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Air quality has become one of the most important  
environmental concerns for Delhi, India. In this per-
spective, we have developed a high-resolution air quali-
ty prediction system for Delhi based on chemical data 
assimilation in the chemical transport model –
 Weather Research and Forecasting with Chemistry 
(WRF-Chem). The data assimilation system was ap-
plied to improve the PM2.5 forecast via assimilation of 
MODIS aerosol optical depth retrievals using three-
dimensional variational data analysis scheme. Near 
real-time MODIS fire count data were applied simul-
taneously to adjust the fire-emission inputs of chemi-
cal species before the assimilation cycle. Carbon 
monoxide (CO) emissions from biomass burning, an-
thropogenic emissions, and CO inflow from the do-
main boundaries were tagged to understand the 
contribution of local and non-local emission sources. 
We achieved significant improvements for surface 
PM2.5 forecast with joint adjustment of initial condi-
tions and fire emissions.  

 

Keywords: Air quality, particulate matter, chemical  

data assimilation, aerosol optical depth, fire emissions. 

 

THE National Capital Region (NCR) of India, especially 

Delhi, encounters severe air pollution episodes during 

post-monsoon, which continue during the whole winter 

season, putting the public at high risk. Managing air 

quality levels in Delhi has emerged as a complex task in 

recent years. It is now a matter of serious concern for the 

regulatory authorities as well as scientific and academic 

institutions. In recent years, the Government of India 

(GoI) has been seeking credible scientific studies to de-

velop meaningful policy options to mitigate the risk that 

acute air pollution episodes pose to public health in the 

NCR. In order to address this, the Ministry of Environment, 

Forest and Climate Change (MoEFCC), GoI, has recently 

launched the National Clean Air Programme (NCAP). 

The Government has also notified a Graded Response 

Action Plan (GRAP) to impose temporary controls on 

industries, power generation, transportation and 

construction activities in and around Delhi to avert severe 

air pollution episodes. For this effort, the Ministry of 

Earth Sciences (MoES), GoI, has been identified as the 

nodal ministry responsible for developing and deploying 

an air quality early warning system for Delhi. 

 Emissions of chemical compounds and aerosols have 

increased in Delhi as a result of extensive use of fossil 

fuels, biomass burning and intense agricultural practices 

in the surrounding regions1,2. Delhi ranks high among the 

list of regions extremely vulnerable to adverse impacts of 

air pollution. While the adverse health impact of PM2.5 

pollution was long known, a recent research report 

indicates that exposure to outdoor PM2.5 pollution in 

Delhi severely impacts human health3. Unfavourable 

meteorological conditions coupled with a variety of 

emission sources in the region are thought to be responsible 
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for extreme air pollution episodes occurring in the NCR4–7. 

In recent years, severe pollution episodes with a very 

high level of PM2.5 concentrations are found to occur 

more frequently during the winter season that affect daily 

life in Delhi on heavy pollution days8–10. Such extreme 

events underscore the need for an operational air quality 

early warning system in order to timely forecast and 

delineate appropriate and effective air quality management 

plans for extreme air pollution events. This has drawn 

significant research interest in predicting PM2.5 levels 

using numerical prediction models7,11,12. 

 However, simulating and predicting extreme air 

pollution episodes, particularly high PM2.5 concentration 

in the highly polluted NCR, is a challenging task for  

the numerical weather prediction models7,13. Large 

uncertainties are involved in the prediction of 

atmospheric aerosols because predictions using chemical 

transport models suffer from errors in emission invento-

ries14, inadequate understanding of some of the processes 

(e.g. secondary organic aerosol formation), inaccuracies 

in the initialization of chemical and physical atmospheric 

state, and systematic and random errors due to numerical 

approximations. To reduce the impact of these errors on 

short-term (1–3 days) forecasts, we need to bring the 

modelled initial state as close to the observations as pos-

sible. This can be achieved by chemical data assimilation, 

which combines observations and model simulations. Re-

cent developments have revealed that the assimilation of  

atmospheric chemical composition observations improves 

the air quality forecast by minimizing the uncertainties of 

both the chemical initialization of targeted chemical 

compounds and emissions in chemistry transport mod-

els15–19. Studies have demonstrated that significant  

improvement in forecasting PM2.5 could be achieved 

through assimilating satellite retrievals of aerosol optical 

depths (AOD) in chemistry transport models19,20. 

 In order to improve the accuracy of PM2.5 prediction, in 

this study we develop a novel approach to constrain near 

real-time fire emissions and improve aerosol initial con-

ditions for PM2.5 through assimilating MODIS AOD  

retrievals. The first version of the prediction system was 

developed jointly by scientists of MoES institutions and 

the National Centre for Atmospheric Research (NCAR), 

USA. This modelling framework consists of a high-

resolution fully coupled state-of-the-science. Weather 

Research and Forecasting model coupled with Chemistry 

(WRF-Chem) and three-dimensional variational (3DVAR) 

framework of the community gridpoint statistical interpo-

lation (GSI) system. The 3DVAR-GSI system assimilates 

data from satellites on AOD, which is related to the 

emissions from various anthropogenic and natural sources, 

including dust and stubble burning. The model also takes 

into account the long-range transport of dust from dust 

storms and particulate matter from stubble burning, and 

provides prediction with a lead time of 72 h. The 

modelling framework also consists of tracers for carbon 

monoxide (CO) emissions from stubble burning, anthro-

pogenic emissions within the model domain and transport 

of CO from outsidethe domain to help determine the rela-

tive importance of Delhi and non-Delhi emission sources. 

