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Protein interactions determine molecular and cellular 
mechanisms which control healthy and diseased states 
in organisms. Hence, a protein interaction network 
can be used to make scientific abstractions to under-
stand mechanisms that trigger the onset and progress 
of diseases like cancer. Tumour-promoting function of 
several aberrantly expressed proteins in the cancerous 
state depends on their ability to interact with their 
protein-binding partners. Therefore, exploring more 
about these abnormal protein–protein interactions 
(PPIs) can help in identifying the disease pathway. 
This study examines the effect of community struc-
tures in the PPI network in cancer protein identifica-
tion. It also provides a detailed analysis of topological 
properties of cancer, cancer chance and non-cancer 
proteins in the PPI network. 
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PROTEINS and genes act as the basic building blocks of 
any living organism, influencing its phenotype and geno-
type respectively. Any dysfunction or mutation in them 
can lead to genetic diseases and disorders. Therefore, 
identifying genes whose expression is associated with a 
specific phenotype is a key step in understanding disease 
mechanisms and developing targeted diagnostic and the-
rapeutic interventions1. Traditional methods such as posi-
tional cloning via linkage analysis were applied for 
disease–gene mapping; but they encountered challenges, 
the most significant being the large number of genes 
among large family datasets that need to be analysed2. 
This is a labour-intensive task, which costs a staggering 
amount of manpower and resources to complete3. So, a 
large number of alternative methods have been devised 
for mapping or predicting the disease–gene relation; such 
as gene-functional annotations4, sequence-based5 and 
network-based analysis6. Due to the advent of high-
throughput computational methods, computational

approaches towards human genome sequencing have  
improved over the years. This has resulted in the creation 
of a number of protein–protein interaction (PPI) networks, 
like the human protein reference database (HPRD), mole-
cular interaction NeTwork (MINT), UniProt database, 
etc. and has greatly helped in improving the computation-
al approach to disease–gene mapping7,8. Many biological 
processes are involved in the formation of protein–
protein complexes, and each of these functions consists 
of a specific PPI9. Hence a number of candidate gene  
discovery methods have been proposed based on PPI 
network analysis4,5,7,10,11. These techniques are based on 
the principle that genes associated with the same or simi-
lar disease phenotype are not randomly distributed in the 
interaction network, but rather they cluster together and 
have common topological features12,13. Based on these 
topological features, several gene scoring criteria and  
methods have been developed. For example, Izudheen 
and Mathew14 developed a cancer protein identifier based 
on five graph centrality measures. A long-held and par-
tially proved theory by biologists is that genes associated 
with some or similar disease phenotypes are likely to be 
functionally related and hence reside close to each other 
in a molecular network3. Hence module structures are an 
important property of these PPI networks15, i.e. proteins 
or nodes with high interactivity tend to cluster together. 
In network theory, this clustering of highly interactive 
nodes can be characterized by the concept of community 
structures16,17. Communities (also called clusters or mod-
ules) are groups of vertices which most likely share cer-
tain common features or properties, and/or play similar 
roles within the network16. Every community detection 
algorithm makes different assumptions on the definition 
of a community. Some algorithms base their definition 
upon removal of high-betweenness edges18, while some 
others aim at mining dense subgraphs17, modularity 
measure19, etc. Though the concept of community struc-
tures is a well-known feature in network theory, serious 
research focus from a computer science perspective came 
after the work done by Girvan and Newman18. The main 
limitation of the Newman–Girvan algorithm was that it 
could not detect overlapping community structures; a 
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standard and well-observed feature in most real-world  
datasets16. Hence, research in finding overlapping com-
munity structures had gained wide attention in the past 
few years. The most popular and widely used technique 
for detecting overlapping community structures, accord-
ing to Fortunato16, is the clique percolation technique by 
Palla et al.17. A clique is a group of nodes in a network 
such that every node is connected to every other node. 
Palla et al.17 define a community or more specifically a 
percolated k-clique community as a group of k-cliques 
which are connected to each other by adjacent k-cliques; 
where adjacent implies that they share at least k – 1 
nodes. This definition of a community ensures that its 
member nodes are reachable through well-connected sub-
sets of nodes. Therefore, it is quite possible that certain 
nodes can be part of subsets which may belong to another 
community. Hence a single node can belong to several 
communities; resulting in a number of overlapping com-
munities. Though clique percolation is the most widely 
used overlapping community structure detection method, 
it is computationally challenging as it requires testing cli-
ques against other cliques with which they share some 
nodes, but do not percolate20. The algorithms proposed by 
Reid et al.20 consistently outperformed other clique per-
colation-based algorithms, namely CFinder21 and SCP22. 
Hence, the method proposed by Reid et al.20 to extract 
community structure from the PPI network is used in this 
study. As proteins perform their functions in a modular 
fashion, mutations of proteins in the same module may 
lead to similar disease phenotype23. These modular struc-
tures can be characterized by community structures and 
therefore community structures should be a more direct 
and robust property to capture the functional modularity 
in PPI networks. Genes associated with the same or simi-
lar disease phenotypes commonly reside in the same 
community and hence community structures may greatly 
help in the disease gene mapping. 

