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3,4-Dihydropyrimidin-2(1H)ones(thiones) (DHPM) and 
coumarin-3-carboxylic acid are obtained in excellent 
to good yield by employing green catalyst under sol-
vent-free condition. The condensation of substituted 
arylaldehyde, 1,3-diketoester and urea/thiourea in the 
presence of green catalyst after 1 h of stirring at 50C 
resulted in DHPM. The reaction of substituted  
o-hydroxybenzaldehyde with Meldrum’s acid in the 
presence of catalyst under sonication for a few  
minutes gave coumarin-3-carboxylic acid. Here, we 
have used Lewis acid catalyst RHA–SiO2(NPs)–BO3H3 
derived from the agro-waste of rice husk, a heteroge-
neous catalyst for important organic scaffold synthe-
sis. The reaction required low catalyst loading 
(1.2 mg) to achieve a target product under solvent-free 
condition. A series of other derivatives of heterogene-
ous catalysts synthesized are RHA–SiO2, RHA–
SiO2(NPs), RHA–SiO2–BO3H3. We examined their 
catalytic activity in the synthesis of DHPM and cou-
marin-3-carboxylic acid. Only the reaction catalysed 
by RHA–SiO2(NPs)–BO3H3 gave excellent yield of the 
product. The final isolated pure product has been fully 
characterized by various spectroscopic methods and 
confirmed. 
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dihydropyrimidin-2(1H)ones(thiones), heterogeneous cata-
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GREEN chemistry, a process to reduce or eliminate the 

use of hazardous solvents or catalysts for the generation 

of active ingredients of chemical products, is applicable 

to all branches of chemistry1–3. Green chemistry is active-

ly seeking ways to make products considering the safety 

of the environment and human health2. The use of organ-

ic solvents is undesirable in green chemistry, since they 

are one of the major sources of emission of hazardous  

volatile organic compounds3. In green chemistry, the sol-

vent should not be toxic4, flammable or hazardous or cor-

rosive, and it should not harm the environment5. Hence, 

the need for solvent-free and recyclable catalysts has en-

couraged both the fine chemicals and pharmaceutical in-

dustries to search for alternative methods6. Recently, the 

development of reusable catalyst in the chemical industry 

to synthesize fine chemicals and bioactive molecules has 

become a major scope for the production of bulk quanti-

ties to meet the demands7. The majority of these novel 

heterogeneous catalysts are derived from the family of 

silicates8, since silica displays many favourable proper-

ties, such as excellent stability (chemical and thermal)9,10, 

high surface area11, good accessibility, and surface modi-

fication to provide catalytic centres11. The silicon atoms 

are tetrahedrally coordinated and the system has neutral 

charge with high surface area of silica (Figure 1 a). In  

silica nanoparticles (NPs), the terminal surface with si-

lanol group (Figure 1 b) hydrogen positive charge density 

is very small and it can be considered as a very weak 

Bronsted acid site12,13. In this case, the tetrahedrally co-

ordinated boron generates a strong O–H polarization 

when a substitution of boron by silica occurs (Figure 

1 c)13. These Bronsted acid sites are clearly stronger than 

the silanol group and we believe that they exist in well-

prepared structured silica borate14. The literature survey 

revealed that silica-based catalyst shows diversified  

applications in the modern chemical synthetic proce-

dure15. So here we explore the agriculture feedstock waste 

rice husk as a silica source, and its surface modification 

 

 

 
 

