
RESEARCH COMMUNICATIONS 
 

CURRENT SCIENCE, VOL. 118, NO. 9, 10 MAY 2020 1456

*For correspondence. (e-mail: knganeshaiah@gmail.com) 

South India, resulting in the survival of PBW in fruiting 
parts for a longer period. Such extended phase intensifies 
Bt-toxin selection pressure and resistance development 
gets accelerated. (iii) Almost all the cotton sticks are re-
moved from the fields and utilized as firewood in house-
holds or industries in North India. However, in South 
India majority of farmers either collect or bury cotton 
stalks in the fields, except a few who incorporate them in 
the soil after shredding. In Central India also the same 
practice is followed, but some farmers maintain ratoon if 
the irrigation facilities are available and also allow ani-
mal grazing on the cotton stubbles after harvesting.  
 Reports of PBW infestation during the cotton-growing 
season in North India must be taken seriously and efforts 
for its management need to be intensified to prevent fur-
ther spread in non-PBW-infested cotton areas. The inter-
state movement of cotton seeds, as apparently evident, 
must have helped in the transportation of resistant PBW 
larvae surviving in cotton seeds and that has spread to the 
fields adjoining the ginneries, where cotton seeds have 
been stacked and stocked for a longer duration, especially 
in the open. PBW in the northern zone warrants restric-
tion to be imposed on inter-zonal movement of cotton 
seeds and the possibilities of movement of hidden infesta-
tion of suspected pests and diseases. Similar to cotton 
seed, seed cotton trade mainly within the state or within 
the zone, especially in the bordering towns must be done 
with utmost care. Though movement of seed cotton being 
bulky in nature is not preferred among states of different 
zones, but, if practised, this can also pose a threat of in-
troduction of resistant larval populations/infestations in 
new areas. 
 There is an urgent need to monitor the emergence of 
moths in the ginneries, especially through pheromone 
traps to ascertain the possibilities of carryover of PBW 
larvae and subsequent moth emergence, which may pose 
a threat of introduction of resistant larvae in the northern 
zone. In addition, fields adjoining the ginning-cum-oil 
extraction units should be effectively monitored through 
pheromone traps, green boll destructive sampling and  
assessment of open bolls and locule damage to restrict 
further spread of PBW in the northern cotton-growing 
states of India. 
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This paper reports our efforts to use artificial intelli-
gence based on deep convolutional neural network 
(CNN) as a tool to identify Indian butterflies and 
moths. We compiled a dataset of over 170,000 images 
for 800 Indian butterfly species and 500 Indian moth 
species from diverse sources. We adopted the Effi-
cientNet-B6 architecture for our CNN model, with 
about 44 million learnable parameters. We trained an 
ensemble of 5 such models on different subsets of the 
images in our data, employing artificial image aug-
mentation techniques and transfer learning. This en-
semble achieved a balanced top-1 accuracy of 86.5%, 
top-3 accuracy of 94.7%, and top-5 accuracy of 96.4% 
on the 1300 species, and a mean F1 score of 0.867. 
Thus, our efforts demonstrate artificial intelligence 
can be effectively used for identifying these biological 
species that would substantially enhance the work  
efficiency of field level biologists in several spheres of 
investigations. 
 
Keywords: Artificial intelligence, butterfly identifica-
tion, convolutional neural network, moth identification. 