Methodology 

A protein or gene can be tested for its competence or  
similarity with other proteins (or genes) based on its 
attributes; if two proteins exhibit similar functionalities 
and attributes, then it is assumed that they are functional-
ly similar. Presently, however, the available functional 
attributes of proteins and genes are limited. On the other 
hand, due to improved high performance computational 
methods of the last few years, and expertly curated  
and verified PPI network, the research focus for similari-
ty testing has turned towards network topological 
attributes for PPI. In graph theory, centrality measures 
are key components in answering the following ques-
tion – which are the most important nodes in the net-
work? The centrality measures that have been used here 
are listed below. 

Degree centrality 

Degree centrality (DC) of a node is defined as the number 
of edges incident upon that node, which indicates the 
number of direct neighbours of that node. 
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where A is the adjacency matrix and n is the total number 
of vertices in graph G = (V, E). Here, DC values are  
normalized by dividing them by the maximum possible 
degree (i.e. n – 1), where n is the number of nodes in the 
graph. 

Eigenvector centrality 

Eigenvector centrality (EC) of a node is the measure of 
influence of a node in the network. It computes the cen-
trality of a node based on the centrality of its neighbours. 
EC can be calculated as  
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where λ is the largest eigenvalue of A produced by the 
algorithm and v is a non-zero vector which is the corres-
ponding eigenvector of λ. 

Closeness centrality 

Closeness centrality (CC) of a node is defined as the reci-
procal of average length of the shortest path between a 
particular node and all the remaining nodes in the graph. 
Hence if CC of a node is large, the closer it is to all other 
nodes24. 
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where d(v, u) is the shortest path between v and u, and n 
is the number of nodes in the connected part of the graph 
containing the node. If the graph is not completely con-
nected, CC for each connected part is computed separately, 
scaled by the part size. 

Betweenness centrality 

The betweenness centrality (BC) measure of a vertex 
quantifies the number of shortest paths between two other 
nodes that pass through this node. Hence it gives a sense 
about how important this node is in terms of its function 
as a bridge between two nodes. Therefore, BC of a node v 
is the sum of all pairs of shortest paths that pass through v. 



RESEARCH ARTICLES 
 

CURRENT SCIENCE, VOL. 118, NO. 1, 10 JANUARY 2020 64

 
,

( , / )BC( ) ,
( , )s t v

s t vv
s t

σ
σ∈

= ∑  (4) 

 

where v is the set of nodes, σ (s, t) the number of shortest 
paths between (s, t) and σ (s, t/ν) is the number of those 
paths passing through some node v other than s, t (ref. 
25). 

Community structures 

Graphs representing real-world data are objects where  
order exists with disorder. Real-world networks display 
larger inhomogeneities, revealing a high level of order 
and organization17. The edge distribution is locally inho-
mogeneous, indicating that there is a higher frequency of 
edges within a certain boundary of nodes and low  
frequency between nodes on either side of these bounda-
ries. This nature of real-world networks can be perfectly 
explained using the concept of community structures. The 
k-clique percolation method of detecting overlapping 
community structures as described by Reid et al.20 is used 
here, which, according to its authors, performs consis-
tently better than other clique percolation algorithms like 
CFinder22 and SCP23, especially real-world data like PPI 
networks. According to k-clique percolation method, two 
cliques of size k percolate with each other, if they share 
k – 1 nodes. Communities generated by the method are 
the maximal set of cliques satisfying the property that 
every clique in the set is reachable from every other cli-
que in the set through a path connecting percolating pairs. 

