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The detection and identification of expression quanti-
tative trait loci (eQTLs) for biological characteristics 
like gene expression is an important focus of genomics. 
The existence of cis- and trans-eQTLs is crucial for esta-
blishing their cumulative significance to the desired 
traits. A crucial aspect of genomics is identifying the 
cis- and trans-eQTLs that capture substantial changes in 
the expression of distant genes. The goal of the present 
study was to use an integrated hierarchical Bayesian 
model to identify the cis- and trans-eQTLS. Molecular 
approaches are utilized to categorize just the candi-
date genes when quantitative trait loci or eQTLs are 
identified. Variations inside or near the gene are hypo-
thesized to determine the genetic variances that reflect 
transcript levels. The identification of eQTLs has 
helped us better understand gene regulation and com-
plex trait analysis. The present study focused on barley 
crops, and only cis-eQTLs were identified; no addi-
tional eQTL hotspots were determined. Mouse gene 
expressions were used to study trans-eQTLs and sub-
stantial cis- and trans-eQTLs, as well as four eQTL 
hotspots were identified. 
 
Keywords: Barley, gene expression, hotspots, integra-
ted hierarchical model, quantitative trait loci. 
 
A quantitative characteristic is described in biological re-
search as a quantifiable phenotype, such as yield, disease 
resistance, etc. that differs numerically and is dependent 
on the collective activities of numerous genes and the en-
vironment. The initial step in quantitative characteristic 
loci (QTL) mapping is to identify potential genes for de-
tecting chromosomal regions linked with a certain quanti-
tative trait1. Recently, expression quantitative trait loci 
(eQTL) mapping has become a popular and successful 
approach for detecting regulatory areas for genes using 
transcriptome and genotyping data2. These are the genomic 
regions that control mRNA or protein expression. The most 
significant molecular phenotypes are gene expressions, 
which operate as quantitative qualities that link genetic 
diversity to phenotypic variance. These differences in gene 
expression are expected to be important in phenotypic 
differences and species evolution. As a result, identifying 
eQTL has become a significant element of biological re-
search3. Traditional QTL mapping often finds broad areas 
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of application. Following the discovery of QTLs and 
eQTLs, molecular methods are used to categorize just the 
candidate genes. The genetic differences that reflect tran-
script levels are considered to be determined by varia-
tions inside or close to the gene. The discovery of eQTLs 
has expanded our understanding of gene regulation and 
complicated trait analysis4,5. It is now possible to map 
eQTLs for virtually all genes in the genome using DNA 
microarrays. Expression QTLs are objectively classified in-
to two types: cis and trans. In the case of cis-eQTL, the 
observed position of the eQTL is the same as the gene 
site (Figure 1 a), but in the case of trans-eQTL, the obser-
ved location of the eQTL is not the same as the location 
of the gene (Figure 1 b). For example, a trans-eQTL 
might reflect the position of a transcription factor that 
regulates the expression of the target alone or, perhaps, 
the linked expression of multiple functionally related 
genes. 
 The discovery of eQTLs can help us better understand 
genetics and gene expression control systems in many 
species6. The identification of trans-eQTL is substantially 
more challenging than cis-eQTL identification due to the 
enormous number of single-nucleotide polymorphism (SNP)–
gene combinations that must be examined for trans-
association mapping. The trans-eQTL analysis requires a 
greater sample size and/or effect than the cis-eQTL analysis 
to attain the same power. However, trans-eQTLs exhibit 
lesser effects than cis-eQTLs7. Several approaches for de-
termining the real number of trans-eQTLs have recently 
been developed. 
 Several researchers have found a substantial clustering 
of trans-eQTLs (many genes linked with the same locus) 
into so-called eQTL hotspots, indicating that these genomic 
areas contain variants that alter the dynamic and global 
character of transcriptional regulation8. Certain genomic 
areas known as regulatory hotspots can alter the expression 
levels of multiple genes, according to eQTL mapping studies. 
 Since the main difference between eQTL and regular 
QTL studies is the number of phenotypes, it is not unexpec-
ted that traditional QTL approaches have been employed to  
 
