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A continuous stirred tank reactor (CSTR) is a stand-
out nonlinear system among the most essential units of 
chemical industries. In this article, an Elman neural 
network is designed to analyse the characteristics of 
nonlinear behaviour of the CSTR system. The data 
generated employing the state-space model of CSTR 
are used to train the designed Elman neural network 
controller and the controller parameters are optimally 
tuned by the proposed hybrid swarm intelligence-
based optimization algorithm. Two different hybridi-
zations have been developed, including DPSO, DGSA 
and hybrid DPSO–DGSA and successfully employed 
in controller tuning. The significance of the proposed 
controller is validated by a comparative analysis made 
with conventional methods and the performance is  
experimentally demonstrated using MATLAB soft-
ware. 
 
Keywords: Continuous stirred tank reactor, neural  
network controller, nonlinear behaviour, optimization  
algorithm, process control. 
 
A continuous stirred tank reactor (CSTR) is one of the 
important branches of studies in chemical processes  
industries. Consequently, there are several ongoing  
studies in the area of chemical and control engineering to 
improve the performance of the CSTR system. Even 
though various techniques have been proposed to control 
the parameters of the CSTR, due to its high nonlinearity 
the conventional methodologies do not produce better 
controller performance. The CSTR has noteworthy heat 
effects; so it is essential to add and remove heat from the 
reactor based on the temperature difference existing  
between the jacketed fluid and reactor fluid. In addition 
to its nonlinearity, the effect of use, affect the performance 
of the reactor. Research is being carried out to design an  
effective controller in order to enhance the performance 
of the CSTR system. In this article, we present the design 
of an intelligent neural network controller. 
 Baruah and Dewan1 proposed a model using the pro-
portional integral derivative (PID) controller and an evo-
lutionary algorithm for controlling the temperature of the 

CSTR model. Employing optimization techniques such as 
particle swarm optimization (PSO) and genetic algorithm 
(GA) are employed to find the optimal values of the con-
troller parameters. Babushanmugham et al.2 developed a 
controller for the CSTR process model to maintain and 
control the temperature in the reactor using a GA-based 
PI controller. The proposed approaches based on perfor-
mance indices of the controller are much better than the 
internal model controller (IMC) and Ziegler–Nichols 
(ZN) methods. Salahshour et al.3 proposed a multi-layer 
quantum neural network (QNN) combined with the PSO 
algorithm for controlling the CSTR system. An adaptive 
structure was designed with the help of multilayered 
QNN for the PID controller design. To improve the accu-
racy and convergence speed of the training process, few 
alterations have been made in the movement of each par-
ticle. On comparing with the performance of the conven-
tional PID and perceptron neural network, the optimized 
controller design shows improved performance. Saini et 
al.4 designed a controller for nonlinear dynamical beha-
viour of the CSTR. A comparative study between the PID 
controllers and fuzzy logic controllers has been made to 
control the temperature of the CSTR. The activity of the 
CSTR has been tested for various operating points to con-
trol the temperature. So and Jin5 developed a new metho-
dology for nonlinear variable gain PID controller using a 
set of fuzzy rules. To minimize the integral absolute error 
(IAE) and the weighted control input, the parameters 
were tuned with the help of a GA. Suvire et al.6 presented 
a linear algebraic based methodology for the CSTR model 
in order to track the output variables. The Monte Carlo 
randomized method was employed to tune the controller 
parameter and test the system characteristics. This  
method has proven to track the desired performance with 
reduced error than that of other conventional controllers. 
Bingi et al.7 proposed the fuzzy gain scheduling (FGS) 
mechanism for the CSTR process to tune the set-point 
weighted PID (SWPID) controller. The simulation results 
show that FGS–SWPID method achieves better set-point 
tracking and disturbance rejection compared to the FGS–
PID method. 
 Mungale et al.8 have highlighted the importance of 
self-tuning regulator (STR) and its application for the 
chemical mixing process. This method is used to maintain 
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constant temperature in the CSTR process by updating 
the process parameters and the controlled parameters. 
Feng et al.9 have derived a method for accurate modelling 
and prevention of outermost disturbances in the CSTR 
model. This method helped achieve the best solution for 
CSTR plant with the help of model-free adaptive sliding 
mode control methodology. Based on the various controller 
techniques presented in the study made by Tripathi et al.10, 
the combined GA-PID controller outperformed the con-
ventional PID and Fuzzy logic controllers. To model the 
multi input multi output (MIMO) system a linearization 
strategy is employed11. The evolutionary algorithms help 
tune the model parameters to optimal value, so that the 
system tracks the desired set point effectively. Luning  
et al.12 designed a disturbance observer-based sliding 
mode control for the CSTR. For the corresponding  
mathematical modelling process, stability is analysed us-
ing the Lyapunov method. Taieb et al.13 introduced a me-
thodology for the MIMO fuzzy optimal model predictive 
control (FOMPC) using the adaptive particle swarm  
optimization (APSO) algorithm. The FOMPC–APSO 
provides a better solution by obtaining the optimal 
weights of the objective function. Kantha et al.14 pre-
sented the hybrid form of swarm intelligence technique 
for tuning the PID controller. The PSO and GA are used 
to tune the parameters of the PID controller. The results 
depict that the performance of the PSO based-PID con-
troller performance is better than that of GA. Analysis of 
the control scheme for nonlinear control CSTR system by 
Darius and Sivagamasundari15 was based on accurate and 
reliable controlling for the process variable. The model 
predictive controller can perform better set point tracking 
than that of PI controller. Supanna et al.16 designed a  
robust PID controller using the Kharitonov theorem for 
control of chemical CSTR. The stability boundary was 
plotted for the four Kharitonov vortex polynomials in the 
Kp and Ki parameters. An intersecting point was chosen 
identified in the plane from which the stabilizing 
 