Figure 1. Structure of silicate variants. 
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by other reagents that gave strong Lewis acid property 

was employed for the Biginelli reaction16,17. The exten-

sive use of silica nanoparticles (SNPs) and their compo-

sites in various chemical industries has resulted in the 

derived from natural waste products18,19. Rice husk is an 

agricultural waste material with 90–94% silica20. Rice 

husks are abundantly available in all rice-producing coun-

tries, and the annual production amounts to 80 million 

tonnes21. It is reported that for every tonne of rice pro-

duced, nearly 0.23 tonne of husk is formed as an agricul-

tural waste. The major rice-producing countries are India, 

China, Malaysia, Egypt and Nepal22. The utility of rice 

husk is less explored. Presently, it is used in fuel extrac-

tion in small portions23. A major amount is burnt, leading 

to the emission of choking smoke, which causes the black 

cloud phenomenon and affects human health and global 

climate by emitting particulate matter and other gaseous 

pollutants24. Hence, its efficient utilization is necessary to 

prevent environment pollution25. Here, we explore agro-

waste-derived silica as a source for the development of 

inexpensive and reusable modified heterogeneous catalyst 

for the synthesis of important bioactive molecules. 

3,4-Dihydropyrimidin-2(1H)ones/(thiones) (DHPM) 

The natural product with specific scaffold plays impor-

tant role in biological functions26. To fulfil the bulk  

requirement, synthetic methods are developed to synthes-

ize natural products as well as their mimetics. Although a 

variety of methods have been reported to synthesize het-

erocyclic compounds with different core structures27,28, 

poly-substituted and poly-functionalized heterocyclic  

derivative synthesis remains a challenge to the scientific 

community29. The sequences are widespread, but prepara-

tion of some of the substitution patterns and functional 

groups is a difficult challenge till date29. The synthetic 

variables that have to be optimized are time, cost, overall 

yield, and simple reaction set-up, safety and environmen-

tal acceptability30. Thus, multicomponent reactions 

(MCRs) are one-pot reaction procedures, which are easier 

to perform in a single step to isolate the product, com-

pared to multi-step synthesis31. Thus MCR strategy is a 

highly desirable approach in drug discovery for the  

generation of several scaffold products32. The importance 

of the multi-component reactions in the early stage was 

contributed by eminent scientists such as Passerini33, 

Strecker34, Hantzsch’s35, Biginelli36, Robinson37, and 

more MCRs reported in the literature38. In 1893, the  

Italian chemist Pietro Biginelli discovered MCRs that allow 

the synthesis of dihydropyrimidin-2(1H)ones(thiones) 

(DHPM)39. For this, he carried out a one-pot, three-

component reaction through cyclocondensation reaction 

of 1,3-dicarbonyl compounds, aldehyde and urea/thiourea 

in the presence of a catalytic amount of mineral acid HCl 

in ethanol solvent. Many Biginelli products have demon-

strated applications in biological systems40, because they 

closely resemble the chemically used nicardipine (Figure 

2 a), nitedipine (Figure 2 b) and felodipine (Figure 2 c) 

scaffold structures41. Other marine natural alkaloids and 

batzelladine B also resemble the Biginelli product scaf-

fold42. Furthermore, the modified Biginelli products 

showed antiproliferative43, antiviral, antifungal and an-

titubercular activities44,45. Overwhelming demand for the 

Biginelli products, resulted in challenges for the chemists 

to develop a simple and efficient synthetic method for 

their synthesis46. To overcome the limitations of harsh 

condition, long reaction time and low yield of the original 

Biginelli reaction method, several faster synthetic meth-

odologies such as microwave irradiation47, ultrasound  

irradiation48, ionic liquids49–51 and different types of  

acidic52, basic53, metal oxide54, NP55 and enzyme cata-

lyst56 methods have been reported. The chemical reagent 

catalysed Biginelli reactions include bio-waste57, inorga-

nic58–82, organic83–85 and many more catalysts are reported 

in the literature. In spite of the vast number of reported 

methods available, one-pot synthesis suffers from draw-

backs such as the use of expensive catalyst86, strong acidic 

condition87, organic solvent and long reaction time88. 

Therefore, to overcome some of these limitations, a milder 

reaction condition, eco-friendly and solvent-free protocol 

is required. In recent times, ionic liquids-assisted Biginelli 

reactions are demonstrated to be an environmentally  

acceptable protocol, and a more advantageous method. 