 

 
 
Figure 1. Graphical depiction of expression quantitative trait loci 
(eQTLs). a, cis-eQTLs; b, trans-eQTLs; c, trans-eQTLs mediated by a 
single cis-mediator; d, trans-eQTLs regulated by numerous cis-media-
tors25. 

find eQTLs one gene at a time. This ‘one gene at a time’ 
strategy ignores the numerous essential combinatorial ef-
fects and gene interactions. Using an empirical Bayes 
method, Kendziorski et al.9 suggested a mixture over 
marker (MOM) modelling technique to promote infor-
mation-sharing across both markers and transcripts. 
 Wen10 developed a simple method for simultaneous 
testing of multiple testing hypotheses that is robust in terms 
of false discovery rate (FDR) control. In applications of 
single and multi-tissue eQTL mapping, the suggested tech-
nique is computationally efficient. Recently, Bayesian 
models have been widely used to tackle the excessive mul-
tiplicity problem in eQTL studies. Several approaches 
based on sparse Bayesian regression (SBR) modelling have 
been developed for QTL research, such as the R-QTLBIM 
(QTL-Bayesian interval mapping) package11. Later, 
Banerjee et al.12 improved this approach to handle many 
characteristics (genes) at once. Due to computational chal-
lenges, they have restricted the number of traits to five. In 
the present study, an integrated hierarchical Bayesian 
model is used to analyse a large number of SNP–gene 
pairs13. All of the Bayesian frameworks discussed earlier 
involve a common prior probability for including a marker 
in the sparse regression model, which increases the risk 
of a high number of false-positive hotspots across all genes. 
 The following model (eq. (1)) may be used to represent 
gene expression measurements across individuals 
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,
S
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where g = 1, ..., G indicates a particular gene or feature, 
i = 1, ..., n denotes a specific individual, j = 1, ..., S de-
notes a specific SNP, yig the gene expression level for 
gene g for the ith individual, µg the overall mean of gene 
expression of gene g (across all individuals), xij the geno-
type at locus j for the ith individual under an additive, 
dominant or recessive genetic model and βjg is the effect 
size of SNP j on gene g.  
 Since only a few markers directly affect gene expres-
sion, many of the βs are nearly zero, and binary indicator 
variables are added to the model as γjg to specify which 
markers should be included, i.e. γjg = 1, if SNP j should 
be included in the model for gene g and γjg = 0 otherwise. 
εig is a Gaussian error term with gene-specific variance. 
 Gene/marker-specific QTL probability as wjg = P(γjg = 1) 

 is considered a priori, with strength borrowed across 
genes to estimate this probability using flexible genome-
wide prior distribution representation. The hierarchical 
structure of the model aids in the detection of eQTLs 
linked to several genes. It is also assumed that the random 
error term, i.e. εig is independent and identically distrib-
uted, so that genes are conditionally independent given all 
model parameters. However, dependence between genes is 
introduced using an exchangeable prior on the γjgs, which is 
computationally easy to understand. 
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 Thousands of gene expression levels are employed as 
quantitative phenotypes in eQTL studies. Univariate QTL 
analysis for each gene expression profile is often required 
to analyse such type of data. The model outlined above 
was applied to the most essential elements – (1) majority 
of eQTLs have multiple effects on gene expression and (2) 
genes in the same pathway are more likely to be linked. 
As a result, there is a possibility to pool information from 
hundreds or thousands of gene expression features in order 
to derive more insightful conclusions. 
 The different prior distributions of the model are  
described as follows. The parameter set-up is given by 

