) models the dynamics of a vibrating string as a function u(x, t) which gives 
the height of the string at horizontal position x and time t. By viewing a few different values of t (as shown 
above) it is possible to see how the string will move. Note that we are assuming u(0, t) = u(n, t) = 0 so that the 
string is n units long when at rest and fixed at the ends.

Figure 2. The solution (2) to eq. (1) looks like a single-humped wave translating to the left at constant speed 
even though it is a linear combination of cosine waves of different frequencies. For this to happen, it is important 
that the waves of different frequencies all move at the same speed.

constant k  w hich  determ ines the spatial frequency o f  the 
wave. The solu tion  u*( x, t ) is a w ave tha t has one peak 
and one trough  every 2 n  units w hile u*(x, t ) has a peak 
and a trough  in  only n  units, bu t an  anim ation o f  either 
so lu tion  w ould  show  the solu tion  m oving to  the left w ith  
constant speed one un it o f  space per un it o f  tim e regard
less o f  th is frequency.

A s D ’A lem bert’s w ave equation  is linear, any linear 
com bination  o f  these functions w ill also be a so lu tion . As 
show n in  F igure 2, the solution

u(x, t) = 0.25 + 0.352u*(x, t)  + 0.242u*(x, t)

+0.130u*(x, t) + 0.054u*(x, t) + 0.018u*(x, t), (2)

w hen v iew ed on the in terval - 3  < x < 3 and -0 .7  < t < 1.4 
looks like a single-hum ped w ave m oving to  the left at 
constant speed one. This particu lar choice o f  linear com 
bination  o f  cosine w aves has the effect o f  nearly  cancel
ling out to zero to  form  w hat appears on the graph to 
be a long flat stretch on either side o f  the hum p. B ecause 
each com ponent function  u* (x, t ) in  the linear com bina
tion  translates to the left a t speed one, th is property 
o f  cancelling  out to  form  w hat looks like a single hum p 
is p reserved as tim e passes. I t is precisely  th is in teresting

feature w hich  w ill be altered  in  the exam ple o f  the next 
section.

L in e a r  d is p e r s iv e  w a v e s

In  contrast to the exam ple o f  the previous section, con
sider the sim ple looking equation

u t = uxxx. (3)

O ne can easily  verify  tha t it has solutions o f  the form

u^ (x, t ) = cos(kx -  k  3t ) = cos(k (x -  k  2t )).

The in itial p rofile o f  uk  (x, t ) at tim e t = 0 looks exactly 
like u*( x, t ); a cosine w ave w ith  frequency depending 
on k. H ow ever, since it is o f  the form  f  (x -  k2t), it w ill 
m ove to the righ t w ith  constant speed k2. The fact tha t the 
speed depends on  the frequency is quite im portant, and so 
there is a technical term  tha t reflects it; we say that eq .
(3) is a dispersive equation.

The term  ‘d ispersive’ suggests things being spread out 
or d ispersed, and tha t is exactly  w hat it m eans here . A  
linear com bination  o f  d ifferen t frequencies w ill separate 
as tim e passes and hence the coefficients selected to
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Figure 3. Because the different frequencies translate at different speeds, solution (4) to the dispersive 
wave eq. (3) looks like a clear single-humped wave at time t = 0 but degenerates into a mess by time 
t = 0.2.

Figure 4. The dynamics of the initial profile u(x, 0) = 1 + 0.5e-x under the evolution of the Inviscid 
Burgers equation illustrates that even with a clear initial shape, problems such as a shock wave (in the 
centre) and ‘multi-valued functions’ (at right) can arise.

affect the shape o f  the g raph  such as in  eq. (2) w ill not 
last long.

O bserve w hat happens to the solution  

u (x, t) = 0.25 + 0 .352uf + 0.242u^

+0.130u3A + 0 .0 5 4 u k +  0.018u5A, (4)

as tim e passes (Figure 3). The figure show s tha t even 
though  it has the sam e clear single-hum ped shape at tim e 
t  = 0, it quickly degenerates into a m ess. (The figure 
shows the so lu tion  at tim es t  = 0, t  = 0.1 and t  = 0.2.)

B r e a k in g  n o n lin e a r  w a v e s

M any o f the com m on features o f  nonlinear equations can  
be understood  w ith  the Inviscid  B urgers’ equation

ut + uux = 0. (5)

O ne im portant d ifference betw een  this equation  and those 
we have seen earlier, is tha t apart from  such  solutions 
w hose in itial p rofile is a  straight line, w e cannot find  
closed form ulas fo r the solutions u(x, t) to th is equation. 
This is w hat generally  occurs w ith  nonlinear equations, 
even w hen they appear as simple as eq. (5). Consequently, 
various m ethods have b een  developed to  explain  the 
behav iour and dynam ics o f  solutions to those equations 
w ithout any explicit solutions.