Scoring criteria employed 

This study focuses on ranking all proteins from the PPI 
network based on path-based centrality measures. For 
this, all the four centrality measure values for the 9608 
proteins in the network were found and four separate 
ranked lists created, in which each entry corresponds to a 
protein and the list is ordered in decreasing values of cen-
trality measures. A correlation matrix was then generated 
to find the dependence between these centrality measures. 
Using the inference developed from the correlation ma-
trix, a final rank reflecting various centrality measures 
was generated. This ranking scheme was developed on 
the assumption that highly active nodes would possess a 
more central position within the PPI network and hence 
would have higher centrality scores. Hence it is presumed 
that proteins occupying the top positions of the ranking 
scheme are highly active and hence it would be reasona-
ble to speculate that these top-ranked entries are cancer-
ous in nature. The next methodology used for protein–
disease mapping is based on the concept of community 
structures in network theory, as these can be used to  
connect topological structures and real-world functional 
protein modules. After the communities were mined  

using k-clique percolation method20, the total number of 
proteins and the number of disease proteins within each 
community were aggregated. As mutated genes which 
have been proven to cause cancer and tumour growth are 
highly active in their interactions with other genes, it was 
hypothesized that a majority of genes residing inside a 
community are cancerous in nature. This assumption was 
based on the fact that proteins within each community are 
densely interconnected, since definition of a community 
is based on the percolated clique theory. It can be specu-
lated that any protein lying outside but connected to at 
least one of the proteins within the community is also 
highly active and has high affinity with the complexes 
formed by proteins comprising the community it has a  
direct link to. Hence, this study specifies a novel  
approach to predict cancer proteins based on their rela-
tionship with protein complexes. 

Testing and observations 

From the PPI data, a protein network was created. Using 
the various centrality values calculated, the following  
observations were made. As discussed before, the main 
limitation of the clique percolation method for overlap-
ping community detection is striking a balance between 
good coverage of the input graph and preventing the for-
mation of a super-cluster. For this, the community detec-
tion algorithm was run with k value ranging from 5 to 10. 
Figure 1 provides details about the communities detected. 
 The aforementioned number of communities for the 
different k values was observed after rerunning the algo-
rithm 200 times. The readers can observe that, for k = 5, 
70 communities were detected which, as a whole con-
tained a total of 657 protein entries from the graph. For 
k = 6, the number of communities detected reduced to 
half, with only 30 communities being detected and com-
prising only 277 protein entries within them. This  
inverse relationship of decrease in the number of com-
munities being detected with the increase in k value is  
observed for the rest of the tests. From these observa-
tions, choosing a k value of 5 gives reasonable coverage 
of the PPI network while at the same time preventing the 
formation of a super-community containing all the nodes. 
 
 

 
 

Figure 1. Communities detected based on k value. 



RESEARCH ARTICLES 
 

CURRENT SCIENCE, VOL. 118, NO. 1, 10 JANUARY 2020 65

Hence the reader should note that further discussions will 
be based on observations of k = 5. After the various 
communities of proteins were obtained, we had to test 
whether these communities or rather, the proteins within 
these communities, play any significant part in cancer 
formation or propagation. We had collected a list of  
oncogenes and TSP genes from various on-line resources 
like OMIM and GeneSignDB. After cross-referencing  
between the databases, 4630 true cancer proteins and 
about 33,673 cancer chance proteins were discovered. 
Among the 4630 true disease proteins, we eliminated 
multiple copies and aliases to obtain 1234 cancer proteins 
which are represented in the HPRD PPI network. Using 
the lists of true and chance disease proteins, we compared 
proteins within the communities and those outside but  
directly interacting with each of the communities  
(Figure 2). 
 Using five-clique percolation, over 657 protein entries 
across the 70-odd communities were detected. And 218 
of these were true cancer proteins, while almost 417 
matched with cancer chance proteins. This showed that 
33.18% of proteins detected within the communities were 
known cancer-causing oncoproteins or TSPs, and 63.47% 
were cancer chance proteins having a high probability of 
being an oncoprotein or TSP. Hence almost 96.6% of the 
proteins within the communities that were detected when 
k = 5, were cancerous in nature. 
 This observation is in line with the initial assumption 
that cancer proteins are highly active and cluster together 
to form protein modules which are cancerous in nature. 
These protein modules can be represented mathematically 
using the community structures observed which, as stated 
previously, are also cancerous in nature. The clique per-
colation method permits the discovery of overlapping 
community structures. This feature allows us to capture 
proteins that are highly active, and can have special pro-
perties and importance. Hence, it was speculated that 
these highly overlapping proteins play an important role 
in various cancers. 
 