RESEARCH COMMUNICATIONS 
 

CURRENT SCIENCE, VOL. 118, NO. 9, 10 MAY 2020 1457

IDENTIFICATION of organisms is central to biology, espe-
cially so for ecology, conservation and utilization of spe-
cies. But the vast diversity of species, associated with the 
limited taxonomic expertise available to identify them in 
the field, has severely hindered the work of thousands of 
field biologists. Consequently, their time and effort in the 
field have been severely underutilized; their work can  
be rendered more productive and meaningful if the limi-
tation of field identification of organisms could be  
resolved. 
 Realizing this difficulty of field biologists, there have 
been continuous efforts to develop various para-
taxonomic tools to assist them in identification. For ex-
ample, there are efforts to develop handy field-guides 
with trait driven identification of groups of plants (e.g. 
RET plant of Western Ghats, India), interactive field 
identification software kits (e.g. for plant groups such as 
Phyllanthus and Rattans, and for butterflies). Some have 
hosted web-based identification systems that link experts 
and end users (e.g. identification of flora of India, Flora 
of Karnataka, etc.). These efforts have specific limita-
tions: they may not always be user friendly (e.g. filed 
books – bulky and heavy), nor field friendly (e.g. 
Pl@ntNet, social network-based groups such as Indian 
Flora, and other such web-based networks demand inter-
net connectivity) and, most of them are aimed at only 
specific taxonomic subgroups such as bamboos, Rattans, 
Phyllanthus species, garden plants (Plantifier, Like That 
Garden, Garden tags), Western Ghats trees (Biotik), 
LepSnap (for identification of North American butter-
flies), etc. Clearly, there still exists a strong need for 
more innovative taxonomic tools that are user friendly, 
quick, more accurate, and at the same time field friendly. 
 In this background, we present here an artificial intelli-
gence (AI)-based approach that uses convolutional neural 
network (CNN) as an easy and ready solution for field 
identification of organisms. We illustrate this approach 
by developing a prototype of AI-based taxonomic kit to 
identify a subset of Indian butterfly and moth species. 
The AI identification system thus developed effectively 
recognizes 1300 species with a balanced top-1 accuracy 
of 86.5% and a mean F1 score of 0.867. 
 Neural networks are computational mathematical models 
‘loosely inspired by the human brain’1. They consist of 
one or more layers of interconnected neurons, the outputs 
of which are non-linear operations on their inputs. When 
there are many layers of neurons in the network, it is said 
to be deep2,3. 
 Algorithms that employ neural networks are not ma-
nually programmed with rules to perform certain tasks, 
but rather learn to perform the task from real-world  
examples that constitute the training data. Deep neural 
networks are theoretically able to approximate any conti-
nuous mathematical function, and are therefore consi-
dered to be universal approximators4,5. Deeper neural 
networks are capable of ‘high-level abstractions’, such as 

those required for computer vision and natural language 
applications that are associated with AI3. 
 The parameters of the neural network, often randomly 
initialized, can be learned by the process of gradient des-
cent. This involves iteratively ‘updating the parameters in 
the opposite direction of the gradient’ of an error or loss 
function, thereby minimizing this function6. Therefore, 
the parameters of the network are updated in a manner 
that allows to steadily descend to the minimum of the  
surface of the loss function. The size of each step towards 
the minimum is determined by a carefully tuned, user-
defined parameter called the learning rate6. 
 CNNs are a class of deep neural networks commonly 
used and very effective in computer vision tasks. The 
neurons in a CNN are connected similar to the structure 
of the animal visual cortex2,7. CNNs learn image filters 
that are applied to a small region of the image at once, 
known as the receptive field, similar to how cortical neu-
rons respond to only a small part of the visual field. Rep-
licating the same filters across the entire image allows 
weights to be efficiently shared across large spaces2. This 
also provides translational equivariance, where objects 
are detected regardless of their positions in the field. 
 CNNs have excelled at computer vision tasks, especial-
ly image classification, where they often surpass the  
accuracy of humans8,9. The Noisy Student (L2) model10, 
with 480 million parameters, achieves a state-of-the-art 
88.4% top-1 and 98.7% top-5 accuracies on the  
classification task of the ImageNet Large Scale Visual 
Recognition Challenge (ILSVRC)11, which includes  
approximately 1.2 million images across 1000 diverse 
categories covering various animals, birds, vehicles, and 
everyday objects. For facial recognition, a 140 million 
parameter FaceNet12 trained on 100–200 million images 
containing 8 million unique faces, achieves 99.6%  
accuracy on the Labelled Faces in the Wild (LFW)  
dataset, while other models also exhibit similar perfor-
mance13. 
 The sizes of the training datasets available to train a 
network have a large impact on their efficacy and genera-
lizability. For fine-grained tasks such as butterfly and 
moth identification from natural images, labelled datasets 
are rare and the few available datasets are comparatively 
very small or ill-suited for the task14. CNNs for the fine-
grained recognition of North American butterfly and 
moth species have been developed14,15. With this back-
ground, the present study is aimed at demonstrating the 
scope and potential of developing an AI system for iden-
tifying Indian butterflies and moths. 
 We built a dataset of Indian butterflies and moths from 
a mixture of manually annotated, verified images from 
the Indian Bioresource Information Network (IBIN)16 and 
noisy web images from Google searches. Noisy web data 
can be very effective in training powerful CNNs17, where 
the performance gain due to the availability of additional 
data overcomes small amounts of noise. This also allows 
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the dataset to comprise images of various quality and 
from photographers of varying skills. 
 Nearly 213,000 images were collected for 2,570 butter-
fly and moth species. During preprocessing, duplicate  
images and any identifying information of the species in-
cluded on the images were removed. Species for which 
less than 30 images were available were disregarded, 
while those with a large number of images were pared 
down to a maximum of 400. The resulting data contained 
170,501 images across 1,300 species, with a median value 
of 74 images per species. The distribution of the number 
of images per species, along with the spread of image 
quality and proportions across the dataset is shown in 
Figures 1 and 2. 
 The ability of CNNs to generalize well in the real 
world depends upon the variance in the training data.  
Images in the dataset must ideally be representative of the 
various situations where they will ultimately be put to use 
in the field. For instance, a model trained with professio-
nally taken photographs may not work just as well with 
dimly lit or grainy cellphone images. 
 To make our neural network more robust to such varia-
tions, we augmented our dataset artificially, by creating 
multiple randomized variations of each image. In addition 
to using images of varying resolutions, we incorporated 
horizontal and vertical flipping, cropping of the images at 
random locations, along with photometric distortions of 
various degrees in brightness, contrast, and saturation. 
Examples are shown in Figure 3. 
 Images were modified dynamically during training. 
Since the training is iterative, where there are several 
 