The ‘m ethod o f  characteristics’ is usefu l fo r figuring 
out the behav iour o f  solutions to som e d ifferen tia l equa
tions. The basic idea is that the behav iour is tracked  along 
a curve (or ‘characteristic’) x = c(t) in  the xt-plane. W ith

an  appropriate choice o f  the curve, th ings w ork ou t effec
tively. In  the case o f  eq. (5), fo r e.g. the m ethod o f  
characteristics shows that the in itial profile o f  a w ave w ill 
evolve in  tim e so tha t its points sh ift to the righ t a t a 
speed proportional to the ir heights. In  particular, i f  the 
in itia l profile is the ‘b e ll-cu rv e’ u(x, 0) = 1 + 0.5e-x2, 
problem s arise as show n in  F igure 4. As the h ighest po in t 
travels to the righ t at a h igher speed than  the low er 
points, it eventually  catches up w ith  them . This leads at 
f irs t to a vertical ‘w a ll’ as seen in  the m iddle im age, o ffi
cially know n as a  shock w ave5. C ontinuing fu rther the 
peak  o f  the w ave finally  passes the low er points.

This is actually  not an  unrealistic  set o f  pictures. This 
equation  is a sim ple m odel o f  w aves as they approach 
the beach, and so th is ‘w ave b reak in g ’ phenom enon is the 
one to be recognized. H ow ever, despite the fact tha t these 
figures could  be associa ted  w ith  a fam iliar physical 
phenom enon, they are m athem atically  troubling  since the 
curves in  the centre and righ t graphs o f  F igure 4 fail to 
satisfy the ‘vertical line te s t’. In  o ther w ords, these are 
not even  functions.

Im p lic a t io n s  f o r  R u s s e l l ’s  s o li ta r y  w a v e

As seen in  F igure 2, we can  find  solutions to d ifferential 
equations w hich  take the fo rm  o f  a single-hum ped w ave 
translating  a t constan t speed. H ow ever, these solutions 
w ere fo r linear d ifferen tia l equations. O ne consequence 
o f  th is linearity  is tha t the solu tion  can  be m ultip lied  by 
the constan t 2 (thereby doubling its height) and it w ould  
still be a so lu tion  having the sam e speed. The fac t that 
R ussell c laim ed that the speed o f  his w ave w ould  depend 
on  its height, clearly  ind icated  tha t a m athem atical m odel 
o f  the situation  w ould  necessarily  be nonlinear, in  w hich
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case it w ould  be reasonable to expect the sort o f  d isto r
tion  seen in  F igure 4. M oreover, previous experience 
w ould  have led A iry and Stokes to expect d ispersion  to 
be an  im portan t fac to r in  the dynam ics o f  w ate r w aves, in  
w hich  case som ething like the ‘m ess’ in  F igure 3 w ould  
also be occurring  at the sam e tim e. B etw een  the d isto rtion  
and dispersion, it is d ifficu lt to see how  a properly 
shaped, translating, single-hum ped so lution  could  possi
b ly  exist, and th is is w hat Stokes and R ussell tried  to 
capture rigorously in  the ir m athem atical analysis.

A s w e w ill see shortly, such  assum ption  w ould  be at 
least partly  correct. The d isto rtion  and d ispersion  that 
they w ould  have expected  are b o th  present. H ow ever, 
the ir conclusion  tha t th is w ould  elim inate the possib ility  
o f  a solitary w ave w as incorrect. In  fact, an  appropriate 
com bination  o f  the tw o produces several surprising  and 
unexpected results.

‘The Great Eastern’

It is unfortunate that these tw o m athem aticians erro 
neously rejected  R u sse ll’s theory. Certainly, it m ust have 
d isappointed  R ussell. It m ay have looked as if  his in terest 
in  solitary w aves w as either m isplaced o r unappreciated. 
H ow ever, am ong ship designers he w as w ell rem em bered 
fo r determ ining the natural trave lling  speed fo r a g iven  
dep th  (a resu lt w hich  grew  directly  out o f  his research  on 
solitary waves) and fo r his w ork on w hat w as at the time 
the largest m oving m anm ade object, The Great Eastern. 
H is obituary in  the June 10, 1882 edition o f  The Times says:

The firs t vessel on  the w ave system  w as called  the 
W ave, and w as bu ilt in  1835; it w as fo llow ed in  1836 
by the Scott R ussell, and in  1839 by  the F lam beau  and 
Fire K ing. M r. Scott R ussell w as em ployed at this 
tim e as m anager o f  the large sh ipbuild ing estab lish 
m ent at G reenock, now  ow ned by  M essrs. C aird and 
Co. In  th is capacity  he succeeded in  having his system  
em ployed in  the construction  o f  the new  flee t o f  the 
W est Ind ia R oyal M ail Com pany, and four o f 
the largest and fastest vessels -  viz., w as the Teviot, 
the Tay, the C lyde and the Tw eed -  w ere b u ilt and d e
signed by h im self ... The m ost im portant w ork  he ever 
constructed  w as the G reat E astern  steam ship, w hich  
he contracted  to bu ild  fo r a com pany o f  w hich  the late 
M r B runel w as the engineer. The G reat Eastern, w hat
ever m ay have b een  her com m ercial failings, w as u n 
doubtedly a trium ph  o f  techn ical skill. She w as bu ilt 
on  the w ave-line system  o f  shape ... It is not necessary 
now  to refer to th is ship in  any detail. In  spite o f  the 
recen t advances m ade in  the size o f  vessels, the G reat 
Eastern, w hich  w as b u ilt m ore than  a quarter century 
ago, rem ains m uch  the largest ship in  existence, as 
also one o f  the strongest and ligh test b u ilt in  p ropor
tio n  to tonnage.