Aiming to develop greener and inexpensive protocol, we 

have demonstrated the synthesis of DHPM employing 

agro-waste-derived silica functionalized boric acid as a 

heterogeneous catalyst under solvent-free condition. 

Coumarin-3-carboxylic acid 

Coumarins are well-known naturally occurring oxygen-

heterocyclic compounds isolated from various plants as 

 

 

 
 

Figure 2. Structure of (a) nicardipine, (b) nitedipine and (c) felodipine. 
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well as using synthetic methods89. The potential pharma-

cological activities of coumarin and its derivatives,  

including antifungal90, antioxidant91, anticancer92, anti-

bacterial93, analgesic93, anti-inflammatory94, antibiotic, 

antitumour and more inhibiting activities have been  

reported95. Coumarin derivatives are also extensively  

employed in agrochemicals, insecticides, perfumes,  

fragrances and additives in cosmetics and food96. As a  

result, coumarins are important scaffolds for chemists to 

explore various synthetic strategies. Among different  

methods available, Knoevengel condensation is widely 

employed for the synthesis of coumarin-3-carboxylic acid 

from the reaction of substituted salicylaldehyde with cy-

anoacetates or malonates in the presence of a catalyst 

such as ammonium acetate97,98, piperdinium acetate and 

piperdine98. At present, Meldrums’ acid is preferred for 

the Knoevengel condensation because of advantages in 

terms of yield, reaction time and isolation of final prod-

ucts. There are several catalysts reported in the literature 

for the condensation of salicylaldehyde and Meldrum’s 

acid like SnCl2 (ref. 99), FeCl3 (ref. 97), Clay100, ammo-

nium acetate98, potassium dihydrogen phosphate101 and  

potassium phosphate102, Yb(OTf)3 (ref. 103) and silica 

sulphuric acid104. In spite of some merits of these proto-

cols, the demerits include low yield, harsh reaction condi-

tion, tedious work-up, side reactions, use of toxic organic 

solvents, and expensive catalysts, and requirement of  

final product purification. Thus, there is need for novel 

methodologies, which provide greener catalyst for the 

synthesis of pharmacologically potent coumarin-3-

carboxylic acids105. 

 As far as green chemistry practice is concerned, the re-

actions are performed under solvent-free or water condi-

tion106. Alternatively, the catalyst derived from natural 

agro-waste can be used to explore novel inexpensive 

catalysts107,108. In continuation of our efforts to explore 

greener synthetic methods and demonstration of organic 

transformations, we have recently reported one-pot  

mechanochemical coumrin-3-carboxylic acid synthesis in 

the presence of WEPBA105. In the present study, we  

consider another agro-waste (rice husk)-derived silica as 

solid support and its surface-modified boric acid demon-

strates synthesis of DHPM and coumarin-3-carboxylic  

acid under solvent-free and recyclable catalyst. The  

method is not only cost-effective and environmentally 

benign, but also experimentally simple, easy to work-up, 

reusable, eliminates the use of toxic organic solvents and 

gives the final product in good to excellent yields. 

Results and discussion 

Rice husk is an agricultural waste with high amorphous 

silica content. Several silica extraction procedures from 

rice husk have been reported in the literature. We have 

employed an environment-friendly method under con-

trolled calcination condition in an electric muffle furnace 

at 700C (Figure 3). 

 The resulting white ash product was subjected to 29Si 

magic angle spinning-nuclear magnetic resonance, X-ray 

diffraction (XRD) (Supplementary Figure 4), energy  

dispersive X-ray and Fourier transform infrared spectro-

scopy, elementary analysis by EDX (Supplementary Fig-

ure 2), and also compared with commercially available 

column and TLC silica. The scanning electron micro-

scope image of RHA-SiO2 showed uniform surface mor-

phology (Supplementary Figure 1), and RHA-SiO2(NPs)–

BO3H3 showed roughening of the surface because of the 

BO3H3 on RHA-SiO2(NPs) (Supplementary Figure 3). 