 

 
Figure 1. Continuous stirred tank reactor (CSTR) process with cooling
jacket. 

parameters of the PID controller were identified. Saini  
et al.17 presented various controllers like PID, NARMA-
L2 and LQG for controlling the temperature of the reac-
tor. The step and Gaussian disturbance have been applied 
to CSTR to check the execution of various controllers. 
The temperature control of CSTR is best accomplished by 
linear quadratic Gaussian (LQG). Sharma et al.18 studied 
the process faults occurring suddenly in the CSTR me-
thod. The fault occurrences in CSTR system is effectively 
diagnosed by employing neural network models, the 
change in flow rate and the activist speed due the fault 
condition is modelled by outrageous learning machine-
based Hammerstein–Wiener model, Han et al.19. A neural 
network model with gain scheduling strategy is imple-
mented to estimate the non-linear behaviour of SISO 
(single input single output) and MIMO CSTR system20,21. 
The recurrent neural network (RNN) is implemented with 
MPC (model predictive controller) to optimize the phar-
maceutical assembling. Sughan and Poongodi22 compared 
the performance of the PID, NARMA and Fuzzy PID for 
temperature control of CSTR plant, the NARMA strategy 
outperformed the conventional PID controller strategy. 
Sana and Rafik23 employed state feedback based parallel 
distributed compensation (PDC) strategy for CSTR  
system to attain better stability. 
 Considering all these reviews on controller design for 
CSTR and their limitations with regard to time-delay 
compensation, increased steady-state error and settling 
time, this article focuses on developing a variant of a 
classic neural model for the control of the CSTR system 
by minimizing integral square error. 