It is especially  in teresting  to note that in  1865, the 
G reat E astern  w as used  to lay 4200 km  o f the transa tlan 
tic te leg raph  cable betw een  Ireland and N ew foundland, 
w h ich  w as the firs t electronic com m unication  system  
b etw een  Europe and Am erica.

The KdV equation

By the year 1895, R ussell and A iry w ere bo th  dead and 
G eorge G abriel Stokes w as essentially  in  retirem ent. So, 
the controversy over R u sse ll’s w ave w as less em otionally  
potent, i f  not com pletely  forgotten. It w as at tha t tim e that 
a D utch  m athem atician, D iederik  K ortew eg, and his stu 
dent G ustav de Vries, decided to m odel w ater w aves on a 
canal using  d ifferential equations. (Perhaps they w ere 
inspired  by the fac t tha t the ir hom e country o f  the N ether
lands has so m any canals!)

B eginning  w ith  the accurate b u t unw ieldy N av ie r-  
Stokes equations, they m ade som e sim plify ing assum p
tions including a sufficiently  narrow  body o f  w ater so 
tha t the w ave could  be described w ith  only one spatial 
variab le and constant, shallow  dep th  as one w ould  find  in  
a canal. P u tting  all o f  th is together, they settled  on the 
equation6

(6)

D ue to the ir initials, th is im portan t equation  is now 
know n as the ‘K dV  equation’ (note 1).

It m ay be tha t the m athem atical p rogress on  under
standing R u sse ll’s solitary w ave w as delayed un til the 
appropriate m athem atical techniques w ere available. The 
study o f  elliptic curves in  the decades afte r R u sse ll’s 
orig inal observation  did not have any application  in  the 
study o f  w ater w aves. H ow ever, it w as by m aking use o f  
results from  th is area o f  ‘pure m athem atics’, tha t K orte- 
w eg  and de V ries w ere able to derive a large set o f  so lu
tions to eq. (6) w hich  could  translate and m ain ta in  the ir 
shape. A m ong these solutions w ere the functions

usol(k ) ( ̂  t) = ( e k x  + k  t +  e ~ k x ~ k  t  )2
= 2k2 sech2 (kx k  k 3t),

(7)

w hich  satisfy the K dV  equation  fo r any value o f  the con
stant k . This fo rm ula g ives a translating  solitary wave, 
like R u sse ll’s, tha t travels a t speed k2 and has heigh t 2k2. 
F or instance, in  Figure 5 solutions usol(1 )(x , t) and usol(2 )(x , t) 
are com pared side-by-side. N ote tha t in  each  case the 
heigh t o f  the w ave is tw ice its speed.

Two th ings here should be surprising  to those who 
created  p rejud ices on  d ifferen tia l equations, viz. they 
found  an  exact form ula fo r various solutions to a non
linear partia l d ifferen tia l equation  (NLPD E), and the
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Figure 5. Two solitary wave solutions of the form of eq. (7) to the KdV eq. (6). The figure on the left shows solution 
with k = 1 and the right is k = 2. In each case, the figure illustrates the solution at times t = -1, t = 0 and t = 1. Note that 
the speed with which the wave translates is k2 and that the height is twice the speed.

solutions could  avoid  d istortion  and dispersion  despite 
S tokes’ in tu ition  to the contrary. C onsider, for instance, 
tha t eq. (6) is an evolution  equation  w hich looks like a 
com bination  o f  two equations that we saw  prev iously . 
The u xxx te rm  in the evolution  eq. (3) resu lted  in the sepa
ra tion  o f  d ifferen t frequency com ponents o f  a ‘sing le
hum ped’ initial profile, lead ing  to its d issipation . O n the 
o ther hand, the uu x te rm  in  the Inv iscid  B urgers’ eq . (5), 
for w hich we could  not find explicit solutions, induced a 
nonlinear d istortion in its so lutions that destroyed any 
‘sing le-hum ped’ in itial profile. H ow ever, strangely, the 
com bination  o f  these two term s seem s to avoid  bo th  o f  
these p roblem s.

It w ould  be easy to d ism iss these surprises as being 
m ere coincidences, no t w orthy o f  further study, and this 
is likely the w ay that anyone in terested  in  the solitary 
w ave controversy m ight have reacted  at the tim e. S pecifi
cally, the fact that so lutions could  be w ritten  explicitly  
w as a consequence o f  the coincidence that the K dV  equa
tion  bears som e sim ilarity to an  equation  re la ted  to e llip 
tic  curves. A nd, one m ight say that it is a coincidence 
here that the effects o f  d istortion  (from  the uu x  term ) and 
d ispersion  (from  u xxx) are perfectly  balanced  so they can 
cel ou t. H ow ever, it w ould  be a long tim e before anyone 
rea lized  that these w ere no t m ere co incidences. In  fact, 
m any m ore solutions to the K dV  equation  can  be w ritten  
exactly  and have geom etric origins, and the ‘perfect 
b alance’ tha t allow s the existence o f  a solitary w ave so lu 
tion  to a nonlinear equation  is no t so rare as one m ight 
th ink .

