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floodplain system of the study area. While this partially 
meets water requirement for a part of North Delhi, it will 
avoid waterlogging. 
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Activity spectrum of detoxification enzymes was sys-
tematically assessed in tobacco caterpillar, Spodoptera 
litura collected from four locations in Kerala, India, to 
decipher the mechanism of insecticide resistance.  
Using the susceptible check ICAR-NBAIR strain, spe-
cific activity profiles of acetylcholine esterase (AChE) 
were found to be 16.16-, 10.71- and 4.88-fold higher in 
the Kovilnada, Palappur and Kanjikuzhi populations 
respectively. Specific activities of mixed function  
oxidase (MFO) were also found to be 19.24-, 17.11-, 
6.08-fold higher in the same populations respectively, 
indicating the predominance of AChE and MFO  
towards imparting resistance. Carboxylesterase (CarE) 
and glutathion-S-transferase (GST) specific activity 
profiles were 3.62- and 3.37-fold higher in the Kovil-
nada population, followed by 2.89- and 2.98-fold higher 
in the Palappur population and as 2.10- and 1.15-fold 
higher in the Kanjikuzhi population, indicating their 
partial role in resistance development. Suppression of 
specific activities in synergism bioassays with AChE in 
chlorpyriphos + TPP treatment (9.32-fold), GST in 
chlorpyriphos + DEM (4.78-fold) and CarE in quinal-
phos + TPP (5.15-fold) highlighted the involvement of 
multiple detoxification enzymes conferring resistance 
to organophosphates. Reduced activity of MFO in case 
of lambda-cyhalothrin + PBO (5.35-fold), CarE in 
case of cypermethrin + TPP (7.36-fold) and 3.60-fold 
reduction in MFO in case of cypermethrin + PBO hig-
hlighted the role of esterases and MFOs towards resis-
tance development against synthetic pyrethroids. 
 
Keywords: Detoxification enzymes, insecticide resis-
tance, Spodoptera litura, synergists. 
 
INDISCRIMINATE use of insecticides targeting minor pests 
has resulted in their development as key pests by rapid 
gene alterations or physiological mechanisms which have 
provided these pests the capacity to tolerate toxic doses 
of insecticides. With the advancement in timeline, the 
number of insects known to be tolerant to various insecti-
cides has also increased at an alarming rate. In 1986,  
260 insect species were reported to have developed  
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resistance1. By the end of 2016, about 597 insects species 
of various orders had developed resistance at least one  
acaricide/insecticide. A total of 14,644 cases of arthropod  
insect resistance have been reported against 336 com-
pounds throughout the world2. 
 Among the several insect pests that had developed  
resistance against various insecticides, Spodoptera litura 
(Lepidoptera: Noctuidae) is one whose management is 
mainly targeted by vigorous use of insecticides. S. litura 
is a polyphagous insect pest inflicting more than 26%–
100% yield loss in South Asia3, and also resulting in sig-
nificant economic loss to many economically important 
crops worldwide4. In order to reduce losses due to this pest, 
farmers often depended on chemical interventions involv-
ing organophosphates, carbamates, synthetic pyrethroids 
and some selected new-generation insecticides which  
resulted in the development of resistance and control fail-
ures5,6. Key mechanisms behind this phenomenon were 
attributed to biochemical alterations, where detoxification 
enzymes play a vital role. Resistant strains of S. litura 
exhibited various resistance mechanisms such as reduced 
sensitivity of target sites7, enhanced metabolism of insec-
ticides mediated by higher titres of detoxifying enzymes8 
and reduced cuticular penetration. 
 The detoxifying enzymes associated with this metabolic 
resistance are carboxylesterase (CarE), glutathione-S-
transferase (GST) and mixed function oxidase (MFO)8–10. 
These enzymes which generally occur in minute quanti-
ties in susceptible strains, lead to the development of  
resistant strains with their elevated levels making them 
capable of detoxification. On the other hand, synergists 
are considered as important additives in resistance  
management for disabling several metabolic mechanisms 
and are found to be viable options to bring back de-
sensitized insecticides into functionality through altera-
tion of detoxification enzymes11. 
 Considering the difficulty and cost involved in the 
formulation of new insecticide molecules, management of 
insecticide resistance is a dire need to upkeep the bio-
efficacy of present and future insecticides. In this context, 
it becomes vital to understand the probable mechanisms 
by which insects attain resistance so that we can wisely 
design strategies to counter the same. 
 The eggs and early instar larvae of S. litura were  
collected from the infested vegetable fields grown in test 
locations, viz. Kovilnada (8°25′N, 77°21′E) and Palappur 
(8°26′N, 76°58′E), Thiruvananthapuram district, Kerala, 
whose populations showed comparatively higher levels of 
resistance as well as Kanjikuzhi (9°37′N, 76°20′E), 
Alappuzha district, Kerala (organic field check) along 
with susceptible reference strain of S. litura (Sblr)  
obtained from ICAR-National Bureau of Agricultural  
Insect Resources (NBAIR), Bengaluru, Karnataka. Bioas-
says were performed using this susceptible strain to  
obtain mortality data to be used as a reference for base-
line susceptibility of insecticides. All populations were 