CSTR system modelling 

Figure 1 shows the regular CSTR model. It is well known 
that the system undergoes an exothermic reaction, where-
in fluid flows continuously and is fed into the reactor. 
Fundamentally it is represented by A → B. Considering 
the exothermic reaction, it produces heat that reduces the 
reaction rate. By initiating a coolant flow rate, tempera-
ture of the reactor can be altered to produce controlled 
concentration of the product. Several assumptions are 
made in the process, which include perfect mixing in the 
reactor and jacket, maintaining constant volume in the 
reactor and jacket and finally the constant parameter  
values. This system can be illustrated by nonlinear  
concurrent equations which efficiently combine the laws 
of chemical reaction and thermodynamics. 
 Basically, the law of kinetics is given by 
 

 ( ( / ))
o( ) ,E RT

A A Ar k T c k e c−− = =  (1) 

 
where rA is the reaction rate, K the rate constant, T the  
absolute temperature, cA the feed concentration, E the  
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activation energy, R the Gas constant and k0 is the Fre-
quency factor. 
 The model is framed based on assumptions such as 
constant volume, constant heat capacity of reacting  
mixture and perfect mixing within the reactor. The mass 
balance equation is written as 
 

 ,in
d ( ) ( ) ,
d

A
A A A

c F c c k T c
t V
= − −  (2) 

 

 in
d ( ) ( ) ( ).
d

r r
A j

p p

h UAT F T T k T c T T
t V c V cρ ρ
= − − − −  (3) 

 
According to the assumptions of uniform temperature of 
the jacket fluid within the circulation tubes and constant 
water heat capacity, the energy balance equation for the 
jacket is given by 
 

 
d

( ) ( ).
d
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T UAPF T T T T
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ρ
= − + + −  (4) 

 
For the equations from (1) to (4), T is temperatures, t the 
time, c the concentration, Tj the jacket temperature, F the  
volumetric flow rate, cp denotes the specific heat capacity, 
V the reactor volume, mo the overall effective mass of 
cooling and heating system, ρ specifies density, cw the 
water heat capacity, Ar the heat exchange surface, U the 
heat transfer coefficient, P the power input to the heater 
and Tcw is the cooling water temperature. The steady-state  
operating data of the CSTR model are used to derive the 
transfer function which is utilized in the simulation  
studies. Table 1 presents the steady-state operating data 
of CSTR. 
 On performing linearization with respect to concentra-
tion at the time of reaction and temperature, the transfer 
function model of the CSTR system is obtained as 
 

 4 89611.3083( ) .
(13.5102 1)(6.2417 1)

sG s e
s s

− −= −
+ +

 (5) 

 
The state space model derived for the CSTR system is as 
given by 
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where x1 and x2 are the state variables represented  
by the concentration (CA) and temperature (T) of the  
reactor. 

Need for an optimization-based neural network  
for the derived CSTR model 

Irrespective of numerous techniques available to address 
the considered problem statement, the need of optimal 
design of CSTR system is always an open field of  
research because of its high non-linearity. So, in this  
paper hybrid optimization based neural network model is 
developed and its performance is evaluated. 

Overview of the Elman neural network 

The Elman neural network was introduced in 1990. Lin 
and Hong24 presented the architecture of recurrent link 
incorporated into a hidden layer of RNN. The RNNs are 
special types of neural networks because of their internal 
memory storage ability which makes them precise for  
future output prediction. The only difference between 
feed-forward and recurrent neural networks is the input 
data. In the former the input data are in one direction, 
whereas in the latter the data make a loop and the RNN is 
based on utilizing the previous history of data to produce 
the control signal. It consists of four layers, namely input 
layer, hidden, recurrent link and output layer. In this net-
work, the output of the hidden layer feedback is with one 
step delay and it forms the recurrent layer which stores 
complete information of the hidden layer as a memory 
element. In this network, a set of context units are intro-
duced to perform recurrent operation, whose activation 
values are feedback from the hidden units (set of neurons 
in hidden layer). 