Early 20th century

R esearchers in the early 20 th  century show ed little in te r
est in  the K dV  equation or R u sse ll’s solitary w ave. Thus,

nothing directly  re la ted  to th is story occurred  during this 
tim e. H ow ever, two tangentially  re la ted  developm ents are 
w orth  m ention ing .

The theory o f  physics underw ent a m ajor revolution  
during that period  in  the form  o f  quantum  m echanics. A t 
the risk  o f  oversim plify ing a very com plicated  theory , let 
m e say that quantum  m echanics com es from  tw o basic 
assum ptions: tha t particles them selves are w aves and that 
quantities that w ere previously  thought o f  as num bers 
(such as ‘speed’) are actually  operators, like the d iffe ren 
tial operators m entioned  below . (See for e.g., an  article 
by T erence Tao on the Schrodinger operator; h ttp :// 
w w w .m ath .ucla.edu/~ tao /preprin ts/schrodinger.pdf.)

In  the context o f  th is article w hat m atters is tha t there 
is lo t o f  in terest in  w aves that behave like partic les and/or 
particles that behave like w aves as this seem s to be w hat 
the w orld  is m ade of. In  tha t sense, R ussell’s observation  
o f  an iso lated  w ave tha t m aintains its shape and speed -  
ju st as a hypothetical particle w ould  do under its own 
inertia  -  could have been  o f  in terest to the scientists who 
created  quantum  physics, bu t tha t d id  not happen .

A nother im portant base to the story o f  solitons is that 
the m athem atical physicists trea t d ifferentia l operators 
like the ‘Schrodinger O perato r’ L  = d2 +  u(x) as having a 
physical reality  and not m erely as form al m athem atical 
no ta tions. A m ong the o ther things done w ith  them  is to 
theoretically  ‘scatter’ a w ave o ff  o f  them .

A lso in  the early 20 th  century, the B ritish  m athem ati
cians B urchnall and C haundy w ere doing the ir ow n re 
search in w hich  the num bers o f  the usual theories w ere 
rep laced  by d ifferentia l operators. H ow ever, ra ther than 
doing concrete physics, they w ere w orking in one o f  the 
m ost ‘p u re ’ areas o f  m ath  research: algebraic geom etry7.

As it tu rned  out, the algebraic geom etry o f  d ifferential 
operators and scattering  o f  w aves o ff o f  d2 +  u(x) becam e
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im portant parts o f  the theory o f  solitons in  the second 
h a lf o f  the 20 th  century.

Numerical discovery of solitons

Just as the firs t b ig  m athem atical advance tow ards under
standing R u sse ll’s solitary w ave had to w ait un til the 
theoretical m achinery o f  the theory o f  ellip tic functions 
w as in  place, the next b ig  step required  som e actual m a
chinery: the d ig ital com puter. In  the 1950s, com puters 
w ere not the user-friendly  m achines o f  today b u t w ere 
considered tools fo r m athem aticians.

A m ong those doing ‘num erical experim en ts’ on  these 
early com puters w ere physic ist Enrico Ferm i and m athe
m aticians John  P asta and S tanislaw  U lam  at the Los 
A lam os N ational Laboratory , USA . T ogether w ith  M ary 
Tsingou, they program m ed a L os A lam os com puter to 
ob ta in  approxim ate solutions to nonlinear equations w ith  
the p rescien t in ten tion  o f  developing b e tte r in tu ition  
about nonlinearity . It w as the ir assum ption tha t if  a  non 
linear system  w as to start w ith  a nice, ordered in itial 
state, it w ould  not take long before it w as d istorted  and 
destroyed beyond  recognition; b u t they w anted  to see it 
happen in  experim ents on  the com puter. W hat they found 
surprised them . Just as Stokes and Airy w ere m istaken in  
the ir assum ption tha t a nonlinear w ave equation  w ould  
necessarily  destroy a nice single-hum ped in itial state, the 
Los A lam os investigators w ere surprised  to see tha t the ir 
in tu itions w ere not confirm ed8; or, as U lam  described it:

Ferm i expressed  o ften  a b e lie f  tha t future fundam ental 
theories in  physics m ay involve nonlinear operators 
and equations, and tha t it w ould  be usefu l to attem pt 
p ractice in  the m athem atics needed fo r the under
standing o f  nonlinear system s ... . The results o f  the 
calculations (perform ed on the old M A N IA C  
m achine) w ere in teresting  and quite surprising  to 
Ferm i. H e expressed to me the op in ion  tha t they really 
constitu ted  a little discovery in  prov id ing  intim ations 
tha t the prevalen t beliefs in  the un iversality  o f  ‘m ix
ing and therm alization ’ in  nonlinear system s m ay not 
be alw ays ju s tified 9.