 

 
 

Figure 1. Histogram of the number of images available per species. 
Some species are more common or accessible than others and are pho-
tographed more often. 

runs over the entirety of the training data, the model sees 
just as many variations of each image. This exposes it to 
a larger variety of butterfly and moth positions, framing, 
and lighting as might be expected in the field, despite the 
limited number of training images and styles. 
 We chose the EfficientNet18 family of architectures  
because of their smaller size and computational cost 
compared to other architectures. Among these, we 
adopted the EfficientNet-B6 variant based on our hard-
ware limitations. This architecture has achieved 84.2% 
and 96.8% top-1 and top-5 accuracies respectively, on the 
ILSVRC classification task. This architecture adapted to 
our task of identifying 1300 species of butterflies and 
moths resulted in a network containing about 44 million 
learnable parameters. 
 We set aside approximately a third of our dataset 
(about 57,000 images) as the test dataset for the final 
evaluation of the trained model ensemble. The remainder 
of the data (about 113,000 images), to be used for train-
ing our models, was split into five parts. We trained five 
models, each on a different 4-part subset of the training 
data, while using the 5th part as a validation set. The  
images in all splits, including the test split, were selected 
randomly while ensuring that the mean response  
value was identical, i.e. the species distribution was the 
same. 
 A strategy we employed to address the limited size of 
our dataset was transfer learning, where knowledge 
gained in a separate related task can be exploited to boost 
performance and generalizability in a new task, typically 
involving a smaller dataset. This works especially well in 
image recognition tasks, because the lower-level layers in  
 
 

 
 

Figure 2. The spread of image resolution and aspect ratios for the im-
ages in our dataset. 
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Figure 3. Examples of artificial image augmentation methods we employed: a, the original image; b, random mirroring; c, random crop-
ping; d, random photometric distortions. Random combinations of these are applied dynamically during the training process, with the mod-
el seeing a different variation of each image during each pass over the training data. 

 
 

 
 

Figure 4. A single model’s learning rate schedule and the balanced 
validation accuracy over the course of its training. The validation accu-
racy was measured at the end of each pass over the training data, and 
peaks at the end of the 4th cosine annealing period or 15th pass. 
 
 

such deep learning models typically learn general image 
filters and features that are not specific to any one task19. 
Initializing a network with layers from another learned 
network, even if trained on a distant or relatively dissimilar

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
task, can be better than training the network  
entirely from scratch19. Therefore, we initialized each  
EfficientNet-B6 with layers trained20 on the ILSVRC 
classification dataset. We then tuned the parameters of 
the network to the task of identifying our butterfly and 
moth species. 
 The parameters of the network were updated using 
gradient descent in batches of 16 images, with an initial 
learning rate of 5e-3. Decaying (or annealing) the learn-
ing rate during training allows the network to take smaller 
steps in the deepening, narrowing loss topology near a 

Table 1. The mean and median 
values of the ensemble’s precision, 
recall, and F1 scores of the individual  
 species in the test dataset 

 Mean Median 
 

Precision 0.878 0.923 
Recall 0.865 0.912 
F1 score 0.867 0.913 

 
 

Table 2. The ensemble’s top-1, top-3 and top-5  
balanced and raw accuracies measured on the test  
 dataset 

 Top-1 Top-3 Top-5 
 

Balanced accuracy (%) 86.5 94.7 96.4 
Raw accuracy (%) 88.2 95.6 97.0 
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Table 3. Five species with the lowest recalls (i.e. fraction of the species’ images correctly predicted), and the 
species they are usually mistaken for in misidentified images. Also listed are the fraction of the species’  
 images where the correct prediction is present in the ensemble’s top three and five choices 

  When misidentified, Correct prediction Correct prediction 
Species Recall it is usually as in top 3 choices in top 5 choices 
 

Pantoporia sandaka 0.133 Pantoporia hordonia 0.8 1 
Potanthus ganda 0.154 Potanthus omaha 0.615 0.692 
  Potanthus confucius 
 

Caltoris bromus 0.167 Caltoris cahira 0.25 0.5 
  Caltoris cormasa 
 

Telicota ohara 0.176 Potanthus confucius 0.353 0.588 
  Telicota besta   
  Telicota bambusae   
 

Symbrenthia brabira 0.182 Symbrenthia hypselis 0.909 0.909 

 

 

 
 

Figure 5. Tukey box plots of the precision, recall, and F1 scores of the individual species in our dataset. The boxes 
represent the interquartile range (IQR), i.e. range between the 25th and 75th percentiles. The lines inside the boxes 
represent the median value. Species beyond the whiskers are outliers in terms of the ensemble’s performance. 