The particle size of the catalyst was observed to be 

164.7 nm. Comparison of FT-IR spectra of other silica 

sources and RHA–SiO2(NPs)–BO3H3 showed strong ab-

sorption of –OH group at 3550–3200 cm–1. The XRD pat-

tern also revealed that, both RHA–SiO2 and RHA–SiO2 

(NPs) are amorphous in nature (Supplementary Figures 4 

and 5). The 29Si NMR and XRD data revealed that silica 

derived from RHA is similar to commercial silica (Figure 

4). Further to create more active surface area on the silica 

derived from RHA for better catalytic activity, we adopt-

ed the procedure of Farshid et al.67,68 to synthesize silica 

NPs. First, we examined the catalytic activity of RHA–

SiO2 alone in the model reaction benzaldehyde  

1 (1 mmol), ethylacetoacetate 2 (1 mmol) and urea 3 

(1 mmol) or thiourea (1 mmol) under thermal stirring 

condition at 50C (Scheme 1 and Table 1), and observed 

incomplete reaction with low yield product isolation. To  

improve the catalytic activity of RHA–SiO2, we synthe-

sized RHA–SiO2(NPs) and examined its catalytic activity 

in a model reaction and found improvement of the prod-

uct isolation, as expected for the NP activity (Table 1). Fur-

ther, we extended to synthesize RHA–SiO2-supported 

BO3H3 as a strong Lewis acid heterogeneous catalyst and 

succeeded in the preparation of both RHA–SiO2–BO3H3 

 

 

 
 

Figure 3. Synthesis of SiO2 from rice husk. 
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and RHA–SiO2(NPs)–BO3H3. The resulting heterogene-

ous catalysts were examined for their activity in a model 

reaction under thermal stirring condition (Table 1). Sur-

prisingly, we found that the reaction catalysed by RHA–

SiO2(NPs)–BO3H3 gave the excellent product isolation 

with clean reaction compared to any of the other RHA–

SiO2-derived catalysts (Table 1). To better optimize the 

reaction method catalysed by RHA–SiO2(NPs)–BO3H3, 

we examined the synthesis of DHPM using one-pot con-

densation of substituted aryl aldehyde, ethylacetoacetate 

and urea or thiourea under three different reaction condi-

tions, viz. (i) grinding; (ii) microwave irradiation at 

300 W and (iii) thermal stirring at 50C for 1 h under 

solvent-free condition (Table 2). No product was ob-

tained for the aliphatic aldehydes like formaldehyde and 

acetaldehyde. The above three comparative method stud-

ies revealed that thermal method @ 50C in 1 h stirring 

method found clean reaction with good to excellent target 

production isolation (Table 2). Extension of the same re-

action condition for the synthesis of DHPM from substi-

tuted arylaldehyde, ethylacetoacetate and thiourea 

showed similar isolation of the product in excellent yield 

(Table 3). All isolated final products were examined for 

purity and homogeneity using various spectroscopic  

methods. To check the substituted electronic factor com-

patibility of the present method, we performed reactions 

with electron-withdrawing group substituted on aromatic 

aldehyde that gave 81–83% yield, and electron-donating 

group on aromatic aldehyde that gave 83–89% yield  

(Table 3). 

 We also examined this method for aliphatic aldehydes 

such as formaldehyde that gave 42% and acetaldehyde 

which gave trace amount of product isolation. In the case 

of aliphatic aldehyde, formaldehyde gave a yield of 42% 

and acetaldehyde gave products trace amounts. In order 

to study the minimal amount of heterogeneous catalyst 

RHA–SiO2(NPs)–BO3H3 required for the 1 mmol reac-

tions, reactions using different amounts of catalyst were 

carried. Initially the reaction started with 0.2 mg of 

RHA–SiO2 (NPs)–BO3H3 @ 50C while stirring (Table 

4) and it continued for a period of 1 h. The isolated prod-

uct was found in trace amount. The amount of catalyst in 

the second and successive experiment reactions was in-

creased by 0.2 mg interval in each reaction up to 2.2 mg 

in a model reaction. In all these experiments product iso-

lation increased with increase in the amount of catalyst 

up to 1.2 mg. The optimized amount of catalyst required 

for the 1 m mol scale in a model reaction was 1.2 mg, 

which gave Biginelli product isolation in good to excel-

lent yield. Further increase in the amount of catalyst up to 

2.2 mg showed no change in product yield (Table 3). So a 

series of 0.2 mg interval increase in catalyst in a model 

reaction was carried out and it was found that 1.2 mg of 

RHA–SiO2(NPs)–BO3H3 gave isolation of product in  

excellent yield. 