2( , , , , , , , ).g g jg jg jg j j jw p a bθ µ σ γ β=  The set-up of the 
priors is defined as follows. The prior probability for the 
inclusion of SNP j in the model for gene g is given by 
γjg ~ Bernoulli (wjg), where P(γjg = 1) = wjg is an unknown 
parameter.  
 As only a small number of SNPs act as a determinant 
of gene expression, the inclusion probability parameter 
wjg takes the value 0 a priori most of the time. When wjg 
is not 0, it is assumed to come from a beta distribution, 
beta(aj, bj). This can be expressed as a Dirac mass at 0 
and a beta distribution with weights pj and 1 – pj as follows 
 
 wjg ~ pjδ0 (wjg) + (1 – pj) beta(aj, bj) (wjg). (2) 
 
The parameter pj (the probability that wjg is 0) is equal for 
all genes, which helps in detecting an SNP that is weakly 
associated with many gene expressions14. Now, for pj 
with hyperparameters a0 and b0, a common conjugate be-
ta prior is used: pj ~ beta(a0, b0). aj and bj are assumed to 
follow exponential distributions with hyperparameters λa 
and λb: aj ~ exp(λa)bj ~ exp(λb). Now, µg ~ N(mg, τ2

g), 
where mg and τg are the empirical mean and variance of 
gene expression g respectively. 
 βjg = 0 if γjg = 0 and βjg ~ N(0, v2

g), if γjg = 1, with 
2 1 2( ) ,T
jg j j gv c x x σ−=  where c is the scaling factor parameter 

and  
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mimics the regressor variance, which leads to the well-
known g-prior of Zellner15. 
 Here the approach of Yi and Shriner16 is followed, and 
c is considered to be a constant equal to S, the number of 
SNPs. Bottolo and Richardson17 considered an inverse-
gamma prior c ~ inverse Gamma (1

2, n2) based on the Zell-
ner and Siow prior. Petretto et al.18 considered a common 
c for all genes with the prior of Liang et al.19. c ~ 1

1+c in 
the interval (0, M), where the end-point M = max(n, S2). 
The term σ2

g, the overall variance of v2
j g, ensures that σ2

g is 
a nuisance parameter in the model and can be integrated 
out; thus, σ2

g ~ inverse gamma (1
2, 12). 

 The posterior distribution was generated using Markov 
Chain Monte Carlo (MCMC) methods20. Gibbs sampling 
was used for all updates, and there were no closed forms 
for full conditionals for aj and bj. Adaptive rejection sam-
pling was used to update these two parameters21. The 
number of iterations was determined using the approach of 
Raftery and Lewis22. To estimate standard posterior values 
for the two datasets utilized here, 100,000 iterations with 
50,000 burn-in iterations were employed. Finally, the model 
was based on four hyperparameters, viz. a0, b0, λa, λb, 
that were predetermined. The expected number of e-QTLs 
(E(ηγ)) and their dispersion (V(ηγ)) were utilized to calcu-
late these values a priori. In this method, a0 = λa = 10 and 
b0 = γb = 0.1 is chosen, which favours models with fewer 
eQTLs. The final goal is to find gene/SNP relationships, 
which may be done with the help of parameter estimations 
from the proposed model. If the posterior probability of as-
sociation for gene g at SNP j is more than 0.80, an eQTL is 
identified. 
 In this study, two real datasets were analysed to identify 
the type of eQTLs and also the hotspots. 
 Dataset 1: An experiment was conducted to character-
ize quantitative resistance to the barley leaf rust pathogen  
 
 

Table 1. Detected expression quantitative trait loci (eQTLs)  
 with posterior probability of association (PPA) > 0.80 

Gene SNP PPA Type 
 

Contig12563_s_at Contig20996_10 0.81 cis 
Contig10533_at Contig12729_5 1.00 cis 
Contig1031_at Contig5754_9 0.80 cis 
SNP, Singe-nucleotide polymorphism. 