We implemented the CO tracers following the tagged-

tracer approach described in our previous work13,21. The 

advanced Air Quality Early Warning System (AQEWS) 

was made operational during October 2018–January 

2019. The AQEWS was meant to issue alerts on large-

scale air pollution events that may occur over the Delhi 

region. 

 This study provides an overview of the AQEWS 

framework, including a description of the air quality 

forecasting model based on WRF-Chem, a brief description 

of the data assimilation system, and in situ observations. 

Finally, it highlights the impact of assimilation results on 

the accuracy of the forecasts. MoES is continuing attempts 

to assimilate more data from various observational 

platforms and other criteria pollutants to further improve 

the accuracy of PM2.5 predictions. 

Materials and methods 

WRF-Chem model 

To simulate the transport of aerosols and other chemical 

species in the Delhi region, WRF-Chem version 3.9.1 has 

been identified as one of the several air quality models 

for use in AQEWS. Table 1 lists the physical and chemical 

parameterization schemes of model configuration. The 

outer computational domain of the model includes the 

entire northern region of India, also covering Pakistan on 

the western side (Figure 1 a). The outer domain was 

defined at a horizontal grid spacing of 10 km in both the 

latitudinal and longitudinal directions, while the inner 

domain was defined at 2 km resolution covering the 

NCR. The model top was set to 10 hPa and included 47 

vertical levels. Prior anthropogenic emissions of aerosols 

and trace gases were taken from the EDGAR-HTAP for 

the year 2010 at 0.1 grid resolution and scaled to 2018 

using scaling factors as given in Venkatraman et al.22. No 

diurnal variation was added to the emissions. For the 

inner domain, the original emissions were processed using 

a mass-conserving emission preprocessor to match the 

model inner grid spacing of 2 km. It can be seen that  

re-griding emissions from 10 to 2 km do not resolve the 

true variability in emissions at 2 km resolution (Supple-

mentary Figure 1). However, the total mass emitted is the 

same before and after re-grinding for a given region. The 

model uses MOZART-4 gas-phase chemistry linked to 

the GOCART aerosol scheme (MOZCART). The 

GOCART aerosol model simulates five major types of 

aerosols, namely sulphate, black carbon (BC), organic 

carbon (OC), dust and sea salt. Nitrate and secondary 

organic aerosols are missing in the MOZCART scheme.
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Table 1. Physical and chemical schemes used in the model set-up 

Atmospheric process Schemes 
 

Cloud microphysics Thompson et al.36 

Longwave radiation Rapid radiative transfer model developed for general circulation models (GCMs)37 

Shortwave radiation Rapid radiative transfer model developed for GCMs37 

Surface layer Monin–Obukhov (Janjic Eta) scheme38 

Land surface model Unified Noah land-surface model39 

Planetary boundary layer Bougeault and Lacarrere (BouLac) TKE40 

Cumulus Grell–Freitas ensemble scheme41 

Gas phase chemistry Model for ozone and related tracers chemical mechanism24 

Aerosol processes Georgia Tech/Goddard Global Ozone Chemistry Aerosol Radiation and Transport Model42 

 

 

 
 

Figure 1. a, Model outer domain (10 km) with topographic contours. b, Model innermost domain (2 km); red dots repre-
sent the location of air quality monitoring stations in the National Capital Region of India. 

 

 

Biogenic emissions were calculated on-line from the 

Model of Emissions of Gases and Aerosols from Nature 

(MEGAN)23. The static geographical fields such as soil 

properties, vegetation fraction, land-use pattern, erodible 

fraction and terrain height were taken from the MODIS 

data. Spatially and temporally (six hourly) varying chem-

ical boundary conditions were provided by global model 

simulations from the Model for Ozone and Related 

Chemical Tracers (MOZART-4) 10-year climatology24. 

After March 2019, AQEWS was driven by the analysis 

and forecast product (Ensemble-Kalman filtering) pro-

duced by the Indian Institute of Tropical Meteorology-

Global Forecasting System (IITM-GFS, T1534) spectral 

model initial and boundary conditions at 12.5 km grid 

resolution. 

Data assimilation algorithm 

The chemical data assimilation algorithm employed in 

WRF-Chem for assimilation of MODIS AOD retrievals is 

based on a 3DVAR scheme of the GSI system (version 

3.5), similar to Kumar et al.19. The GSI-3DVAR scheme 

combines information from the MODIS AOD and model 

background AOD to find optimal analysis state by mini-

mizing the following cost function 

 

 1 11 1
( ) ( ),

2 2

T TJ x B x Hx o O Hx o      (1) 

 

where x represents the state vector that consists of aerosol 

chemical composition and meteorological variables used 

in AOD calculations. B is commonly referred to as back-

ground error covariance (BEC) matrix which determines 

how much of the difference between observed and mod-

elled values actually contributes to the analysis incre-

ment, and also spreads observations horizontally and 

vertically. In eq. (1), H represents the forward operator 

that transforms the GOCART aerosol chemical composi-

tion to AOD using the community radiative transfer  

model (RTM) in the GSI framework. For the minimiza-

tion of the cost function J, iterative conjugate gradient 

method was used, which is described in detail in DTC26. 