 To test the recyclability of RHA–SiO2(NPs)–BO3H3 

catalyst for one-pot synthesis of DHPM, a series of five 

consecutive runs in a model reaction were carried out 

(Table 4). Figure 5 shows the isolated product in each cy-

cle. The results demonstrated that, RHA–SiO2(NPs)–

BO3H3 was recyclable up to the fourth run without much 

significant loss of catalytic activity, and after the fifth run 

there was a decrease in catalytic activity. To recycle the  

catalyst, the first-cycle catalyst after reaction was treated 

with two times methanol and water wash, and finally 

dried in an oven @ 100C for 3 h and used for the next 

cycle reaction. 

 The plausible mechanism for the formation of product 

dihydropyrimidine through agro-waste derived silica 

functionlized-boric acid is presented in Scheme 2. The 

mechanism clearly revealed that, the formation of a com-

plex of 1,3-diketone with the catalyst followed by substi-

tution of active methylene aldehyde–urea adduct leads to 

cyclization. 

 Further we also compared the agro-waste-derived cata-

lyst with those reported in the literature for the synthesis 

of DHPM (Table 5). The literature reported methods have 

 

 

 
 

Scheme 1. General reaction of dihydropyrimidin-2(1H)ones(thiones) 
synthesis. 

 

 
Table 1. Comparison of different RHA–

SiO2-derived catalysts for the synthesis of  

 dihydropyrimidin-2(1H)ones (thiones) 

Catalyst Yield (%) 
 

RHA–SiO2 60 

RHA–SiO2(NPs) 70 

RHA–SiO2–BO3H3 79 

RHA–SiO2(NPs)–BO3H3 94 

 

 

Table 2. Different method experiment  

 catalysed by RHA–SiO2(NPs)–BO3H3 

Method Time (h) Yield (%) 
 

Grinding 1 Nil 

Microwave 1 43 

Thermal stirring  1 94 
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Table 3. Structure of Biginelli products and reactants with physical data 
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Reactant 

 

Product 

Yield 

(%) 

Melting point 

(C) 

     
 

 

 
 

 

1 

CHO

 
1 

H3C

O

OC2H5

O

 

 
2 

H2N NH2

O

 

 
3 

N
H

NH

OH3C

O

C2H5O

 
4a 

 

 

 
 

92 

 

 

 
 

202–204 

 

 

 

 

 
2 

CHO

MeO
 

H3C

O

OC2H5

O

 

H2N NH2

O

 

OMe

N
H

NH

OH3C

O

C2H5O

 
4b 

 

 

 

 

 
83 

 

 

 

 

 
204–206 

 
 

 

 
 

3 

CHO

Br
 

H3C

O

OC2H5

O

 

H2N NH2

O

 

H
N

HN

O CH3

O

OC2H5

Br  
4c 

 
 

 

 
 

85 

 
 

 

 
 

– 

 

 

 
 

4 
NO2

CHO

 

H3C

O

OC2H5

O

 

H2N NH2

O

 

O2N

N
H

NH

OH3C

C2H5O

O

 
4d 

 

 

 
 

81 

 

 

 
 

225–227 

 
 

 

 

5 
Cl

CHO

 

H3C

O

OC2H5

O

 

H2N NH2

O

 

Cl

N
H

NH

H3C

C2H5O

O

O
 

4e 

 
 

 

 

83 

 
 

 

 

212–214 

 

 
 

 