reared in separate containers in isolation under laboratory 
conditions and F1 generation from single egg mass was 
used for bioassays. Organic field check was selected 
based on discriminating dose concept12. 
 The susceptible Sblr strain was selected to evaluate and 
compare the levels of enzymes, viz. CarE, acetylcholine 
esterase (AChE), GST and MFO when exposed to test  
insecticides in combination with the synergists or devoid 
of them. 
 Commercial formulations of insecticides used in the 
bioassay were chlorpyriphos (Classic 20 EC, Cheminova), 
quinalphos (Ekalux 25 EC, Indofil Chemical Company 
Ltd, Mumbai), lambda cyhalothrin (Karate 5 EC, Syngenta 
India Ltd, New Delhi) and cypermethrin (Megahit 10 EC, 
Syngenta India Ltd, New Delhi). Enzyme activity was  
also evaluated in the presence of three synergists, viz.  
piperonyl butoxide (PBO; 3,4-methylenedioxy-6-propyl 
benzyl-n-butyl diethyleneglycolether); TCI Chemicals 
India Pvt Ltd, Chennai, diethyl maleate (DEM) and tri-
phenyl phosphate (TPP; from Merck Life Sciences Pvt 
Ltd, Mumbai). 
 The technique for bioassay was adopted from the me-
thod described by the Insecticide Resistance Action 
Committee13. Castor leaves were cut into discs of 5 cm 
diameter, rinsed thoroughly in distilled water and air-
dried to remove moisture followed by dipping in the test 
insecticide solution for about 25–30 sec. The excess in-
secticide solution was removed by gentle shaking of leaf 
discs. Ten early, third-instar larvae were transferred to 
each treated leaf forming one replication, and replicated 
thrice. For analysing the effect of synergist on insect  
enzyme levels, test insecticides were mixed with PBO, 
DEM and TPP in the ratio 1 : 4 and bioassay was  
performed. 
 S. litura larvae (third instar) from selected locations 
and bioassay experiments were used for the study. Larvae 
representing each treatment were rinsed with acetone to 
remove surface residues and weighed. Whole larval  
homogenate was prepared by grinding seven larvae in an 
ice-bucket with sodium phosphate buffer (100 mM, pH 
7.0), containing 1 mM each of EDTA (ethylene diamine 
tetra acetic acid), PMSF (phenyl methyl sulphonyl  
fluoride) and PTU (phenyl thiourea) and 20% glycerol. 
Homogenate was centrifuged at 10,000 rpm for 20 min at 
4°C. Pellet was thrown away while the supernatant was 
stored at –20°C and used as enzyme source. 
 CarE activity was measured using the procedure of 
Kranthi12. The enzyme assay mixture consisted of 1 ml 
enzyme stock and 5 ml substrate solution incubated in the 
dark for 20 min at 30°C, with intermittent shaking. A 
control blank was maintained separately with 1 ml phos-
phate buffer and 5 ml substrate solution. Next, 1 ml each 
of staining solution was added to both the sample and 
blank tubes, and incubated again for 20 min at room tem-
perature. Absorbance was recorded in double-beam UV 
spectrophotometer (Hitachi-U2900) at 590 nm. 
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 AChE activity was measured using the procedure of 
Ellman et al.14. For the AChE enzyme assay, 100 μl of 
enzyme stock was added to 2.86 ml of sodium phosphate 
buffer followed by incubation at room temperature for 
5 min. Later, 10 μl of 5,5-dithio-bis(2-nitrobenzoic acid) 
(DTNB) solution and 30 μl of acetylcholine bromide 
were added. The change in absorbance was recorded at 
412 nm for 30 min against blank. The AChE specific  
activity was expressed as μmol of acetylcholine hydro-
lysed min–1 mg–1 protein. 
 GST activity was estimated using the methodology 
given by Kranthi13. Enzyme assay mixture consisted of 
50 μl of 50 mM 1-chloro-2,4-dinitrobenzene (CDNB) and 
150 μl of 50 mM reduced glutathione added to 2.77 ml 
phosphate buffer containing 1 mM EDTA and 1 mM 
PTU. Next, 30 μl of enzyme stock was added and the 
mixture was incubated at 25°C for 2–3 min after gentle 
shaking. Absorbance was read against the control blank 
without enzyme at 340 nm for 5 min. Increase in absor-
bance over 5 min was used for calculation. Enzyme acti-
vity was estimated as CDNB–GSH conjugate formed in 
μmol min–1 protein. 
 MFO activity was measured by modifying the metho-
dologies given in the literature13,15,16. Enzyme assay mix-
ture consisted of 760 μl of phosphate buffer containing 
1ml enzyme solution and 40 μl of p-nitroanisole incu-
bated at 34°C for 2 min. The reaction was initiated by  
adding 200 μl of nicotinamide adenine dinucleotide 
phosphate (NADPH). Change in absorbance was recorded 
at 405 nm at 15 sec intervals for 20 min, and specific  
activity was expressed in terms of nmol of p-nitrophenol 
formed min–1 mg–1 protein. 
 Total soluble protein content was estimated according 
to the procedure described by Bradford17. One gram of 
test sample was homogenized in 10 ml of 0.1 M sodium 
acetate buffer (pH 4.7) and centrifuged at 5000 g for 
15 min at 4°C. The supernatant was saved for estimation 
of soluble protein. The reaction mixture consisted of 
0.5 ml enzyme extract, 0.5 ml distilled water and 5 ml  
diluted (five times) dye solution. The absorbance was 
read at 595 nm using a spectrophotometer against reagent 
blank. Bovine serum albumin was used as the protein 
standard. The protein content was expressed as micro-
gram albumin equivalent of soluble protein per gram on 
freshweight basis. 
 Table 1 shows the specific activities of detoxification 
enzymes to the feral populations of S. litura. The present 
study revealed that CarE specific activity was 1.086 μmol 
of α-naphthol formed min–1 mg–1 protein in S. litura col-
lected from Kovilnada, followed by Palappur (0.866 μmol), 
Kanjikuzhi (0.630 μmol) and ICAR-NBAIR (0.300 μmol). 
Whereas AChE specific activity was found to be signifi-
cantly higher with 2.263 nmol of free thiol formed min–1 