The maximum number of iterations was set to 50 to reach 

the 10–9 convergence threshold for the GSI solution.  

During the assimilation cycle, when the background error 

was larger than the observation error, the model aerosol 

concentrations were adjusted to push the model AOD  



RESEARCH ARTICLES 
 

CURRENT SCIENCE, VOL. 118, NO. 11, 10 JUNE 2020 1806 

towards the MODIS AOD. On the other hand, when 

background error was smaller than observation error, the 

model aerosol concentrations were not changed. 

 Sixteen GOCART aerosol species, temperature, pres-

sure, relative humidity and grid thickness variables in 

WRF-Chem are included as the state variables in GSI. 

The composition of GOCART aerosol module includes 

fine unspeciated aerosol contribution (P25), organic  

carbon (hydrophobic OC1 and hydrophilic OC2), organic 

black carbon (hydrophobic BC1 and hydrophilic BC2), 

sulphate (SO4), dust of different sizes (D1, D2, D3, D4 and 

D5 with effective radii of 0.5, 1.4, 2.4, 4.5 and 8 µm re-

spectively), and sea salt of different sizes (S1, S2, S3 and 

S4 with effective radii of 0.3, 1.0, 3.25 and 5 m respec-

tively). All aerosol components are defined as the control 

variables and are adjusted directly by the AOD assimila-

tion. 

 BEC statistical parameters for all the aerosols have 

been modelled using the community Generalized Back-

ground Error (GEN_BE) code, which utilizes the differ-

ence between two forecasts initialized by different 

meteorology and emissions. In this study, the first WRF-

Chem forecast was initialized with GFS forecasts using 

default EDGAR-HTAP and FINN emissions. The second 

forecast was initialized using ERA-Interim and EDGAR-

HTAP with FINN emissions enhanced by 100%. This  

uncertainty of 100% in both anthropogenic and biomass 

burning emissions is assumed based on the uncertainties 

among different emission inventories by Granier et al.27, 

Wiedinmyer et al.28 and Jena et al.14. The rationale  

behind these perturbations was to capture uncertainties in 

air quality simulations due to errors and biases in 

transport and emissions. BEC statistical parameters were 

then calculated for the WRF-Chem forecast valid at the 

assimilation time, i.e. 0900 UTC. Other sources of uncer-

tainties in the state variables such as those resulting from 

chemical mechanisms, boundary conditions, dry and wet  

depositions, etc. were not considered. Figure 2 shows  

an example of the estimated vertical distribution of  

background error variance for BC. It can be seen that  

variance is highest well within the planetary boundary 

layer (PBL) and decreases vertically above the PBL 

height. This indicates that larger changes in aerosol mass 

concentration after AOD assimilation will take place 

within the PBL. 

 In eq. (1), o represents the MODIS AOD retrievals, and 

O is the observation error covariance matrix. In the pre-

sent AQEWS WRF-Chem set-up, we have used level-2 

MODIS 550-nm AOD from NASA near real-time (NRT) 

retrievals at 10 km resolution from both Aqua and Terra 

satellite platforms. MODIS overpass corresponding to 

10 : 30 and 1 : 30 local time over India was assimilated in-

to WRF-Chem during the 0900 UTC assimilation cycle. 

Following Remer et al.25, observational errors for 

MODIS retrievals were specified as (0.05 + 0.15  AOD) 

over the land area. 

Experimental design 

We have performed two sets of simulations to examine 

the impact of assimilation on short-term PM2.5 prediction. 

The first experiment was performed for the period 1–20 

November 2017, covering the worst air quality events 

that occurred on 7 and 13 November. Long-range trans-

port of PM (biomass burning in the northwestern region 

of NCR), local emissions in the NCR and stable meteoro-

logical conditions were the main factors for extremely 

poor air quality during these events. This experiment was 

performed in hind-cast mode to examine how the assimi-

lation of MODIS AOD retrievals and daily fire emissions 

improve the prediction of the PM2.5 system for the above-

mentioned events. In this experiment, biomass burning 

emissions of aerosols and trace gases were updated daily 

based on Fire INventory from NCAR (FINN) version 1.5. 

The model was driven by the National Centers for 

Environmental Prediction Global Forecast System (GFS) 

as provided by NCAR (http://rda.ucar.edu/datasets/ 

ds084.1). In the second experiment, the model was run 

during 15 October 2018–28 January 2019 to provide 

forecast for the next 72 h. Due to the non-availability of 

real-time fire emissions, the model was updated with one-

day-old fire emissions and corrected with the latest fire 

count data from MODIS before the assimilation cycle. 