Proposed Elman neural network controller 

The neural network configuration assumes a major role in 
performing control action and for parameter estimation of 
control systems under consideration. Before considering 
the inputs to be provided for the network model, it is 
 
 
Table 1. Continuous stirred tank reactor (CSTR) steady-state operating
 data 

 
CSTR process variables 

Parametric values under normal 
operating conditions 

 

Concentration (c) 0.08235 mol/l 
Reactor temperature (T) 441.81 K 
Volumetric flow rate (F) 100 l/min 
Reactor volume (V) 100 l 
Cooling water temperature (Tcw) 350 K 
Heat transfer coefficient (U) 7e5 cal/(min K) 
Specific density (ρ) 1000 g/l 
Specific heat capacity (cp) 1 cal/(gK) 
Heat exchange 2e5 cal/mol 
Reaction rate constant 7.2e10 min–1 

Activation energy term 9980 K 
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necessary to perform scaling. The datasets are scaled in 
the range [0, 1] after which the initial parameters for 
training the network are assigned and the learning rule 
operation is carried out. Figure 2 shows the proposed  
Elman architecture. 
 The data presented for computation pass through  
each layer independently and finally, the output arrives  
at the output layer (Figure 2). The input is multiplied  
with a weight value and fed to the hidden layer, where it 
is processed through a hyperbolic sigmoid activation 
function. The network is learned based on the current  
activation function on the computed values and with  
previous history of control output. The value of X(K)  
obtained from the hidden layer is passed to the output 
layer where it is processed using the purelin activation 
function. During the training process of the neural  
network, the previous iteration value is utilized in Elman 
model. 
 X1, X2, X3,…, Xn. are data inputs, Y1, Y2, Y3 … Yn. are 
control output, W = (W11, W12, W13 ... W1n, W21, W22, 
W23 ... W2n, W31, W32, W33 … W3n) are weighted intercon-
nection between input and the hidden layers, V = (V11, 
V12, V13, …, V1n, V21, V22, V23, …, V2n, … Vn1, Vn2, 
Vn3 … Vnn) is the weighted interconnection between the 
hidden and the output layer (Figure 2). 
 Wc = (Wc11, Wc12, …, Wc1n, Wc21, Wc22 … Wc2n, Wc31, 
Wc32, …, Wc3n) is the weighted interconnection of recur-
rent link layer and input vector and Xc (K) = X(K – 1) is 
the input entering recurrent link layer. 

Proposed algorithm for the design of the controller 

The control action employing Elman neural network 
model was carried out as follows. The iterative intensifi-
cation of the network continued till the consi- 
 
 
 

 
Figure 2. Elman neural network controller. 

dered stopping criterion with respect to minimal mean 
square error was attained. 
 
Step 1: Initialization 
 
In this step the network parameters like learning rate,  
initial weights and activation functions of the Elman 
model were initialized. 
 
Step 2: Data scaling 
 
The input was scaled by applying the min–max tech-
nique. 
 

 min
max min min

max min
( ) ,i

i
φ φφ φ φ φ
φ φ
⎛ ⎞−′ ′ ′ ′= − +⎜ ⎟−⎝ ⎠

 (7) 

 
where φi, φmin and φmax are the actual data, minimum and 
maximum input data and minφ′  and maxφ′  are the minimum 
and maximum desired target value respectively. 
 
Step 3: Designing the controller 
 
The Elman neural network has been framed with desired 
number of input, output and hidden layers, here the acti-
vation function employed is hyperbolic sigmoid function. 
 
Step 4: Training and performance evaluation of the 
network 
 
The model is trained with set of input data, the network 
gets trained with the past iteration experience and the  
iterations are stopped on attaining minimal mean square  
error, which is the set stopping criterion. 