This m ystery, tha t nonlinearity  w as seem ingly better 
than  expected, w as know n as the F erm i-P asta -U lam  
P rob lem  and w as described in  an  article published  at Los 
A lam os. B ecause Los A lam os is the site o f  m uch c lassi
fied  w ork on  nuclear w eapons, the article w as not o ffi
cially  d istributed  un til the 1960s.

It w as then  tha t m athem aticians M artin  K ruskal at 
P rinceton  U niversity  and N orm an Zabusky a t B ell Labs, 
USA , conducted  the ir ow n com puter experim ents10. 
R ather than  considering a d iscrete system  o f connected 
v ibrating  m asses as in  the F e rm i-P asta -U lam  experi
ments, they w anted to consider a  nonlinear w ave equation.

Taking the F erm i-P asta-U lam  model and considering its 
continuum  lim it gave them  such a nonlinear partial d iffe 
rential equation  fo r a function  u (x , t). H ow ever, it w as not 
a new  equation; they had red iscovered the K dV  eq. (6).

A t th is point, the existence o f  solutions in  the form  
o f  eq. (7) w as know n. H ow ever, there w as no reason  to 
expect tha t any additional solutions could  be w ritten  in  an 
exact form . So, K ruskal and Zabusky conducted num eri
cal experim ents using  com puters. There w ere tw o in ter
esting  results from  th is study:

•  I f  the in itial p rofile w as positive and ‘localized ’ ( if  it 
w as equal to zero everyw here except on  one fin ite  in te r
v a l w here it took  positive values), then  the ir experim ents 
show ed the so lu tion  break ing  apart into a fin ite  num ber 
o f  hum s, each  behaving  like one o f  R u sse ll’s solitary 
w aves, along w ith  som e ‘rad ia tion ’ w hich  travelled  away 
from  them  in  the o ther direction. This w ould  suggest that 
the solutions o f  eq. (7) play a  fundam ental role in  
describ ing a general localized  positive so lu tion  to the 
K dV  equation, sim ilar to the w ay in  w hich  basic v ibrating  
m odes form  a basis fo r solutions to D ’A lem bert’s w ave 
eq. (1). (O f course, they cannot actually  fo rm  a basis fo r 
solutions as the equation  is nonlinear and its so lution  set 
does not have the structure o f  a  v ec to r space!)
•  Som ething in teresting  also happens w hen one v iew s 
solutions tha t ju s t appear to com bine tw o d ifferen t solita
ry w aves (w ithout ‘rad ia tion ’). F o r these solutions (F ig
ure 6), there are tw o hum ps each  m oving to the left w ith  
speed equal to ha lf the ir height. H ow ever, it is not ju s t  a 
case o f  a sum  o f tw o o f  the solitary w ave solutions found 
by  K ortew eg and de V ries; if  the ta lle r o f  the tw o hum ps 
is on the left, then  they sim ply m ove apart. H ere, it w ould  
be in triguing i f  we consider a situation  in  w hich  a ta lle r 
hum p is to the righ t o f  a shorter one. As it is m oving to 
the left a t a h igher speed it w ill eventually  catch  up. In tu i
tio n  about nonlinear d ifferen tia l equations w ould  have 
m ade an  expert at the tim e realize tha t though  the K dV  
equation  has th is unique property  o f  having solitary w ave 
solutions, w hen  tw o solitary w aves com e together like 
this, the resu lt w ould  be a  mess. O ne w ould  expect that 
w hatever coincidence allow s them  to exist in  iso lation  
w ould  be destroyed by overlap and tha t the fu ture dynam 
ics o f  the so lu tion  w ould  not resem ble solitary w aves at 
all. H ow ever, the num erical experim ents o f  K ruskal and 
Zabusky show ed hum p shapes surviving the ‘co llis ion ’ 
and seem ingly separating  again  into two separate solitary 
w aves translating  left a t speeds equal to h a lf  the ir 
heights! M oreover, the same phenom enon occurred  w hen  
three or m ore separate peaks w ere com bined to fo rm  an 
in itial p rofile w here the peaks m oved at appropriate 
speeds, b riefly  ‘co llid e’ and separate again.

The nam e ‘solitary w av e’ co ined  by R ussell m ore than  
one hundred years ago w as in tended to reflec t the fact 
tha t these w aves, unlike the periodic sine w ave solutions 
generally  considered  at the tim e, had only a single peak.
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Figure 6. A solution to the KdV equation as it would have appeared to Kruskal and Zabusky in their 
numerical experiments. Note that two humps, each looking like a solitary wave, come together and then 
separate.

H ow ever, now  seeing how  gregarious they are, the nam e 
no longer seem s appropriate. The term  ‘so liton’ w as used 
by K ruskal and Z abusky to describe these solutions, by 
com bining the beginning o f  the w ord ‘so litary ’ w ith an 
ending m eant to suggest the concept of a fundam ental 
particle in physics like a ‘p ro ton ’ or ‘elec tron’.