The same fire emissions were continued for 72 h in the 

forecast. In both the experiments, WRF-Chem simula-

tions were initialized at 0900 UTC, and aerosol initial 

conditions updated through assimilation of both MODIS 

Aqua and Terra AOD. While Terra and Aqua AOD are 

available around 0600 UTC and 0900 UTC, they are  

assumed to be available for assimilation at 0900 UTC, 

 

 

 
 

Figure 2. Vertical distribution of error variance for black carbon 
(BC) mass concentration over Delhi. 
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Figure 3. Spatial distribution of (a) MODIS aerosol optical depth (AOD), (b) model AOD without data assimilation and (c) model AOD 
with data assimilation on 7 November 2017 at 0900 UTC. 

 

 

which is a common assumption in the 3DVAR framework 

and is essential to avoid frequent stops in the forecast cy-

cles. The WRF-Chem initial state updated through assim-

ilation of MODIS AOD was then integrated forward to 

provide 72 h forecast. Every day, chemical fields were in-

itialized from the previous WRF-Chem forecast at 

0900 UTC, aerosol initialization updated through assimi-

lation, and meteorology refreshed using the GFS forecast. 

Results and discussion 

Impact of AOD assimilation on surface PM2.5 in the  
hind-cast experiment 

To examine the robustness of improvement in surface 

PM2.5 due to MODIS AOD assimilation, we performed 

two simulations for the period 1–20 November 2017. The 

first experiment (control experiment) was conducted 

without AOD assimilation, but fire emissions were up-

dated every day. The second experiment was conducted 

with assimilated MODIS AOD every day at 0900 UTC. 

Figure 3 a–c shows the spatial distribution of MODIS 

AOD and AOD simulated by the model with and without 

data assimilation respectively, for a typical case of 7  

November 2017 at 0900 UTC. It can be seen that AOD 

simulated by the model in the control experiment (Figure 

3 b, without assimilation) has been significantly under-

estimated over the entire region compared to AOD  

retrieved by MODIS (Figure 3 a). Maximum AOD values 

in the range 0.3–0.5 were observed in the control experi-

ment compared to the values (0.8–1.0) observed from the 

satellite. After assimilation of the MODIS AOD, simulat-

ed AOD showed significant improvement and much bet-

ter agreement with the observations (Figure 3 c). As 

expected, after data assimilation, a large enhancement in 

AOD was noticed over the northwestern States of India, 

which brought the WRF-Chem simulated AOD closer to 

the MODIS AOD. Higher values of AOD observed over 

this region were a result of large-scale crop residue burn-

ing activities that occurred on 5 and 6 November 2017. 

The increment in AOD values in the analysis (at t = 0,  

assimilation cycle 0900 UTC) due to assimilation was 

about 1.5 to 2.0 times more than that of AOD simulated 

without assimilation. This increment in AOD indicates 

that the data assimilation system mostly leads to a posi-

tive increment in aerosol mass concentration, and it  

is able to adjust chemical initial conditions for aerosols  

efficiently. 

 In order to examine the performance of the assimilation 

system for air quality applications, time series data of 

hourly PM2.5 concentrations averaged over Delhi from the 

control and data assimilation runs for the first day of the 

forecast were compared with the independent surface 

PM2.5 observations in the Delhi region (Figure 4 a and b). 

The black line in Figure 4 shows PM2.5 concentration  

averaged from the network of 21 air quality monitoring 

stations in the NCR operated by the Central Pollution 

Control Board (CPCB), IITM and IMD (Figure 1 b). Two 

worst air quality episodes, the first during 7 and 8  

November 2017 and the second during 12 and 13  

November 2017, occurred in Delhi during the simulation 

period. Hourly mean surface PM2.5 concentration reached 

up to 770 g/m3 during these events (daily mean 

650 g/m3). The performance statistics for the control 

experiment and data assimilation experiment for normal 

days, severe pollution days and overall simulation period 

was analysed. It can be seen that the control run (red  

colour time series) did not perform well, although it was 

able to capture the diurnal and day-to-day variations  

associated with the synoptic-scale variability. Similar to 

AOD, the WRF-Chem simulations without assimilation
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Figure 4. a, Hourly time series of observed PM2.5 (black), simulated PM2.5 without assimilation (red) and simulated 
PM2.5 with assimilation (blue) during 1–20 November 2018 for Delhi. b, Daily mean time series of observed PM2.5 (black), 
simulated PM2.5 without assimilation (red) and simulated PM2.5 with assimilation (blue). Green and pink lines show that 
biases between observed and simulated PM2.5 daily mean concentration without and with assimilation respectively. 

 

 

showed significant underestimation of the observed PM2.5 

mass concentration. The statistics showed that, in control 

simulations, there were larger biases of about –150 g/m3 

for the entire simulation period, and about –68 g/m3 for 

normal days (excluding the 7–13 November 2017 pollu-

tion event). In particular, for severe pollution events (7 

and 8 November 2017, 12 and 13 November 2017), when 

daily mean observed PM2.5 concentration was larger than 

600 g/m3 (8 November),
 the daily mean bias was as high 

as 435 g/m3 (Figure 4 b). While for the 7–13 November 

2017 pollution event, the mean bias was 285 g/m3, sug-

gesting a significant error in simulations. After assimila-

tion of the MODIS AOD, the time series of the hourly 

PM2.5 concentration from the analysis showed much bet-

ter agreement in comparison to that from the experiment 

without assimilation. The magnitude of bias and RMSEs 

decreased, and correlation increased for the surface PM2.5 

mass concentration. Bias for the first day of forecast de-

creased to –48 g/m3 for the entire simulation period and 

+5 g/m3 for normal days (excluding the 7–13 November 
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2017 pollution event). For the 8 November event, the bias  