Proposed population-based hybrid optimization  
algorithm for the CSTR model 

To overcome the issues of basic optimization techniques 
like local optimal point trapping, and trade-off between 
exploration and exploitation capabilities, a hybrid version 
of variant algorithms is presented to enhance the perfor-
mance of the controller. From recent studies, it is evident 
that hybrid optimization techniques provide more effi-
cient behaviour with higher flexibility. Generally, PSO is 
a population-based algorithm that explores the search 
space to find better solutions improving the exploration 
and exploitation rate. On combining these two algo-
rithms, the limitations of each algorithms on utilizing 
separately such as local stagnation issue is addressed. The 
characteristics of DPSO and DGSA is combined as hybrid 
algorithm to perform efficient tuning operation of the 
proposed Elman model. 
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Deterministic particle swarm optimization 

The conventional particle swarm optimization algorithm 
has random parameters, which have a direct impact on 
the performance of the algorithm. However, these values 
need not be optimal as they are usually considered by 
heuristic assumptions. These stochastic factors introduce 
dynamics into the system. A modified form of particle 
swarm optimization known as deterministic particle 
swarm optimization (DPSO) algorithm is employed here. 
In DPSO stochastic factors are eliminated. 
 The canonical form of DPSO is 
 

 
1

1 ,
k k
i i
k k
i iy y

δ ωϕ ϕ
ω δ

+

+
−

=  (8) 

 
 ,k k k
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where k

iz  is the desired fixed point, δ ∈ ℜ and ω ∈ ℜ. 
 If the velocity component becomes less than 1.00 × 
10–8, then it is multiplied by 5.12 × 10–8, the proposed  
deterministic PSO is termed as re-acceleration PSO. 
 
Pseudo-code of the DPSO algorithm 
 
 Start 
 Initialize the population Do{ 
 for i=1 to population size 
 { 
 calculate fitness value 
 If current_pBest>pBest 
 then pBset=current_pBest 
 else pBest = pBest} 
 gBest=particle with best pBest among population 
 for i=1to population size 
 { 
 update velocity and position of the particles  
 if particle_velocity < 1.00 × 10–8 
 then particle_velocity= particle_velocity*5.12 × 10–8 
 } 
 }repeat until stopping criteria is achieved.  
 Stop 

Differential gravitational search algorithm 

Considering the gravitational search algorithm (GSA),  
the major issue is its low exploitation capability with  
enhanced exploration ability as the final stages of itera-
tions are reached. This results in local optimal point trap-
ping. So for good performance of the proposed algorithm, 

it is necessary to have a better trade-off between the  
exploration and exploitation abilities. For this, a modified 
form of GSA has been employed, viz. differential gravita-
tional search algorithm (DGSA), which utilizes both local 
and global variants25,26. 
 In the DGSA, the balance between the local and global 
search directions are influenced by differential parameter. 
The velocity update for global variant of pi be 1k

igϕ +  and 
for local variant the velocity update of pi be 1.k

ilϕ +  
 

 1 rand ,k k k
i i i ig g aϕ ϕ+ = × +  (11) 

 
 1 rand .k k k

i i i il l aϕ ϕ+ = × +  (12) 
 
The velocity and position update expressions for DGSA 
are given by 
 
 1 1 1(1 ) ,k k k

i i ig lϕ μ ϕ μ ϕ+ + += + −  (13) 
 

 1 1,k k k
i i ip p ϕ+ += +  (14) 

 
The differential parameter μ ∈ [0, 1]; for μ = 1 refers to a 
standard global GSA and μ = 0 refers to standard local 
GSA. 
 The exploration and exploitation properties of the stan-
dard GSA are combined by the differential parameter μ, 
with linear increment of values between 0 and 1. Thus it 
can improve the exploitation and exploration capabilities 
of the algorithm. 
 The total force acting on the particle is given by 
 

 ( ) rand ( ).k k
i j ij

j pbest
j i

F t F t
∈
≠

= ×∑  (15) 

 
Pseudo-code of the DGSA algorithm 
 
 Start 
 Initialize the search agents Do{ 
 for i=1 to population size 
 { 
 calculate fitness value 
 } 
 Update gravitational constant G(t), mass M(t),  
   acceleration of mass a(t), the total force F(t) using  
   traditional GSA. 
 for i=1 to population size 
 { 
 update agents position and velocity using (13),(14) 
 } 
 }repeat until stopping criteria is achieved  
 Stop 
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Table 2. Parameters of the developed optimization algorithms 