 

 
 

Figure 2. Protein distribution within the communities. 

 From Figure 3, it may be noted that overlapping pro-
teins are either known cancer proteins or have matched 
with an entry in the cancer chance protein lists. Since 
overlapping feature of a node implies that it is highly  
active in nature, it is reasonable to expect that almost all 
of the overlapping proteins are cancerous in nature and 
the predicted chance proteins are actual oncoproteins or 
TSPs. One particular protein that is to be considered is 
TP53. For k = 5, TSP was present in almost nine com-
munities; the highest for any proteins. TP53 is a known 
cancer gene that has been experimentally verified to be 
present in almost 63% of all known cancer types. In many 
cases, this acts as a propagator or starting point to the 
particular cancer mutation pathway. This nature can be 
explained perfectly by the high overlapping nature of 
TP53, being a single point of connection between nine 
different communities. Hence, TP53 (and other overlap-
ping nodes for that matter) acts as a bridge between these 
protein complexes and plays an important role in the dif-
ferent cancer mutation pathways. 
 From the result obtained, it can be observed that almost 
1000 cancer proteins and roughly 5000 cancer chance 
proteins do not lie inside any of the communities that we 
had detected. As stated before, proteins never function 
alone to cause any biological processes. Hence these can-
cer proteins lying outside any community can either form 
functional modules on their own, or they have an interac-
tive relationship with some of the detected protein mod-
ules. Then the first case, though not entirely false, goes 
against the definition of communities acting as functional 
modules. This is because if a functional protein module is 
to be formed, then this would require a group of proteins 
showing high interaction with each other. This is the  
basic definition of a community. So the more logical  
method is to check the interaction between the cancer 
proteins outside any community and the communities 
themselves. For this, proteins that lie outside any com-
munity based on their hop distance from any one of the 
communities were detected with k = 5. 
 
 

 
 

Figure 3. Overlapping proteins within the communities. 
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 Figure 4 shows the statistics regarding cancer proteins 
lying outside any community. Of the 1016 known cancer 
proteins lying outside of any community, nearly 70% are 
directly interacting with at least one of the detected 
communities. The next 25% of true cancer proteins can 
be reached in two hops from some community. This im-
plies that cancer proteins have a high interaction potential 
with the other proteins contained within the communities. 
One noteworthy observation is that, of all known cancer 
proteins lying outside any community, only 2.08% did 
not have any interaction with the communities that were 
detected. This indicates that almost 98% of all known 
cancer proteins belonging outside any of the communities 
will be a direct or an indirect neighbour to these com-
munities. Based on the above observation, it can con-
cluded that, of the remaining proteins lying outside of the 
communities which are not an entry in the known cancer 
protein list, if they have a hop distance of one, then they 
have a high probability of being cancerous in nature. 
Hence, using this metric of hop distance, it can predicted 
as a novel cancer protein. 
 Almost 7944 proteins lying outside of any community 
did not belong to the true cancer protein list. Running the 
same test, it was found that 46% of these non-cancer  
proteins are direct neighbours of the communities. Since 
cancerous proteins have high interactivity capability, it 
can be speculated that a majority of these non-cancerous 
proteins with one hop distance are novel cancer proteins 
or cancer chance proteins. From Figure 4 it may be noted 
that, of the 3691 non-cancer proteins within one hop  
distance, 66% are in the cancer chance list. This confirms 
our assumption that oncoproteins and TSPs will have  
a high interaction capability and are more likely to have a 
closer interaction with protein modules. It is also reason-
able to conclude that some of the remaining non-
cancerous proteins with one hop distance are novel  
cancer proteins. 
 As already observed, highly active nodes would  
possess a more central position within the PPI network 
and hence would have higher centrality scores. Therefore, 
ranking based on centrality measure must bring cancerous 
 