 

 
local minimum21. In order to better and faster achieve 
convergence, i.e. reach the minimum of the loss function, 
we periodically annealed the learning rate to a minimum 
of 0 using a cosine schedule followed by warm restarts 
back to the initial learning rate22 as shown in Figure 4. The 
warm restarts are typically accompanied by a temporary re-
duction in accuracy22 but allow the network to move to a 
different region of the loss function from where it may 
converge better. As seen in Figure 4, the first annealing 
period is over the first pass over the training data, after 
which we doubled the length of each successive annealing 

period. All our models reached convergence, measured 
on their validation sets, after 4 such annealing periods or 
15 passes over the training data, after which there was no 
further improvement. 
 Each trained model generates a probability distribution 
for the 1300 species. In the ensemble, we combine the 
five trained models by simply averaging their output 
probabilities. This ensemble of models therefore collec-
tively learned from all images in the training dataset with 
the added benefit of generalizing better in the field due to  
averaging out each other’s idiosyncrasies. 
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Figure 6. A confusion matrix of the 55 worst performing species in terms of F1 score. The rows represent the true  
species and the columns represent the predicted species. The colours represent the fraction of the true species that was  
classified as the corresponding predicted species. Ideally, squares on the diagonal would be 1 (bright) and all others  
0 (dark). 

 
 
 For any provided image, the ensemble’s prediction is 
the species with the highest resulting output probability. 
We applied the ensemble of models to the images in the 
test dataset and measured the precision and recall for each 
species. For all images predicted as a particular species, 
the precision represents the fraction of these predictions 
that are correct. On the other hand, recall is the fraction 
of a species’ images that were identified correctly. We  
also report the F1 score, which is the harmonic mean of 
the precision and recall for each species. The precision, 
recall, and F1 scores are shown in Table 1 and Figure 5. 
 We found that 80% of the species in our dataset were 
detected with an F1 score of 0.8 or greater. 39 of the 1300 
butterfly and moth species had F1 scores lower than 0.5. 
 Since our test dataset is imbalanced, the raw accuracy 
on the test dataset would be skewed towards those species 
with a greater number of available test images. Therefore, 
we also compute the balanced accuracy23, which is equiv-
alent to the raw accuracy where the contribution of each 

species to the metric is balanced by its number of test  
images. Note that this is also equivalent to the mean of 
the individual species’ recalls. We also measured top-k 
accuracies, which are accuracies calculated for whether 
the correct species is present in the ensemble’s top k pre-
dictions for an image, i.e. among the k most probable 
species. 
 All accuracies are shown in Table 2. The ensemble 
achieves a balanced top-1 accuracy of 86.5%, top-3 accu-
racy of 94.7%, and top-5 accuracy of 96.4%. These num-
bers indicate that when the top choice of the ensemble is 
wrong, there is about a 60% chance that it will be correct 
in the second or third choice, and over a 70% chance that 
it will accurately identify the butterfly or moth within its 
top five predictions. 
 When a particular species is confused for another, it is 
often predominantly within the same genus, as seen in 
Table 3. For example, Pantoporia sandaka is often con-
fused for Pantoporia hordonia, and Symbrenthia brabira 
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can be mistaken for Symbrenthia hypselis. In many such 
cases, we might still reliably find the correct prediction in 
the ensemble’s top three or five choices. 
 Additional such relationships are visualized to a limited 
extent in Figure 6. Due to the constraints of space, not all 
species and their confusions could be presented here. 
 We have developed an ensemble of deep CNNs for the 
identification of 1300 species of butterflies and moths 
found in India, with a balanced top-1 accuracy of 86.5% 
and a mean F1 score of 0.867. It has been made available 
for use by the public at www.pathangasuchaka.in. This 
AI tool would be useful for the scientific community 
(such as field-level biologists, taxonomists and conserva-
tionists) in quickly and accurately identifying Indian but-
terfly and moth species, thereby saving valuable time and 
resources. By enabling easy identification, it would also 
help cultivate interest in such insects and their conserva-
tion among the general public. The platform makes it 
possible to map the geographical distribution of these 
species by geotagging queries made on the website, 
which would be invaluable for scientific, educational and 
conservational purposes. 
 In the future, the quality and reliability of predictions 
will be further improved by adding new species, for 
which a sufficient number of images are currently not 
available, and improving the diversity of training images 
for existing species by progressively expanding the train-
ing data through field collection and crowd sourcing. 
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