M ore specifically , w e now  refer to the solitary w ave 
solutions as 1-so liton  solutions o f  the K dV  equation . In 
general, an n -so liton  solution o f  the K dV  equation  has n  
separate peaks (at m ost tim es). O ne can loosely refer to 
each o f  the separate peaks as being ‘a so liton ’, even 
though they are part o f  the graph o f  the sam e function, 
sim ilar to a local m axim um  in the graph o f  a polynom ial.

For instance, F igure 6 illustrates a 2 -so liton  solution o f  
the K dV  equation in w hich a ta ller soliton travelling  at 
speed 4  catches up to a shorter one w ith  speed 1 . Briefly, 
at tim e t =  0, we cannot see two separate peaks, but later 
again they separate so that we can clearly see a soliton o f  
height 2 and another o f  heigh t 8 . H ow ever, this should not 
be m istaken to be the same as two 1-solitons view ed to 
gether. The next section w ill explore the ways in w hich the 
two solitons ‘noticed’ and affected each other as they met.

Hints of nonlinearity

A s the K dV  equation  is nonlinear, there is no reason to 
th ink tha t the sum  o f  tw o solutions w ould  be a so lution . 
In particular, the function u x(x, t) = usol(1)(x, t) + usol(2)

(x , t)  show n in F igure 7  is not a solution to the K dV  equa
tion . H ow ever, i f  one w ere to w atch an anim ation that 
show s its dynam ics, one w ould  have to look very closely 
to see how  different it is than usol(12)(x, t), shown in Figure 
6. These differences, though subtle, are quite im portant.

F irst, consider the graphs o f  u x(x, 0) and u sol(12)(x, 0). 
In both cases, only a single hum p is seen in the graph o f 
the function at that tim e. H ow ever, the height o f  the 
hum p is different. Since u x(x, 0) is the sum  o f  peaks o f 
heights 2 and 8, it has a peak o f  height 10 . In contrast, 
F igure 6 clearly  show s tha t u sol(1,2)(x, 0) has a peak o f  
height 6. This is one clear d ifference betw een the 2- 
soliton solution and the sum  o f  tw o 1-so liton  solu tions.

M ore subtle is the fact that there is som ething slightly 
d ifferent about the positions o f  the peaks in the 2-soliton  
solu tion . N ote that the shorter soliton is nearly centered 
on the y -ax is at tim e t = -0 .5 . A t tim e t = 0 one cannot 
see tw o separate peaks, but then  at tim e t = 0 .5  w hen the 
peaks have separated again, one still sees the sm aller soli- 
ton  nearly centered on the y -axis. In contrast, as the 
sm aller peak in u x(x, t) always m oves to the left at con
stant speed 1  (note 2), it w ill have m oved one unit to the 
left at the tim e interval -0 .5  < t < 0.5.

C learly  there is som e sort o f  nonlinear interaction 
going on in the 2-so liton  solution. I f  solitons are consi
dered as particles, they w ould  have not sim ply passed 
through each other w ithout any effect, but have actually 
‘co llided’ and in som e sense the K dV  equation incorpo
rates their ‘bounce’.
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Figure 7. This is not a solution to the KdV equation. This is a sum of the one-soliton solutions 
usol(i)(x, t) and usol(2)(x, t). Compare this with Figure 6, which is a KdV solution, to see subtle dif
ferences despite the fact that each shows a hump moving to the left at speeds 1 and 4 respective
ly, at most times and a single hump centred on the x-axis at time t = 0.

Explicit formulas for n-soliton solutions

A n interesting  fact revealed in a later study by G ardner 
e t a l.11, w as tha t these n-so liton  solutions o f  the KdV  eq
uation  did not have to  be studied in num erical sim ulations 
because it w as possib le to  w rite exact form ulas for them . 
For exam ple

usol(1,2)( x , t) =

24(e2xk2t + 6e6xk18t k  4e4xk16t k  4e8x+20t k  e10xk34t)
(1 k  3e2xk2t k  e6xk18t k  3e4xk16t )2 : (8)

is an exact solution o f  eq . (6 ) and is show n in F igure 6 .
This is quite surprising as it m eans tha t we have exp li

cit form ulas fo r a large and interesting  fam ily o f  solutions 
to  th is N LPD E. I t is quite in triguing to  note tha t the tech 
nique w hich w as used to  find those solutions is based on 
quantum  m echanics (the theory  in w hich particles have a 
w ave-like nature). In  tha t theory, some o f  the quantities 
w hich w ere num bers in previous theories o f  quantum  
physics w ere replaced by d ifferentia l operators. To study 
the one-dim ensional scattering problem  o f  how  an incom 
ing w ave y/(x) w ill ‘bounce o f f  o f  another w ave u(x)

(thought o f  as an obstacle), one is led to  w ork  w ith the 
d ifferential operator d2 + u(x). Eventually , th is show s tha t 
the n-so liton  solutions u(x, t) to the KdV equation have 
the property  o f  being reflectionless for th is scattering 
problem  (for any value o f  t and any n -soliton solution). 
A n additional p roperty  tha t tu rns out to be im portant is 
tha t they  depend isospectrally  on the variable t (i.e. the 
eigenvalues o f  the operator do no t change in tim e). P ur
suing th is line o f  reasoning, G ardner et a l .n  w ere able to 
use a technique called inverse scattering to w rite exact 
form ulas for the n -soliton solutions.