 

 
 

Figure 4. Cancer proteins outside the communities. 

proteins to the top of the list. Figure 5 shows the distribu-
tion of top n proteins for various centrality measures. 
 Among the four centrality measures considered, EC 
provided the highest percentage of disease protein identi-
fication, both in terms of true cancer proteins and cancer 
chance proteins. The second highest prediction accuracy 
was observed with CC. Both DC and BC have almost 
similar predictive capabilities. From the correlation ma-
trix given in Table 1, it may be noted that there exists 
strong correlation between betweenness and degree. It 
may be noted that the prediction accuracy for EC, CC, 
DC and BC was 93.3, 80, 66.7 and 66.1 respectively. By 
considering these centrality measures, a weighted rank 
was generated as given in eq. (5) 
 
 ri = w1ei + w2(1 – ci) + w3di + w4di, (5) 
 
where w1, w2, w3 and w4 were 0.93, 0.8, 0.67 and 0.66  
respectively, and represent the weights assigned based on 
prediction accuracy of EC, CC, DC and BC respectively. 
Here, ei, ci, di and bi represent EC, CC, DC and BC for a 
protein i, normalized to the range [0, 1]. Using the rank 
generated from the weighted score, one would be able to 
predict whether a protein is cancerous or not; higher the 
rank, more likely it is to be a disease protein. The algo-
rithm was tested on a dataset consisting of 657 proteins, 
of which 218 were true cancer proteins. From the confu-
sion matrix given in Table 2, one can find that the preci-
sion and accuracy of the algorithm are 89.4% and 92.5% 
respectively. 
 To find the effect of community structures in cancer 
protein identification, community count of the proteins, 
i.e. the number of communities in which a protein  
is present was calculated. As cancer proteins are highly 
active, it would be reasonable to speculate that they may 
be present in more communities and hence have higher 
rank. A modified rank with this community count as the 
fifth parameter in addition to the four centrality measures 
was generated as given in eq. (6). 
 
 ri = w1ei + w2(1 – ci) + w3di + w4di + w5ui, (6) 
 
where ui is the community count of protein i and 
w5 = 0.69, is the weight assigned based on prediction  
accuracy of community count. From the confusion matrix 
given in Table 3, precision and accuracy of the modified 
algorithm are 90.4% and 93% respectively, which is an 
improvement over previous ranking schemes. 
 As already mentioned, when k = 5, maximum 70 com-
munities among 657 proteins were detected. To confirm 
the statistical significance of the result obtained, a  
comparison on centrality measures of proteins within  
a community with equal number of randomly selected 
proteins from the network was done. Table 4 presents the 
average value for normalized centrality measures for the 
five largest communities. It may be noted that communities
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Figure 5. Protein distribution for: (a) eigenvector centrality, (b) closeness centrality, (c) betweenness centrality and  
(d) degree centrality. 

 
Table 1. Correlation matrix for centrality measures 

  Eigen vector  Betweenness  Closeness  Degree  
 

Eigen vector  1  –0.01794 –0.0081 0.0039  
Betweenness  –0.01794  1  –0.0499 0.8745  
Closeness  –0.0081  –0.0499 1  –0.0218  
Degree  0.0039  0.8745  –0.0218 1  

 
Table 2. Confusion matrix without community  
 count 

  Predicted 
 

   Cancer  Non-cancer 
 

Actual Cancer  195   26  
  Non-cancer   23  413  

 
Table 3. Confusion matrix with community count 

 Predicted 
 

   Cancer  Non-cancer 
 

Actual Cancer  198   25  
  Non-cancer   21  411  

 
are enriched with cancer and cancer chance proteins. 
Higher DC, higher BC, higher EC and lower CC of pro-
teins within the community, which are the salient features 
of a cancer protein, assert the impact of community struc-
tures in cancer protein identification. 