 
Parameters 

Deterministic particle swarm 
optimization (DPSO) 

 
Parameters 

Differential gravitational 
search algorithm (DGSA) 

 

Population size  50 Number of search agents  50 
ω 0.22 Gravitational constant 100 
δ 0.80 Differential factor 0.5 
Number of iterations 100 Number of iterations 100 

 
Proposed hybrid DPSO–DGSA optimization  
algorithm 

The proposed hybrid DPSO–DGSA algorithm combines 
the characteristics of DPSO with better achievement in 
the exploration and exploitation capabilities of DGSA. 
The easy realization between the eigenvalues and para-
meters of DPSO makes the system easy to control and the 
stochastic factors are not present explicitly, which makes 
the system deterministic. To attain optimal solution  
the reacceleration factor has been introduced, with the 
characteristics of DPSO along with better exploration and 
exploitation capabilities of DSGA, combining the best 
features and developing an efficient heuristic algorithm 
for designing a controller (Table 2). 
 The modified velocity and position expressions for  
hybrid DPSO–DGSA are given by 
 
 1 ,k k k k k

i i i i ip a zϕ δϕ ω ω+ = − +  (16) 
 
 1 1 ( ).k k k k k

i i i i ip z p zωϕ δ+ += + + −  (17) 
 
The stopping criteria for the proposed algorithm is  
attainment of minimum mean square error or attainment 
of maximum iterations. On attaining the given stopping 
criterion, the algorithms return the best global solution 
corresponding to their fitness function evaluation and halt 
the process. 
 
Pseudo-code of the hybrid DPSO–DGSA technique 
 
 Start 
 Initialize the population Do{ 
 for i=1 to population size 
 { 
 calculate fitness value 
 If current_pBest>pBest 
 then pBest=current_pBest 
 else pBest = pBest 
 update G(t),M(t),a(t),F(t) with considered differential  
  factor 
 } 
 gBest=particle with best pBest among population 
 for i=1to population size 
 { 
 update velocity and position of the particles using  
   (16)&(17) 

 if particle_velocity <1.00 × 10–8.  
 then particle_velocity= particle_velocity*5.12 × 10–8. 
 } 
 } repeat until stopping criteria is achieved. 
 Stop 

Proposed Elman neural network controller  
model  

The Elman NN controller is designed with the proposed 
optimization model to perform control action for the 
CSTR system. In this model, the Elman NN performs the 
controller action and the weights of the Elman network 
get tuned with the adopted training strategies in order to 
achieve minimum square error and faster convergence. 
Generally, the initial weights between all the layers,  
including the recurrent layer in the Elman neural network 
model are randomly initialized; but the random initializa-
tion results in immature convergence of the neural  
network model. Consequently, this work focuses on  
applying the hybrid DPSO–DGSA approach to tune the 
optimal weights of the Elman neural model in order to 
achieve faster convergence. 
 The proposed optimally designed Elman Neural  
Network Controller is presented as follows: 
 
Step 1: Start the algorithmic process. 
Step 2: Initialize the necessary parameters like learning 
rate, initial weights and activation function of the Elman 
neural network model. 
Step 3: Perform a scaling process for the collected data 
using the min–max scaling method. 
Step 4: Assign parameters for implementation of the 
Elman neural controller. 
Step 5: Perform the training process of Elman using 
gradient descent learning rule. 
Step 6: Invoke the selected training algorithm; the ini-
tial parameters for the developed optimization algorithms 
are the final weights computed in the previous step. The 
initial parameters for this method of the training process 
will be the final weights determined while fine-tuning of 
Elman model. 
Step 7: Employ the DPSO algorithm. Employ the 
DGSA algorithm. Employ the hybrid DPSO–DGSA algo-
rithm. 
Step 8: Return the tuned weight values for which the 
best fit is obtained. 
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Step 9: Utilize these optimal weights into steps 3–7 of 
this algorithm. With the fine-tuned Elman model go to 
the next step. 
Step 10: On completing the training process, test the 
model with the testing data.  
Step 11: Output the solutions computed. 
Step 12: The process is continued until attainment of 
stopping criteria, here the iterative process is stopped on 
reaching minimum mean square error or maximum num-
ber of iterations. 