Soliton theory and applications

The KdV equation  is quite in teresting ; despite being n on 
linear and dispersive, it has solutions w hich avoid the 
dam aging effects o f  dispersion and nonlinear d istortion 
and m aintain  th e ir  clear, localized  shapes indefinitely. 
These solutions have a certain  ‘partic le -like’ nature, 
w hich is contrary  to our in tu ition  o f  how  w aves ought to 
behave bu t m ight prove useful in understanding the beh a
v iour o f  both  w aves and particles. In terestingly , the n - 
soliton solutions look alm ost like linear com binations o f  
n 1-so liton  solutions, suggesting tha t there m igh t be some
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nonlinear analogue o f  the superposition  princip le fo r 
linear equations at w ork. F inally , unlike m ost nonlinear 
equations w hose solutions can  be studied only num erical
ly o r qualitatively, w e can  w rite explicit fo rm ulas for 
exact K dV  solutions.

S oliton theory is a b ranch  o f  m athem atics w hich  w as 
developed to understand  this phenom enon. Some o f  the 
b ig  questions it addresses are: (i) W hy is it tha t w e can  
w rite several exact solutions to the K dV  equation  w hen 
we cannot do so fo r m ost nonlinear equations?. (ii) 
The relationship  betw een  the n -so liton  solutions and n 
d ifferen t 1-soliton solutions tha t it suggests tha t there is a 
way in  w hich the K dV  equation solutions can be combined. 
W e know  that they are not actually linear com binations and 
do not form  a vector space. W hat is the m ethod in  w hich 
solutions are com bined and can we give them  a geom etric 
structure analogous to the vector space structure for solu
tions to linear equations?. (iii) How  can we identify other 
equations -  either know n already to researchers o r y e t to be 
discovered -  that have these same interesting features?. (iv) 
W hat can we do w ith this new inform ation?

The b riefest possib le answ er to these questions is to 
note tha t the K dV  equation  has a h idden  underly ing  a lge
b raic structure tha t generic N LPD Es do not share and by 
understanding  th is structure w e can  find  m any d ifferent 
equations tha t share all o f  these features and thus deserve 
the nam e ‘soliton  equations’.

These equations often  have physical significance as 
they m odel those phenom ena w hich  w e encounter in  
the real w orld  such as w aves on a 2-dim ensional surface 
like the ocean, ligh t in  op tical fibre, e lectrons in  a 
th in  w ire, transcrip tion  bubble in  D N A, o r energy 
transfer in  proteins. In  th is sense, solitons have becom e 
tools o f  scientists and engineers fo r understanding  the 
universe.

Soliton theory is also useful in  m athem atics. As Ferm i 
predicted , it gives us a  w indow  into the w orld  o f  non li
nearity. P reviously , it w as d ifficu lt to p red ic t about a 
nonlinear situation. N ow , we have a  large set o f  nonlinear 
equations w hose solutions can  be studied  explicitly  (note 
3). So, in  som e senses, the algebro-geom etric structure o f  
so liton  equations allow s us to use our know ledge o f  a lge
b ra  and geom etry to understand nonlinear d ifferential 
equations b e tte r than  w e did before. H ow ever, soliton 
theory is also surprisingly useful in  the o ther d irec tion  as 
well. T hat is, there are questions in  algebraic geom etry 
w hich  have b een  answ ered  using  so liton  theory.

M athem atics is som etim es seen as being  d iv ided into 
‘p u re ’ and ‘app lied ’ subjects. The analysis o f  N LPD Es 
and especially  the dynam ics o f  w aves, generally  fall in  
the ‘app lied ’ side o f  th is d iv ision  w hile algebraic geom e
try is a p art o f  the ‘p u re ’. To som e o f  us, it is endearing 
tha t each  o f  these can  inform  us o f  the o ther in  the in te r
section  that is the so liton  theory.

M y tex tbook  G lim pses o f  Soliton Theory1 attem pts to 
elaborate fu rthe r on  the answ ers to b ig  questions (i)-(iii)

a t a level w hich  w ould  be accessible to any reader w ho 
has taken  traditional undergraduate courses in  linear 
a lgebra and m ultivariable calculus. I f  I ach ieved my goal, 
by  the end o f  the book  a reader should  have a sense o f  
satisfaction, m uch as one feels a certain  thrill upon  learn 
ing how  a m agician  perform ed a particu larly  surprising  
trick. O f course, m any o ther authors have w ritten  about 
th is topic as well. A fter the ‘ep ilogue’, I have suggested 
som e additional literature about solitons tha t can  be 
consulted.

Epilogue

It w as no t only o ther researchers w ho w ere un in terested  
in  the article by  K ortew eg and de V ries in  the early 20th  
century, even  K ortew eg and de V ries them selves failed  to 
show  m uch in terest in  it. A t the tim e, it m ust have 
seem ed like a relatively m inor result, not noticeable 
am ong the o ther im portan t discoveries o f  K ortew eg, and 
not im portan t enough  to in terest de V ries w ho stopped 
doing research  and becam e a teacher.