 The functional relevance of the result obtained was 
evaluated by verifying the annotation of the protein using 
gene ontology tool. Table 5 gives the top 10 proteins 
listed by the algorithm and their details obtained from 
GeneCards26. It may be noted that all the proteins listed 
in the table are associated with some disorder leading to 
cancer. Observations that TP53 is an important protein in 
many of the mutation pathways occupying highest  
position in the consolidated centrality score and member 
of nine communities, reaffirm the correctness of our 
ranking criteria. 

Conclusion 

Cancer remains as a high-risk disease and the number of 
cancer cases reported in the past few years is alarming. 
Hence, a fast and efficient way of predicting the proteins 
involved in cancer formation and propagation is required. 
A systematic analysis on the topological properties, with 
a stress on community structures in the PPI network to-
wards cancer protein identification is presented here. One 
of the most popular and scientifically verified overlapping 
community structure detection algorithms, viz. k-clique 
percolation method was used for identifying the commun-
ities. From the results it can be noted that most of the 
proteins lying inside these communities are cancerous in 
nature; either being known cancer proteins or having a 
high probability of being a novel cancer protein. Another
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Table 4. Comparison of centrality values within community with random proteins from the network 

 Protein percentage 
    Total Average centrality 
Community   Cancer (cancer +  
size  Cancer  chance  cancer chance) Eigen vector  Closeness  Degree  Betweenness  
 

103  Within community  52.4  29.1  81.5  0.1419  0.3038  0.228  0.4455  
  Random sampling  28.2  31.1  59.3  0.1213  0.3176  0.2175  0.0123  
 

 84  Within community  47.6  25  72.6  0.1683  0.3126  0.2258  0.346  
  Random sampling  21.4  25  46.4  0.0945  0.3284  0.2132  0.134  
 

 67  Within community  44.8  23.9  68.7  0.1492  0.3128  0.217  0.234 
  Random sampling  25.4  25.4  50.8  0.0913  0.3176  0.1912  0.114  
 

 52  Within community  34.6  34.6  69.2  0.1419  0.3054  0.208  0.152  
  Random sampling  32.7  25  57.7  0.1113  0.3193  0.1846  0.122  
 

 45  Within community  24.4  33.3  57.7  0.1265  0.3009  0.1977  0.216  
  Random sampling  28.9  24.4  53.3  0.0882  0.3184  0.1769  0.148  

 
 

Table 5. Functional relevance of top centrality proteins 

   No. of 
Symbol  Description Disorder communities  
 

TP53  Tumor protein P53  Li-Fraumeni syndrome  9  
BRCA1  BRCA1, DNA repair associated  Breast and ovarian cancer  7 
EP300  E1A-associated cellular p300 transcriptional  
   co-activator protein  Colorectal cancer  5  
SRC  SRC Proto-oncogene, non-receptor tyrosine kinase  Colorectal cancer  5  
CREBBP  CREB binding protein  Acute myeloid leukaemia and neonatal leukaemia  4 
ESR1  Estrogen receptor 1  Breast cancer and endometrial cancer 4 
SMAD3  SMAD family member 3  Loeys–Dietz syndrome 3  4  
EGFR  Epidermal growth factor receptor  Lung cancer  3  
PRKCA  Protein kinase C alpha  Asbestos-related lung carcinoma  3  
ATXN1  Ataxin 1  Cervical cancer  3  

 
 
noteworthy observation is that almost all overlapping 
proteins are cancerous in nature and those with the high-
est overlap play a significant role in many mutation 
pathways. High overlapping nature of TP53, being a  
single point of connection between nine different  
communities, asserts that these overlapping proteins play 
an important role, either acting as the source of disease, 
or as a bridge protein in the many mutation pathways.  
Using the novel approach of hop distance, it has been 
shown that proteins having a smaller hop have higher  
interactivity capabilities and hence have high probability 
of being cancerous in nature. This new metric can also be 
used to predict novel cancer proteins, as majority of non-
cancer proteins within a smaller hop pose cancerous  
capabilities and belong to cancer chance lists. This study 
also presents an analysis of the role of centrality meas-
ures in cancer protein identification. 
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