Methodology for hidden neuron fixation in the 
controller 

Next we present the methodology adopted to fix the  
optimal number of hidden neurons. The number of neu-
rons of the network greatly influences the error conver-
gence; thereby the stability of the network is improved 
and ultimately the overfitting and underfitting problem 
due to inappropriate selection of neurons is avoided. To 
meet the desired requirements of the network such as  
error precision and accuracy, an insufficient number of 
neurons cannot be used, which will result in underfitting 
problems. 
 Similarly, overfitting results in overtraining of the  
network. So it is necessary to fix the number of hidden 
neurons of the network model. The objective of this study 
is to present the optimal number of hidden neurons with 
estimated Nh, such that minimal error criteria are reached. 
Numerous methods have been proposed to predict the  
required number of neurons27. 
 The objective functions set to train the proposed neural 
network controller are 
 

 
2

1

( )
MSE ,

N
i i

i

Y Y
N=

′−
=∑  (18) 

 

where Yi is the predicted output and iY ′  is the actual out-
put. 
 
 

 

Figure 3. Block diagram of the proposed optimized Elman neural
network controller model. 

 With respect to the concentration control of the CSTR 
model, the presented inputs to the neural network are 
temperature (the manipulating variable) and concentra-
tion (the predicted output of the plant). The two input 
neurons are presented with the scaled inputs and the out-
put of the plant is attained. The optimal number of hidden 
neurons are fixed as 11, the number of input neurons is 2, 
the output neuron is 1. So, the proposed Elman architec-
ture possess 2-11-1 neurons in input, hidden and output 
layer respectively. 

Applicability of the proposed optimized  
controller for CSTR plant model 

The proposed optimized Elman NN controller of the 
CSTR system was implemented and simulated in 
MATLAB R2013a (Version 8.1.0.604) environment. The 
modelled controller optimizes the system and fine-tunes 
its performance with better accuracy. Figure 3 shows a 
typical structure of the CSTR system employing optimi-
zation-based Elman. In the figure, k refers to the sample 
time. It is to be noted that the control action u(k) is to act 
on the CSTR plant model based on the predicted values 
and not based on the real output. The proposed model 
considers the optimal Elman NN model that is trained  
accurately with minimal mean square error and is satis-
factorily ready to represent them. 
 The modelled controllers tend to minimize the perfor-
mance index J with respect to the error minimization 
principle. The index function is given by 
 
 ( 1) ( 1) ( 1),e k r k y k′+ = + − +  (19) 
 

 2( ) .J e k= ∫  (20) 

 
The control action u(k) is updated based on the reduction 
of the gradient values of the performance index 
 

 ( 1) ( ) ,
( )
Ju k u k

u k
ξ ∂+ = −
∂

 (21) 

 
where ξ is a constant between 0 and 1. 

Simulation results and comparative analysis of  
the proposed optimized controller for CSTR  
model 

The designed neural network controller based on the pro-
posed optimization algorithm is employed for optimizing 
the performance of control activities in the CSTR plant 
model. The problem statement is to control the concentra-
tion of the plant (B) through manipulating the tempera-
ture of the jacketed CSTR; the control signal u is 
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represented by (F/V). The considered disturbance in  
this scenario is the change in feed concentration of  
reactant A. 
 
 

 
Figure 4. Block diagram of system identification using the controller
for the CSTR model. 
 
 

 
Figure 5. Temperature response of the CSTR model using the pro-
posed controller techniques. 
 