 
 

Table 2. PPA with different genes and SNP be-
yond the cut-off value of PPA > 0.8 and with false  
  discovery rate (FDR) level 10% 

Gene SNP PPA 
 

1422462_at rs6263067 1 
1438426_at rs6263067 0.97 
1438852_x_at rs6263067 0.93 
1450813_a_at rs6263067 0.88 
1416647_at rs4222763 0.87 
1428844_a_at rs4222763 0.88 
1436955_at rs4222763 0.9 
1441568_at rs4222763 0.88 
1448604_at rs4222763 0.97 
1448958_at rs4222763 0.98 
1427711_a_at rs13476267 1 
1444320_at mCV23574676 1 
1439075_at rs6331493 1 
1424811_at rs3142215 0.92 
1415673_at rs13479058 0.92 
1415677_at rs13479058 0.89 
1415703_at rs13479058 0.9 
1415713_a_at rs13479058 0.88 
1415715_at rs13479058 0.9 
1450003_at rs3693435 0.93 
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Table 3. Some detected cis- and trans-eQTLs presented with PPA 

 
Gene 

 
SNP 

 
PPA 

Gene  
chrm 

Gene  
start 

Gene  
end 

Marker  
chrm 

Marker  
position 

 
Type 

 

1448958_at rs4222763 0.98  1 1.58E+08 1.58E+08 1 168084791 trans 
1427711_a_at rs13476267 1  7 26246721 26262644 1 183253943 trans 
1444320_at mCV23574676 1  8 26835796 26865068 2 26699898 trans 
1439075_at rs6331493 1  2 1.44E+08 1.44E+08 2 144676277 cis 
1424811_at rs3142215 0.92  6 85767215 85770966 6 89630672 trans 
1415673_at rs13479058 0.92  5 1.3E+08 1.3E+08 6 137525036 trans 
1415677_at rs13479058 0.89 14 56357857 56364527 6 137525036 trans 
1415703_at rs13479058 0.9 21 1.48E+08 1.48E+08 6 137525036 trans 
1415713_a_at rs13479058 0.88 12 1.05E+08 1.05E+08 6 137525036 trans 
1415715_at rs13479058 0.9  5 33995865 34000626 6 137525036 trans 
1415734_at rs13479058 0.86  6 87949100 87995264 6 137525036 trans 
1415746_at rs13479058 0.9  7 26052723 26079178 6 137525036 trans 
1415749_a_at rs13479058 0.96  4 1.24E+08 1.24E+08 6 137525036 trans 
1415754_at rs13479058 0.89 15 78971797 78982197 6 137525036 trans 
1415758_at rs13479058 0.87  5 73411430 73647857 6 137525036 trans 
1415771_at rs13479058 0.9  1 88241294 88256030 6 137525036 trans 
1415772_at rs13479058 0.88  1 88241294 88256030 6 137525036 trans 
1415790_at rs13479058 0.9 11 44268073 44284000 6 137525036 trans 
1415816_at rs13479058 0.86  6 85402067 85418466 6 137525036 trans 
1415830_at rs13479058 0.87  5 21992303 22056247 6 137525036 trans 
chrm, Chromosome. 
 
 

Table 4. A sample of eQTLs for the hotspot of marker chromosome 6 

Gene SNP PPA Gene chrm     Gene start      Gene end Marker chrm Marker position Type 
 