mg–1 protein in Kovilnada population, followed by 
1.50 nmol in Palappur, 0.683 nmol in Kanjikuzhi and 
0.14 nmol in NBAIR strain. On the other hand, resistant 

population of S. litura collected from Kovilnada exhibited 
1.046 μmol of CDNB conjugated min–1 mg–1 protein of 
GST activity followed by S. litura collected from Palap-
pur (0.923 μmol), Kanjikuzhi (0.356 μmol), while that of 
NBAIR strain was only 0.31 μmol. Results also revealed 
that S. litura collected from Kovilnada showed very high 
specific activity of 141.78 nmol of p-nitrophenol formed 
min–1 mg–1 protein followed by those collected from  
Palappur (126.07 nmol) and Kanjikuzhi (44.80 nmol) 
compared to that of NBAIR (7.37 nmol). 
 Table 2 presents results of biochemical tests on  
resistant populations of insect pests exposed to synerg-
ists. There was 9.32-fold reduction in specific activity of 
AChE in case of chlorpyriphos + PBO and 4.78-fold  
reduced specific activity of GST in case chlorpyriphos + 
DEM and 5.15-fold reduction in specific activity of CarF 
in case of quinalphos + TPP. This confirms the clear-cut 
role of multiple detoxifying enzymes such as esterases, 
MFOs and GSTs in imparting resistance against organo-
phosphates. Whereas 7.33-fold reduced specific activity 
of AChE in case of lambda-cyhalothrin + TPP and 5.35-
fold reduced specific activity of MFO in case of lambda-
cyhalothrin + PBO and 7.36-fold reduced specific activity 
of CarE in case of cypermethrin + TPP and 3.60-fold  
reduction in MFO in case of cypermethrin + PBO  
confirm the role of esterases and MFOs in imparting  
resistance against synthetic pyrethroids. 
 In general, resistance towards insecticides is reported 
as either due to increase in the levels of detoxification 
enzymes or reduced target-site sensitivity18. Furthermore, 
insect metabolism has a pivotal role in the expression of 
resistance to insecticides. An earlier study had estab-
lished resistance levels in S. litura populations collected 
from various parts of Kerala, against selected insecti-
cides19. In continuation, plausible mechanisms for resis-
tance have been explored in the present study, and an 
intermediary association between CarE activity and  
organophosphate resistance was noticed. Esterases are 
frequently involved in the resistance of insects to organo-
phosphate (OP) compounds, carbamates, and synthetic 
pyrethroids20,21. Previous studies indicated a positive  
correlation of organophosphate insecticide resistance and  
increased CarE activity10,16,22, which is in agreement with 
our study. S. litura treated with sub-lethal doses of  
selected insecticides showed an increased specific acti-
vity of CarE in all cases and AChE in the case of organo-
phosphates. Whereas reduction in levels AChE was 
noticed with pyrethroid treatment. 
 GSTs are another important set of detoxification  
enzymes whose activity mainly focuses on detoxification 
of organophosphates via conjugation23. The present work 
is in disparity with that of Cheema16, who reported only 
0.447 μmol of GST activity in resistant population of S. 
litura collected from Sangrur, Punjab. However, Karup-
paiah et al.10 found 1.380 μmol GST in S. litura collected 
from Varanasi and 1.155 μmol in an insect population 
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Figure 1. Variation in specific activity of detoxification enzymes after exposure to sub-lethal doses of insecticides. 
 