decreased to 236 g/m3; whereas for the entire pollution 

event (7–13 November 2017), the bias decreased to 

133 g/m3. This indicates that the assimilated values are 

closer to observations vis-á-vis control estimates. For the 

second day and third day of the forecast, the bias de-

creased to –56 and 76 g/m3 respectively, for the entire 

simulation period (Supplementary Figure 2). This bias 

indicates that the performance statistics is better for the 

second day than the third day of the forecast with data as-

similation. In comparison with the control experiment, 

WRF-Chem with assimilation was able to capture the pol-

lution event on 7 and 8 November as well as 12 and 13 

November 2017, although peak PM2.5 concentration was 

still underestimated in the assimilation experiment.  

Enhancements of about 250 g/m3 in surface PM2.5 mass 

concentration were seen during these events when 

 

 

 
 

Figure 5. a, Hourly time series of observed mean surface PM2.5 con-
centration (blue) and simulated mean surface PM2.5 concentration (red) 
for Delhi. Green over-plot shows the simulated PM2.5 with Diwali emis-
sions. b, Time series of observed daily mean surface PM2.5 concentra-
tion (blue) and simulated daily mean surface PM2.5 concentration  
(red), and their difference (green) for Delhi. c, Hourly time series of 
observed mean air quality index (AQI; red) and simulated (teal) AQI 
for Delhi. 

compared to the control experiment. In contrast, WRF-

Chem control runs completely failed to capture these  

severe pollution events. A significant increase in surface 

PM2.5 during these pollution events indicated that air 

quality forecast could benefit substantially from the 

MODIS AOD assimilation. 

Impact of AOD assimilation on PM2.5 forecast and  
forecast verification 

The improvements observed in WRF-Chem simulated 

PM2.5 mass concentration due to the assimilation of 

MODIS AOD during 2017 simulations encouraged us to 

launch this system in forecasting mode from October 

2018. In addition to daily forecasts, we also setup an 

evaluation system to examine day-to-day accuracy of our 

forecasts. Time series data of hourly and daily mean 

PM2.5 concentrations from the first day of the forecast 

were compared with the air quality observations averaged 

from the 21 air quality monitoring stations in the NCR 

(Figure 5 a and b). Figure 1 b shows the geographical  

location of individual monitoring stations in Delhi. The 

blue lines in Figure 5 a and b show averaged PM2.5 con-

centration from the air quality monitoring stations, and 

the red lines show the simulated PM2.5 concentration  

averaged over the grids covering the NCR. We have also 

compared the time series of hourly air quality index 

(AQI; red) with that forecasted (teal) by the model  

(Figure 5 c). Hourly AQI for PM2.5 was calculated based 

on National Ambient Air Quality Standard (NAAQS), 

and break-point concentration suggested in the CPCB no-

tification. It can be seen that on most of the days (during 

the study period), average air quality in Delhi was in the 

‘poor’ to a ‘very poor’ category, except for a few days 

when AQI was in the ‘moderate’ range. On the other 

hand, on 5 and 7 November 2018, 22 and 23 December 

2018, and 12, 18 and 22 January 2019, exceptionally high 

values of mean PM2.5 concentration (above 500 g/m3) 

were observed in Delhi, with AQI in the ‘severe’ category. 

 It can be seen that overall the model with data assimi-

lation performed quite well from 14 October to 23  

November 2018. It should be noted that this period coin-

cides with the active stubble-burning season in the  

surrounding States of Delhi, particularly Punjab and  

Haryana. In our simulation, emissions were adjusted 

based on MODIS fire data, as outlined earlier. Few previ-

ous studies have shown that winter-time fire in these 

States influences the air quality in Delhi under the condu-

cive synoptic-scale conditions2,5. Figure 6 shows the total 

MODIS fire count in the northwestern region of Delhi, 

the percentage contribution of CO tagged to stubble burn-

ing in the NW region to the total concentration of CO 

from all sources in Delhi, and total windblown dust con-

centration (g/m3) respectively. It is apparent from Fig-

ure 6 a that most of the crop residue burning took place 



RESEARCH ARTICLES 
 

CURRENT SCIENCE, VOL. 118, NO. 11, 10 JUNE 2020 1810 

from 10 October to 23 November 2018 in the northwest-

ern region of India. The percentage contribution of CO 

from stubble burning showed that fires in the NW region 

contributed 25–65% to air pollution in Delhi, depending 

upon the fire activity and prevailing synoptic-scale condi-

tions. Larger impact (>30%) of crop residue burning on 

air quality in Delhi was seen from 28 October to 1 No-

vember, 6 to 11 November, and 17 to 20 November 2018. 

The contribution of windblown dust to total PM2.5 con-

centration was more between 14 and 26 October as well 

as 21 and 25 November 2018. Forecasts with data assimi-

lation captured day-to-day variability in PM2.5 fairly well 

during the period dominated by crop residue burning. 