B o th  K ortew eg and de V ries w ould  be very surprised 
to learn  w hat becam e o f  the ir one collaboration. I w as in 
spired to look at the ir article on  its 100th anniversary, and 
so in  1995 I found  my w ay to a rarely used corner o f  the 
M IT  library w here the old jou rnals w ere kept. There w ere 
shelves and shelves o f  jou rnals from  the late 19th cen 
tury, all covered in  dust. O ne volum e stood out as its 
b ind ing  w as clean, and w hen  I took  it o ff  the she lf it fell 
open  to the K dV  article. C learly, this article w hich  
a ttracted  little a tten tion  w hen  it w as firs t published  was 
o f  g reat in terest one hundred y ears later.

K ortew eg and de V ries are honoured in  o ther w ays that 
they probably  w ould  never have im agined. The m athe
m atics institu te in  A m sterdam  is called  the ‘K dV  In sti
tu te ’, and one o f  the headings in  the m athem atics subject 
classification  schem e is ‘K dV -like E quations’.

One o f  the applications o f  so liton  theory has also p ro 
vided  an  ironic epilogue to the story o f  J. S. R ussell and 
his in terest in  solitary w aves. As they d id  in  the 19th cen 
tury, people have once again  la id  cables fo r com m unica
tio n  b etw een  N orth  A m erica and E urope under the ocean. 
This tim e, o f  course, R u sse ll’s boa t is not being  used. 
H ow ever, R usse ll’s w ork is still central to this new er 
effort a t trans-A tlantic com m unication. The cables this 
tim e are no t electronic b u t optical. The in teresting  poin t 
is tha t the in form ation  in  the op tical fibre is carried  in  the 
fo rm  o f  solitons -  solitary w aves o f  light. One can  see 
w hy the property  tha t R u sse ll’s w ave on the canal ‘kept 
on  go in g ’ w ould  be a usefu l feature fo r com m unication  
over such long distances. As the F iber O ptic R eference  
G uide  puts it, ‘The ability o f  so liton  pulses to travel on  
the fiber and m ain ta in  its launch  w ave shape m akes 
solitons an  attractive choice fo r very  long distance, high 
data rate fiber optic transm ission  system s12’.

CURRENT SCIENCE, VOL. 115, NO. 8, 25 OCTOBER 2018 1495



REVIEW ARTICLES

Suggested reading

Consider consulting the follow ing resources fo r additional
in form ation  on  th is topic:

•  F ilip p o v ’s The Versatile So liton13 covers m any h isto r
ical facts w h ich  w ere le ft out o f  th is b r ie f  sum m ary.

•  B ullough  and C audrey’s h istorical analysis14 appears 
in  the proceedings o f  a conference honouring the 
100th anniversary o f  the article by  K ortew eg and 
de Vries.

•  The article on  sym m etries o f  solitons by P alais in  
B ulle tin  o f  the A M S 15 begins w ith  a history o f  solitons 
before m oving onto a m ore rigorous m athem atical 
discussion.

•  F ields M edalist, Sergei N ovikov, w rote an  article in  
R ussian  w hich  w as translated  into E ng lish  and 
p rovides a  glim pse o f  the h istory o f  solitons from  a 
Soviet perspective16.

•  P lease consult the book  by R em oissenet17 fo r a m ore 
physical approach to th is subject, includ ing  m any 
laboratory experim ents. This book  also contains 
discussions o f  solitons in  optical fibre and electrical 
circuits.

•  A  b r ie f  survey o f  the applications o f  the K dV  equa
tion, em phasizing those w hich  had b een  confirm ed by 
experim ents as o f  1995, can  be found  in  the review  
article by C righton18.

•  O f course, i f  you  enjoyed this article p lease also take 
a look at the book  G lim pses o f  Soliton Theory1 from  
w hich  it w as excerpted.

Notes

1. In fact, the equation they wrote was not exactly as in the form of
eq. (6). In particular, their equation had explicit parameters for 
various physical constants which have been eliminated here for 
convenience by a change of variables. Moreover, it should be noted 
that the history of mathematics is rarely as simple as it is portrayed 
in textbooks, and many would argue that this equation was not 
accurately named, as the equation and its connection to Russell’s 
solitary wave were studied in earlier publications by another 
mathematician, Joseph Valentin Boussinesq19,20.

2 Admittedly, the peaks in ux(x, t) are not necessarily located in 
exactly the same places as the corresponding peaks in the two soli
tary wave solutions. However, if one takes this into account, then 
the apparent shifting of the expected locations of the peaks in the 
2-soliton solution is actually worse, not better, so we will simply 
ignore it.

3. However, it should be noted that these are rather special nonlinear 
equations and so we should be careful not to over-generalize. Much 
more is possible in ‘the nonlinear world’ than we see through 
the window of soliton theory. Chaos theory, another important 
development of 20th century mathematics, provides a ‘window’ 
that looks at nonlinearity from the other side that gives a different 
view.
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