6 

CHO

CH3  

H3C

O

OC2H5

O

 

H2N NH2

O

 

N
H

NH

OH3C

C2H5O

O

CH3

 
4f 

 

 
 

 

85 

 

 
 

 

210–212 

(Contd) 



RESEARCH ARTICLES 
 

CURRENT SCIENCE, VOL. 117, NO. 11, 10 DECEMBER 2019 1833 

Table 3. (Contd) 

 

Entry 

 

Reactant 

 

Product 

Yield 

(%) 

Melting point 

(C) 
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Table 3. (Contd) 

 

Entry 

 

Reactant 

 

Product 

Yield 

(%) 

Melting point 

(C) 
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Scheme 2. Plausible mechanism of RHA–SiO2(NPs)–BO3H3-catalysed Biginelli reaction60. 

 

 
 

Figure 4. 29Si-NMR and XRD data of different forms of silica. a, 29Si-NMR and XRD of  
column silica commercial; b, 29Si-NMR and XRD of TLC silica commercial; c, 29Si-NMR XRD 
of pure silica from RHA; d, 29Si-NMR and XRD of RHA-SiO2 in the absence of air at 700C in a 
muffle furnace; e, 29Si-NMR and XRD of RHA-SiO2 in an electrical bunsion. 
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Table 4. Optimization of RHA–SiO2(NPs)–BO3H3 required for the reaction 

Catalyst Amount (mg) Time (h) Yield (%) 
 

RHA–SiO2(NPs)–BO3H3 0.2 1 – 

 0.4 1 10 

 0.6 1 29 

 0.8 1 55 

 1.0 1 89 

 1.2 1 94 

 1.4 1 94 

 1.8 1 94 

 2.0 1 94 

 2.2 1 94 

 

 

Table 5. Comparison of the present method with others available in the literature 

Catalyst and quantity  Time (h) Yield (%) Reference 
 

SbCl3/20 mol% 20 77 55 

H2SO4/0.5 mol% 12 55 55 

Nafion-H/100 wt% 10 70 55 

HoCl3/15 mol% 2–3 85 56 

Aq. Zn(BF4)2/0.6 mol% 3–7 80 59 

Ca(NO3)24H2O/10 mol% 2–18 42–82 60 

InCl3/10 mol% 6-9 95 62 

GaCl3/0.15 mmol  6 95 63 

Nano--Fe2O3–SO3H/0.15 (g)  3 95 64 

RHA–SiO2(NPs)–BO3H3 0.5–1 76–94 Present method 

 

 

 
 

Scheme 3. Synthesis of coumarin-3-carboxylic acid. 
 

 

 

 
 

Figure 5. Recyclability and activity of RHA–SiO2(NPs)–BO3H3  
under thermal condition @ 50C for 1 h stirring. 

their own advantages, but some of the disadvantages  

include longer reaction time, poor yield, use of organic 

solvent and expensive catalyst. So the present method 

employed is a greener reaction medium, is solvent-free, 

with shorter reaction time and requires small amount of 

green catalyst. Also, it is readily available in sufficient 

quantity naturally to get the product as agro-waste inex-

pensive catalyst employed for multi-component reactions, 

giving excellent product isolation with reusability of cata-

lyst up to four times without loss of its activity. 

 We also extended the catalytic activity of RHA–

SiO2(NPs)–BO3H3 for one-pot synthesis of substituted 

coumarin-3-carboxylic acid (6a–6j, Table 6) as a hetero-

geneous recyclable catalyst assisted by ultrasonication 

(Scheme 3). In the literature coumarin-3-carboxylic acid 

synthesis employed organic base or acid catalysed in the 
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Table 6. Physical data and reaction condition of coumarin-3-carboxylic acid 

 

Entry 

 

Aldehyde 

 

Product 

 

Time (min) 

 

Yield (%) 

Melting point 

(C) 
      

 
 

1 

 
 

2-OHC6H4 

 5 O O

COOH

 
6a 

 

 
 

46 

 
 

85 

 
 