 

 

 
 

Figure 6. a, Time series of daily MODIS (Aqua + Terra) fire counts 
over the northwestern (NW) region of India for 11 October–12 Decem-
ber 2018. b, Time series of percentage contribution of CO tagged to 
stubble burning in the NW region to the total concentration of CO from 
all sources in Delhi. c, Time series contribution of windblown dust 
concentration (g/m3). 

However, on 5 and 8 November 2018, the data assimila-

tion system pushed the PM2.5 concentration towards the 

observations, and the model significantly underestimated 

the mean PM2.5 concentration by 160 and 258 g/m3  

respectively (Figure 5 b). 

 On 5 November 2018, the NCR experienced wide-

spread traffic jam from evening hours to the late-night 

hours that resulted in a large amount of PM2.5 emissions. 

Similarly, on 7 November 2018, there was burning of a 

large amount of crackers in the NCR during early night 

hours on the day of Diwali that contributed substantially 

to increased PM2.5 emissions. Earlier studies have also 

shown exceptionally high concentration of PM2.5 follow-

ing Diwali in Delhi8,10. Again with data assimilation, the 

PM2.5 concentration was close to the observations, but the 

model failed to predict high concentration of PM2.5 during 

Diwali festival. The mean model bias during Diwali was 

–170 g/m3 (RMSE = 270) – about 51% of the corre-

sponding observed concentration. In order to examine the 

impact of firecracker emissions, we carried out an addi-

tional sensitivity experiment by doubling PM2.5 concen-

tration in the NCR and all the surrounding states (Punjab, 

Haryana, Uttar Pradesh, Madhya Pradesh, Uttarakhand, 

Himachal Pradesh and Rajasthan) on the day of Diwali 

(green line in Figure 5 a). After doubling the emissions 

on Diwali day, the magnitude of the bias and RMSE  

decreased to –32 g/m3 and 194 respectively. 

 Further, it is interesting to note that the mean bias on 9 

and 10 November 2018 was about 50 g/m3, indicating 

that the model over predicted PM2.5 concentration. The 

AQI immediately after Diwali was forecasted in the very 

poor to severe category (Figure 6). In order to avert these 

potential air pollution episodes, decision-making authori-

ties in the CPCB issued a public notification banning 

construction activities and entry of heavy vehicles (diesel 

vehicles, mostly trucks) into Delhi for three days. Since 

modelled emissions were not reduced to scale with this 

kind of transient activity, the forecast showed higher 

PM2.5 concentration than the observations. 

 Model evaluation statistics against the observations for 

the entire study period (14 October 2018 to 28 January 

2019) showed that the magnitude of the mean model bias 

was ~57 g/m3 (RMSE = 93) for the first day of forecast. 

This bias was about 32% of the corresponding observed 

concentration, indicating that data assimilation was able 

to adjust aerosol initial conditions in a reasonable way. 

Model evaluation statistics for the second day of forecast 

showed that the mean model bias was about ~61 g/m3 

(RMSE = 99). This bias indicates that the same perfor-

mance persisted for the second day of the forecast 

(Supplementary Figure 3). For the active fire season (14 

October–23 November), magnitude of the mean model 

bias was ~23 g/m3 (RMSE = 62), about 14% of the  

corresponding observed concentration. While from 26 

November 2018 to 28 January 2019 (winter period), magni-

tude of the mean model was ~79 g/m3 (RMSE = 108),
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Figure 7. a, Mean diurnal variation of PM2.5 for the biomass burning period (12 October–19 November 2018). b, Mean diurnal variation of PM2.5 
at the start of winter season (20 November–11 December 2018). c, Mean diurnal variation of PM2.5 for peak winter season (12 December 2018–27 
January 2019). Black colour represents the observed PM2.5, blue the simulated PM2.5 and red colour represents their difference. 

 

 

 
 

Figure 8. a, Time series of daily maximum and minimum temperature for Delhi (1 October 2018–22 January 2019). b, Time series of 
model-simulated BC1 (black) and BC2 (red, aged black carbon) concentrations averaged over Delhi. 

 

 

about 41% of the corresponding observed concentration, 

indicating a factor of three increase in model bias during 

the post biomass burning season. In particular, model bias 

was substantial (~130 g/m3) from 22 December 2018 to 

2 January 2019 and from 13 to 21 January 2019, even  

after AOD data assimilation. The statistics indicates that 

the model with fire emissions and data assimilation sys-

tem forecasted PM2.5 concentration much accurately for 

the biomass burning season compared to the post burning 

season. During the winter season (December and Janu-

ary), systematic underestimation by the WRF-Chem fore-

cast was seen (Figure 5 a) at night-time and early 

morning hours in particular. 

 Figure 7 a–c shows the mean diurnal variation of  

observed (black) PM2.5, simulated (red) PM2.5 and their 

difference (blue) for 12 October–19 November 2018 (bi-

omass burning season), 20 November–11 December 2018 

(start of winter season), and 21 December 2018–15 Janu-

ary 2019 (deep winter season) period respectively. Simi-

larly, Figure 8 a and b shows the temporal evolution of 

daily maximum (red) and minimum (blue) temperature 

and model-simulated BC concentration respectively. 