1415673_at rs13479058 0.92  5 1.3E+08 1.3E+08 6 1.38E+08 trans 
1415677_at rs13479058 0.89 14 56357857 56364527 6 1.38E+08 trans 
1415703_at rs13479058 0.9 21 1.48E+08 1.48E+08 6 1.38E+08 trans 
1415713_a_at rs13479058 0.88 12 1.05E+08 1.05E+08 6 1.38E+08 trans 
1415715_at rs13479058 0.9  5 33995865 34000626 6 1.38E+08 trans 
1415734_at rs13479058 0.86  6 87949100 87995264 6 1.38E+08 trans 
1415746_at rs13479058 0.9  7 26052723 26079178 6 1.38E+08 trans 
1415749_a_at rs13479058 0.96  4 1.24E+08 1.24E+08 6 1.38E+08 trans 
1415754_at rs13479058 0.89 15 78971797 78982197 6 1.38E+08 trans 
1415758_at rs13479058 0.87  5 73411430 73647857 6 1.38E+08 trans 
1415771_at rs13479058 0.9  1 88241294 88256030 6 1.38E+08 trans 
1415772_at rs13479058 0.88  1 88241294 88256030 6 1.38E+08 trans 
1415790_at rs13479058 0.9 11 44268073 44284000 6 1.38E+08 trans 
1415816_at rs13479058 0.86 6 85402067 85418466 6 1.38E+08 trans 
 
 

Table 5. A sample of eQTLs for the hotspot of marker chromosome 16 

Gene SNP PPA Gene chrm Gene start Gene end Marker chrm Marker position Type 
 

1415771_at rs3693435 0.9  1 88241294 88256030 16 63508672 trans 
1415830_at rs3693435 0.87  5 21992303 22056247 16 63508672 trans 
1415927_at rs3693435 0.88  2 1.14E+08 1.14E+08 16 63508672 trans 
1416066_at rs3693435 0.88  6 1.25E+08 1.25E+08 16 63508672 trans 
1416237_at rs3693435 0.88  9 44850508 44862098 16 63508672 trans 
1416270_at rs3693435 0.87 19 8867619 8873047 16 63508672 trans 
1416575_at rs3693435 0.86 16 18780540 18812080 16 63508672 trans 
1416687_at rs3693435 0.86  9 92437061 92503266 16 63508672 trans 
1416979_at rs3693435 0.88  5 1.49E+08 1.49E+08 16 63508672 trans 
1417160_s_at rs3693435 0.93 11 83522517 83524850 16 63508672 trans 
1417294_at rs3693435 0.87  4 1.39E+08 1.39E+08 16 63508672 trans 

 
 
Puccinia hordei in the St/Mx population. Agilent barley 
custom microarray was used to assess transcript abun-
dance in 139 DH lines of the St/Mx population challenged 

with P. hordei. The datasets were generated previously 
by Rostoks et al.23 and Chen et al.24 respectively, having 
4286 SNPs and 595,754 expressions. 
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Figure 2. The x-axis represents the position of each eQTL along the genome, while the y-axis represents the position of the 
probe set target itself. The chromosomal borders are shown by grey lines. A diagonal line is formed by cis-eQTLs. Transcript 
groups related to a single trans-eQTL are shown by vertical bands26. 

 
Table 6. A sample of eQTLs for the hotspot of marker chromosome 12 

Gene SNP PPA Gene chrm Gene start Gene end Marker chrm Marker position Type 
 

1415683_at rs6170344 0.91 11 1.03E+08 1.03E+08 12 83729204 trans 
1415684_at rs6170344 0.94 10 43988164 44084097 12 83729204 trans 
1415690_at rs6170344 0.94 11 94515081 94521403 12 83729204 trans 
1415693_at rs6170344 0.95 15 57701057 57723973 12 83729204 trans 
1415695_at rs6170344 0.95  7 1.21E+08 1.21E+08 12 83729204 trans 
1415697_at rs6170344 0.92  5 92481172 92512761 12 83729204 trans 
1415703_at rs6170344 0.92 21 1.48E+08 1.48E+08 12 83729204 trans 
1415718_at rs6170344 0.86 11 57615139 57623719 12 83729204 trans 
1415735_at rs6170344 0.86 19 10680115 10704312 12 83729204 trans 
1415742_at rs6170344 0.92  6 83004647 83007674 12 83729204 trans 