 

 
Figure 6. Concentration control of the CSTR system using the pro-
posed controller techniques. 

 The normal operating parametric values considered  
include: feed concentration CA = 10 mol/l, u = F/V = 
0.5708 l/min and concentration of the desired pro-
duct = 1.117 mol/l. The parameters of the PID controller 
are: Kp = 10, Ki = 12.04 and Kd = 1.76. The closed-loop 
performance of the proposed controller is evaluated 
through time-domain analysis of the designed controller 
employing the proposed optimized algorithm (Figure 4). 
  The performance of the model is tested with set point 
tracking, here the desired concentration level tracked with 
step change of 1.1169 to 1.2003. The corresponding  
temperature and concentration plot is presented in  
Figures 5 and 6. The control strategy of hybrid DPSO–
DGSA-based Elman NN controller is found to have  
improved performance criteria due to better exploration 
and exploitation mechanisms for searching the optimal 
weights to design an effective Elman neural controller. 
 From Figures 5 and 6 it is inferred that the integral 
square error is greatly reduced for the proposed optimized 
controllers employed for concentration control of the 
 
 

 
Figure 7. Error convergence graph for the proposed hybrid DPSO–
DGSA optimized Elman controller. 
 
 

Table 3. Error convergence table for the 
proposed hybrid DPSO–DGSA optimized 
  Elman controller 

No of generations Integral square error
 

 10 5.5081 
 20 4.6081 
 30 3.3257 
 40 1.9274 
 50 0.8112 
 60 0.4209 
 70 0.1932 
 80 0.0702 
 90 0.0017 
100 0.0022 
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Table 4. Performance metric of the considered controllers 

 
Devised controllers 

Peak overshoot 
(lbmol/ft3) 

Settling time 
(sec) 

Integral square 
error 

 

PID controller (Ziegler–Nichols method) 0.1173 1.85 0.9361 
LQR-based BFA28 0.1165 1.70 0.759 
Fuzzy-optimized PSO29 0.1145 1.65 0.01568 
Proposed DPSO–Elman model 0.1153 1.31 3.48 e-03 
Proposed DGSA–Elman model 0.1140 1.30 3.31 e-03 
Proposed hybrid DPSO–DGSA–Elman model 0.1136 1.24 2.20 e-03 

 
 
CSTR process. When compared with various other con-
ventional optimal procedures employed for tuning the 
Elman controller, the performance of the proposed hybrid 
DPSO–DGSA is improved with better metrics. 
 Table 3 and Figure 7 show the integral square error 
computed employing the proposed optimized Elman NN 
controller. The performance of the controller in compari-
son with that of the developed optimized PID controllers 
is found to be better in all the metrics considered (Table 4). 
 Hence, the proposed hybrid DPSO–DGSA-based  
Elman NN model is found to be a better controller for the 
CSTR system, according to the controller performances 
as shown in Figures 5 and 6, i.e. better set-point tracking 
is achieved with minimal ISE. The estimated performance 
metric displayed in Table 4 proves that the proposed  
optimized DPSO–DGSA-based Elman controller model 
achieves satisfactory characteristics in terms of peak 
overshoot, settling time and ISE than other methods. 

Conclusion 

This article provides details on designing the optimized 
Elman NN controller for concentration control of the 
CSTR. The ability of the network in retaining the memo-
ry of the previous iteration through a recurrent links add-
ed an advantage for better convergence and effective 
tracking of the system output. The study has been carried 
out in two steps. Initially, Elman NN has been designed 
and trained with a conventional learning algorithm, with 
the values obtained in the initial iteration of the learning 
process as the initial set values for optimal tuning algo-
rithms. The effectiveness of the proposed Elman NN con-
troller is validated through the considered performance 
metrics. Based on a comparative analysis made with  
existing controllers, the proposed hybrid DPSO–DGSA-
based Elman NN controller model demonstrates better 
performance in respect of the objective function value of 
the considered CSTR plant model. 
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