Model BC1 (black) and BC2 (red) represent the aged 

black carbon concentrations, which can be used as a 

proxy for the stagnant conditions or recirculation of the 

same air mass from where it had originated. Higher the 

BC2 concentration, lesser would be the introduction of 

air masses from outside and this would indicate more 

stagnant conditions which are favourable for accumulat-

ing PM2.5 concentration. During active stubble burning 

period, mean hourly PM2.5 concentration from assimila-

tion showed much better agreement with observations. 

The magnitude of bias was less than 30 g/m3 during 

night-time and early morning hours, and it was close to 

5 g/m3 during afternoon hours (1200–1800 local time), 

indicating that the forecasting experiment benefitted sub-

stantially from data assimilation and fire emissions from 

stubble burning. However, simulated diurnal variation of 

PM2.5 concentration deviated considerably from the  

observations at the beginning of the winter season, and 

the bias became even larger during the peak winter  

season. During the start of the winter season (20 Novem-

ber–11 December 2018), night-time temperature showed 

a consistent drop from about 13 to 8. The magnitude of 

bias was ~60 g/m3 during night-time and early morning 

hours. Although forecast still performed better during  

afternoon hours, a bias of ~10 g/m3 indicated that the 

data assimilation was not able to adjust the initial condi-

tions as efficiently during this period. One of the reasons 

for this could be the use of a climatological background 
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error in the data assimilation that would also include the 

effects of the crop residue burning period. When the min-

imum temperature dropped below 6, the magnitude of 

bias increased to ~220 g/m3 during night-time and early 

morning hours, and to ~150 g/m3 (1200–1800 h) in the 

afternoon during the peak winter season. This bias indi-

cates that the data assimilation system performed poorly 

during the peak winter period. To address this issue,  

efforts are now being made to include monthly and diur-

nal emissions and monthly varying background errors in 

the present operational forecasting system. 

 The increase in mean bias during the winter season, 

particularly during night-time and early morning hours, 

may be associated with the local biofuel burning during 

winter. During cold winter nights, open biomass burning 

on the streets/housing societies occurs at numerous loca-

tions in and around the NCR. People burn wood, leaf  

litter, garbage, plastics, tyres, etc. as these are available 

almost free-of-cost compared to clean energy sources (for 

which one would need to pay), to keep themselves warm 

in extremely cold conditions. Earlier studies have also 

shown significant enhancement in chloride (chemical 

tracer for garbage, plastics and tyre burning) during the 

peak winter season29–31. Benzene and acetonitrile (chemi-

cal tracer for biomass burning) were also associated  

with the large increase in biomass burning during low-

temperature periods32. A large drop in temperature (from 

13 to 4) during the winter months could trigger an in-

crease in local biomass burning activity and cause a spike 

in air pollutant emissions. For example, spike observed in 

mean PM2.5 concentration during 21 December 2018–2 

January 2019 (Figure 5 b) may have been triggered by in-

creased local biomass burning activity due to the sudden 

drop in temperature (from 8 to 4; Figure 8 a), and stable 

and stagnant weather conditions that did not allow recir-

culation of air masses (Figure 8 b). The emission invento-

ry used in this study does not include information about 

these sources. Therefore, the model grossly underesti-

mates the surface PM2.5 concentration during winter  

period, even after data assimilation. Another source of  

error during the winter season could be the availability of 

a fewer AOD observations that go into data assimilation. 

Due to frequent hazy, foggy and cloudy conditions  

(because of western disturbances) in the peak winter sea-

son, often AOD data are missing over the northwestern 

region of the IGP. These missing data limit the efficient 

assimilation of AOD and the quality of initial conditions. 

GOCART chemical mechanism does not account for  

nitrate and secondary organic aerosols. Ghude et al.29 

showed about 28% contribution of SOA in total PM2.5 

concentration during peak winter months. This also adds 

a source of uncertainty in the PM2.5 estimate. Previous 

studies over India showed that WRF overestimates the 

boundary layer height during winter season19. The deeper 

boundary layer dilutes the surface PM2.5 concentration 

and is an additional source of uncertainty that could  

impact the forecast even after data assimilation. While 

the estimation of these uncertainties is important, it is 

outside the scope of this study. 

 However, in order to evaluate the impact of emissions 

from fugitive sources, we carried out an additional set of 

sensitivity experiments for two typical days during the 

peak winter season. Instead of using flat hourly emis-

sions, we provided diurnal variability of emissions to the 

model. We first calculated the hourly ratio between  

observed and modelled mean PM2.5 concentration (Figure 

7 c). This ratio was then applied to PM2.5, OC, BC, NH3, 

and SO2 emission inventory to account for local biomass 

burning emissions in the forecast. The results showed 

significant improvement in diurnal variation of surface 

PM2.5 after accounting for local emissions in the assimila-

tion system (Figure 9). Mean model bias without local 

emission was 134 (60) g/m3, which reduced to 60 

(67) g/m3 after accounting for local emissions. This 

improvement indicates that the joint adjustment of PM2.5 

initial conditions from AOD assimilation and emissions 

scaling is an efficient way to improve PM2.5 forecast. 

Previous work also showed improvement in the short-

term forecast with joint adjustment of initial conditions 

and emissions after the assimilation cycle18,20. 