 
 Dataset 2: We used the FDR approach to analyse pub-
licly available eQTL data. The data are available at the 
QTL Archive, now part of the Mouse Phenome Database, 
at http://phenome.jax.org/db/q?rtn=projects/projdet&req- 
projid=532. Custom Agilent two-colour ink-jet microar-
rays were used to determine gene expression. The Affymet-
rix 5K Gene Chip was used to genotype mice. Finally, 
there were 28 samples, 918 SNPs and 23,238 expression 
values in the dataset. The number of identified eQTLS in 
the dataset was 4243. The mechanism of detection in this 
case was based on the posterior likelihood of connection 
(PPA). Significant SNP–gene connections were evaluated 
if PPA was greater than 0.80, which is the cut-off value 
of this method. Table 2 shows all the PPA values as well 
as the gene–SNP relationships. Table 3 lists the detected 
cis- and trans-eQTLs. 
 Based on PPA between eQTL and the gene, four hot-
spots were identified (Figure 2). Figure 2 shows that a 

large number of trans-eQTLs have a similar position with 
marker chromosomes 6, 8, 12 and 16. Table 4 shows that 
SNP rs13479058 is linked to a significant number of genes 
and is found in common places on chromosome 6 (marker 
chromosome 6). As a result, these genes are known as 
hotspots. Similarly, using marker chromosome 16, SNP 
rs3693435 was found to be associated with a significant 
number of genes and had similar positions (Table 5). Ta-
ble 6 shows that SNP rs6170344 is linked to a significant 
number of genes and has a common position on chromo-
some 12 (marker chromosome 12). SNP rs6343961 was 
linked to a significant number of genes and shared sites 
on chromosome 8 using marker chromosome 8 (Table 7). 
 One of the important aims of genomics is to identify the 
location of eQTLs for molecular traits like gene expression. 
Finding the cis- and trans-eQTLs is critical for determining 
the cumulative importance of eQTLs to the targeted char-
acteristics. Identifying the cis- and trans-eQTLs that 

http://phenome.jax.org/db/q?rtn=projects/projdet&reqprojid=532
http://phenome.jax.org/db/q?rtn=projects/projdet&reqprojid=532
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Table 7. A sample of eQTLs for the hotspot of marker chromosome 8 

Gene SNP PPA Gene chrm Gene start Gene end Marker chrm Marker position Type 
 

1418669_at rs6343961 0.86 4 1.37E+08 1.37E+08 8 18316422 trans 
1419009_at rs6343961 0.86 4 56756285 56757797 8 18316422 trans 
1420351_at rs6343961 0.9 4 1.55E+08 1.55E+08 8 18316422 trans 
1420716_at rs6343961 0.86 1 1.68E+08 1.68E+08 8 18316422 trans 
1422628_at rs6343961 0.9 19 12620230 12664258 8 18316422 trans 
1423419_at rs6343961 0.87 11 82594610 82616364 8 18316422 trans 
1423774_a_at rs6343961 0.95 7 87439403 87461145 8 18316422 trans 
1424187_at rs6343961 0.86 16 45093515 45127778 8 18316422 trans 
1424923_at rs6343961 0.92 12 1.05E+08 1.05E+08 8 18316422 trans 
1426190_at rs6343961 0.9 5 1.14E+08 1.14E+08 8 18316422 trans 
1426638_at rs6343961 0.87 17 86012948 86031153 8 18316422 trans 
1427324_at rs6343961 0.89 5 1.24E+08 1.24E+08 8 18316422 trans 
1427786_at rs6343961 0.94 11 96874708 96886048 8 18316422 trans 
 
 
capture large changes in the expression of distant genes is 
a key concept in genomics. In the present study, major 
focus was given to identifying these cis- and trans-eQTLs 
using integrated hierarchical Bayesian model for eQTLs. 
This study was done mainly for barley crop and only cis-
eQTLs were detected; no other eQTL hotspots were found. 
To explore the trans-acting eQTLs, mouse gene expres-
sions were considered. Both cis- and trans-eQTLs were 
identified as well as four eQTL hotspots. 
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