collected from Delhi. MFOs are another set of detoxifica-
tion enzymes with broad spectrum activity which may  
potentially affect the activity of several classes of insecti-
cides24. Higher MFO specific activity was observed in re-
sistant populations of S. litura collected from Punjab16,22. 
Results of the present study were in conformity with 
those of Huang and Han8, and Su25, who had documented 
higher specific activity of MFO in resistant strains in 
comparison to susceptible strains of S. litura. The MFO 
specific activity can therefore be used as a biochemical 
indication for MFO-mediated resistance to pyrethroid in 
field-collected S. litura. 
 S. litura treated with sub-lethal doses of selected insec-
ticides showed an increased specific activity of carboxyl 
esterases in all cases and of AChE in the case of organo-
phosphates. Whereas reduction in the levels of AChE was 
noticed with pyrethroid treatment. Reduction in GST  
level was observed in all treatments, other than chlorpy-
riphos and increase in MFO was noticed in all treatments, 
other than quinalphos. This variation in enzyme levels  
after treatment with insecticides highlights the homeosta-
sis mechanism exhibited by the insects via alteration of 
their enzyme levels. This mechanism triggers enzyme ac-
tivities to counteract the xenobiotic exposed. Decreased 
sensitivity of AChE is reported as the most common  
mechanism of resistance development in insects to orga-
nophosphates. In the present study, an increase in deto-
xification enzyme activity was observed after treatment 
with selected insecticides at their sub-lethal concentra-
tions (Figure 1). Yang et al.26 reported that a high este-
rase specific activity is normally correlated with 
development of resistance in insects. Findings of present 
experiment is in pact with the findings of Muthusamy et 
al.27, who documented increased specific activities of 
CarE and AChE after treatment with lambda-cyhalothrin 

as well as increased GSH specific activity after treatment 
with dichlorovas at 10 ppm concentration each. However, 
synergists can be effectively used in combination with 
susceptible insecticides to reduce the activity of detoxifi-
cation enzymes, thereby breaking the resistance mecha-
nisms. 
 The results of the present study are in concurrence with 
those of Armes et al.9, who reported that pre-treatment 
with PBO resulted in complete reduction of cypermethrin 
resistance (2–121-fold) in nearly all strains of S. litura, 
specifying that enhanced detoxification by MFOs was 
possibly the major mechanism against pyrethroids. They 
also reported that addition of the synergist DEF (S,S,S-
tributyl phosphorotrithioate), an inhibitor of esterases and 
the GST system, resulted in a 2–3-fold synergism with 
monocrotophos, indicating that esterases and GSTs are 
responsible to some extent for resistance towards organo-
phosphates. In the present study, MFOs were found to 
play a crucial role in imparting resistance against synthetic 
pyrethroids. These results are agreement with the obser-
vations of Huang and Han8, who reported higher PBO 
synergism, which is an inhibitor of MFOs, to be asso-
ciated with deltamethrin resistance in S. litura from Chi-
na. The results of the present study are also in agreement 
with those of Sayyed et al.28, who documented the in-
volvement of MFOs and esterases in imparting resistance 
against synthetic pyrethroids in S. litura from Pakistan. 
Studies on synergistic effects of PBO and DEF reported 
that both monoxygenases and esterases may be involved 
in imparting resistance to pyrethroids in S. litura29,30. The 
results of present study were also in confirmation with 
those of our previous study on the efficacy of synergists 
in breaking the resistance, where piperonyl buetoxide was 
found to be highly effective towards organophosphates 
and synthetic pyrethroid resistance11. 
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 Mechanisms of resistance may vary among populations 
from different locations. Insecticide resistance within or 
between chemical classes with similar modes of action is 
becoming an increasing problem in sustainable pest con-
trol. In the present study, elevated activities of MFO and 
esterase may be the probable cause of increase in resis-
tance due to plausible cross-resistance mechanism bet-
ween pyrethroids and AChE-targeted insecticides among 
S. litura populations from selected locations in Kerala. 
Synergism study could indicate their significance in  
decreasing resistance by inhibiting the resistance  
enzymes responsible and hence can be a useful tool in 
sustainable pest management programmes. 
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