188–190 

 
 

2 

 
 

2-OH,3-BrC6H3 
OBr O

COOH

 
6b 

 

 
 

37 

 
 

91 

 
 

194–196 

 

3 

 

2-OH,3-ClC6H3 

O O

COOH

Cl  
6c 

 

29 

 

90 

 

116–118 

 

 

4 

 

 

2,3-OHC6H3 
O

OH

O

HOOC  
6d 

 

 

 

38 

 

 

89 

 

 

202–204 

 

 

5 

 

 

2-OH,4-N(C2H5)2C6H3 
ON O

COOH

C2H5
C2H5  

6e 

 

 

49 

 

 

81 

 

 

209–211 

 

 
 

6 

 

 
2-OH,3-C(CH3)2,6-CH3-C6H2 

O O

O

OH

H3C CH3

CH3

 
6f 

 

 

 
 

34 

 

 
 

91 

 

 
 

212–214 

 

 
 

7 

 

 
 

2,3,4-OHC6H2 
O

OH

HO O

O

OH

 
6g 

 

 

 
 

32 

 

 
 

92 

 

 
 

204–206 

 
 

 

8 

 
 

 

2-OH,3-OMeC6H3 

O

O

OH

OMeO  
6h 

 

 
 

 

35 

 
 

 

86 

 
 

 

193–195 

 

 
9 

 

 
2-OH,5-NO2C6H3 

O2N

O O

COOH

 
6i 

 

 

 
29 

 

 
73 

 

 
232–234 

 

10 

 

2-OH,5-ClC6H3 
Cl

O

COOH

O  
6j 

 

31 

 

88 

 

120–122 
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presence of organic solvent109. Also the reported methods 

have longer reaction time, use expensive catalysts and 

without reusability of catalysts. Due to the present envi-

ronment concerns and safe reaction conditions in synthet-

ic chemistry, it is recommended to adopt reusable catalyst 

and solvent-free condition methods. In this regard, only 

few of the methods reported meet this criterion of green 

chemistry105,107. In connection with greener synthetic pro-

tocol for organic reactions, we have demonstrated agro-

waste derived as a catalytic medium for the synthesis of 

several bio-active molecules107. We further explored the 

developed silica functionalized-boric acid for another im-

portant reaction, Knoevengel condensation of substituted 

salicyldehyde with Meldrum’s acid in 1 mmol scale as a 

model reaction. To check reaction compatibility, we per-

formed condensation in three different methods in a mod-

el reaction in presence of a catalyst: conventional stirring 

at 50C for 1–2 h, ultra sonication for 45 min and micro-

wave irradiation. The reaction assisted by ultrasonication 

gave excellent isolation of product compared to the other 

two methods. Table 6 provides details of the reaction 

condition and physical data of coumarin synthesized. 

 Overall, we have demonstrated that agro-waste derived 

silica functionalized-boric acid is a active catalyst with 

recyclable catalyst for DHPMs and coumarin-3-carbo-

xylic acid synthesis. The method has advantages such as 

being a green protocol, inexpensive, environmentally  

benign, solvent-free and simple work-up giving good to 

excellent yield isolation of the products in pure form. 

Conclusion 

In summary, we have demonstrated one-pot synthesis of 

DHPM and coumarin-3-craboxylic acid derivatives using 

agricultural waste rice husk-derived silica-supported BO3H3 

as a heterogeneous catalyst @ 50C with 1 h stirring and 

ultrasonication conditions respectively. The present 

method is greener, solvent-free, economical, easy work-

up, mild reaction condition, with good to excellent yield 

isolation. The method is suitable for various electron-

donating and electron-withdrawing substituents present 

on the aryl aldehyde substrate. Additional advantage of 

this method is recyclability of the catalyst and the process 

is also cost-effective as silica is derived from natural 

agro-waste that falls in the area of ‘green chemistry’. 

 

Supporting information summary: Materials and methods, 

general synthetic procedure and characterization data are 

available in the supporting information. 
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