Dissemination of air quality alerts 

A website (https://ews.tropmet.res.in) was developed for 

archiving all the observational and prediction products, 

and to provide 72 h forecast to the public and officials of 

the Environmental Pollution Control Authority, CPCB, 

Delhi Pollution Control Committee and the Prime Minis-

ter’s Office for taking necessary steps depending upon 

the requirements. This early warning system will issue 

alerts on large-scale air pollution events that may occur 

over the Delhi region (Figure 10). The air quality early 

 
 
 

 
 

Figure 9. Diurnal variation of mean surface PM2.5 concentration aver-
aged over Delhi for 10–12 January 2019. Black colour represents the 
simulated PM2.5, blue the observed PM2.5 and red colour represents the 
simulated PM2.5 after increasing emission. 
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Figure 10. Snapshot of AQEWS website (ews.tropmet.res.in) developed for the dissemination of air 
quality information. 

 

 

warning system was formally launched by the Minister of 

Science and Technology, Ministry of Earth Sciences, and 

Ministry of Environment, Forest and Climate Change on 

14 October 2018. The website provides spatial animation 

of 72 h WRF-Chem high-resolution forecast for PM2.5 

and CO from fire emissions for the northern region  

(Figure 1) of India as well as for Delhi region based on 

data assimilation, forecast of coarse resolution PM2.5 and 

CO based on Finnish Meteorological Institute (FMI) 

SILAM model, PM2.5 and PM10 forecast based on Coper-

nicus Atmospheric Monitoring Service product, as well 

as dust and AOD forecast based on the NCMRWF NCUM 

model. The website also issues bulletins and warning 

messages for air quality conditions in Delhi. Additional-

ly, the website provides real-time information on PM2.5 

concentration and AQI at locations in Delhi (AQMS net-

work), latest satellite maps of fire count and AOD 

(MODIS), real-time boundary layer height (from Ceilom-

eter), and 10-day forecast of ventilation index, boundary 

layer height and surface wind fields (products from IITM 

GEFS T1534 ensemble forecast system). The website al-

so provides verification of daily air quality forecast based 

on the data assimilation system as described in  

detail in this study. 
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Conclusion 

Here we report the development of a 3DVAR approach to 

assimilate retrievals of AOD from MODIS to improve the 

initial conditions of WRF-Chem, which was used for 

AQEWS at MoES, GoI, to provide operational air quality 

forecast for Delhi. The system was applied to take near 

real-time fire emission from stubble burning based on 

FINN v1.5 inventory. The system was designed to  

account for the uncertainties from meteorology and from 

anthropogenic emissions in the BEC matrix in the assimi-

lation framework. In order to evaluate the impact of the 

inclusion of fire emissions and AOD assimilation, verifi-

cation experiments were performed in hind-cast mode to 

model extreme pollution events that occurred during 1–20 

November 2017 over Delhi. The hind-cast experiment 

showed that the forecast performed much better with the 

AOD assimilation than the forecast without assimilation 

(but with real-time fire emissions) for surface PM2.5 and 

AOD. For the extreme pollution events (7 and 13  

November), data assimilation pushed modelled surface 

PM2.5 towards the observations, but WRF-Chem still sig-

nificantly underestimated observed surface PM2.5 concen-

tration. Previous studies also showed the same behaviour 

of underestimating PM2.5 while simulating extreme pollu-

tion events with MODIS AOD assimilation33. The same 

assimilation system was run in a forecast mode to provide 

a 72 h operational air quality forecast for the NCR from 

14 October 2018 onwards. The verification results 

showed that the forecast performance was better for 

PM2.5 for the active biomass burning period (mean bias 

~23 g/m3) than that of post biomass burning (winter)  

period (mean bias ~79 g/m3). Although data assimila-

tion during the post biomass burning period pushes mod-

elled surface PM2.5 toward observations, the mean diurnal 

variation still showed significant bias throughout the  

diurnal cycle. 

 The present study summarizes the ongoing efforts  

initiated by MoES, GoI, to build a prototype chemical  

data assimilation in high-resolution chemistry transport 

model for air quality early warning system for Delhi. It 

has been shown that with the satellite AOD and fire (crop 

residue burning) data assimilation forecasted surface 

PM2.5 concentration matched better with the measure-

ments. Although AOD assimilation had improved PM2.5 

forecasts, the correction of emission biases may also be 

an important area of development for improving forecast 

skill. Such an application signifies the important role of 

chemical data assimilation in operational air quality pre-

diction using the numerical model. Spatial and temporal 

variation of observed PM2.5 is very large in Delhi and 

forecast with data assimilation could not capture this  

variability accurately. Therefore, a very high-resolution 

emission inventory is necessary to be implemented in the 

forecasting system to capture the observed spatial varia-

bility. In addition, meteorology plays a significant role in 

the accuracy of PM2.5 forecast, and estimated PM2.5 is 

subject to several sources of uncertainty, particularly, un-

certainties in the model parameterization for PBL 

height34, surface wind speed and choice of chemical 

schemes35. Therefore, future studies should explore the 

sensitivity of these parameters to the accuracy of loca-

tion-specific PM2.5 forecast. The MoES, GoI, will make 

further attempts to assimilate more observations of other 

pollutants from satellites and from the air quality moni-

toring network to improve the accuracy of predictions. 
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