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Artificial intelligence is now becoming a part of peo-
ple’s everyday lives. It can help farmers detect any dis-
ease in the early stage and take pre-emptive actions to 
save their crops and control disease spread, thus pre-
venting crop wastage as well as increasing their in-
come. The present study uses a combination of 13 
convolutional neural network (CNN) models to classify 
five types of fruits and their leaf images into 41 clas-
ses, including diseased and healthy. Results show that 
the average accuracy of this CNN architecture is above 
90% for all 13 individual models. One of the CNN mod-
els has been compared with three pre-trained models, 
i.e. MobileNet, DenseNet121 and InceptionV3 trained 
using the same dataset. It shows that the CNN architec-
ture used in this study has higher accuracy while also 
being simple and easy to train. 
 
Keywords: Agriculture, artificial intelligence, convolutio-
nal neural network, deep learning, fruit and leaf disease 
detection. 
 
THE convolutional neural network (CNN) or ConvNet is 
an algorithm in deep learning which takes an image as 
input and assigns weights to different parts of the image 
which help the algorithm to differentiate between differ-
ent kinds of images. CNN imitates the working of human 
neurons and their connectivity. The architecture of CNN 
has been inspired by the design and working of the human 
visual cortex. Individual neurons can only respond to 
stimuli in a small part of the visual field called the recep-
tive field. A number of similar fields are stacked on top 
of one another to span the full visual field. When com-
pared with different classification methods, the amount of 
pre-processing required by CNN is significantly less which 
makes it ideal for such tasks. 
 India is an agriculture-dominant country, and majority 
of the population depends on agriculture or its related ac-
tivities for their livelihoods. Every year several fruits are 
affected by diseases and thus wasted1. According to the 
Food and Agriculture Organization (FAO), Rome, up to 
40% of the world’s fruit crops are lost due to pests and 
diseases2. This loss could be reduced if the farmers could 
detect the disease early so that the crops could be treated 
and the fruits saved. 

 This study uses a combination of CNN models which 
can be directly accessed by the farmers, who can take a 
photograph of disease-affected leaf or fruit and upload it 
to the network. It will then identify the disease and thus 
help the farmers. 
 India is currently going through a digital revolution 
and nowadays many rural areas have internet access. 
CNN could be hosted on the web for easy access and can 
be directly used by the farmers to identify the diseases af-
fecting their crops. If the farmers detect the disease early, 
remedial actions can be taken to save the fruits. Even if 
the disease has propagated in a part of the fruit crop, it 
would be beneficial to identify the same so that the dis-
ease can be stopped from spreading further.  

Literature review 

A lot of work is already being done in this field. Some of 
the literature from sources like Scopus, Springer, IEEE 
and ACM have been reviewed here. It also includes details 
about the current CNN architecture or models being used 
by researchers in this field. 
 James and Sujatha3 proposed a Hybrid Neural Clustering 
(HNC) classifier to classify apple fruit images. They used 
K-means clustering and feed-forward backpropagation 
(FFBP) neural network to develop the classifier. The 
model could classify apple images into ten disease cate-
gories with an accuracy of 98% (ref. 3). 
 Sembiring et al.4 proposed a CNN architecture for the 
classification of tomato leaves. Their main focus was to 
develop a simplified CNN architecture that could provide 
acceptable accuracy. These researchers used the PlantVil-
lage dataset with ten classes consisting of nine diseases 
and one healthy class. They compared the accuracy of 
their proposed architecture with other CNN architectures 
like VGG Net, ShuffleNet and SequeezNet, which had 
achieved an accuracy of 97.15% (ref. 4). 
 Xiao et al.5 proposed a CNN model to classify straw-
berry images into five disease categories. They used both 
fruit and leaf images to train their CNN model. They also 
compared their proposed model with GoogleNet, VGG16 
and ResNet50. The accuracy of their model was 99.60% 
(ref. 5). 
 Ashwinkumar et al.6 developed a CNN model based on 
MobileNet. The proposed OMNCNN model operates at 
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Table 1. Literature review of recent fruit disease detection works 

Fruit Method used Accuracy achieved (%) Reference 
 

Pineapple ANN, SVM, RF, NB, DT, KNN and ANOVA 85–90  9 
Tomato SqueezNet, AlexNet, Inception V3 89.69 and 93.4 10 
Tomato VGG, ResNet, and DenseNet 96.16 11 
Strawberry CNN 99.60  5 
Tomato CNN 98.28, 96.64 and 97.01  4 
Apple ResNet-50 using MASK RCNN and Transfer Learning 99.1  7 
Cherry Data Mining Prediction 95.8 12 
Tomato GLCM-Color Moment and CNN 99 13 
Mango DCNN and Transfer Learning 98.6 14 
Apple HNC Classifier, FFBPNN 98.1  3 
Tomato AlexNet, GoogleNet 99.18 15 
Tomato OMNCNN Above 98  6 

 
 

 
 

Figure 1. Number of images in the dataset. 
 
 
multiple stages such as pre-processing, segmentation, fea-
ture extraction and classification. This model was trained 
using a dataset of tomato leaves. They used the emperor 
penguin optimizer (EPO) algorithm and extreme learning 
Machine (ELM)-based classifier techniques. Their model 
showed an accuracy of 98.7% (ref. 6). 
 Rehman et al.7 proposed a MASK RCNN model to de-
tect apple leaf diseases. Their model involved a novel, 
parallel, real-time processing framework and was trained 
using transfer learning. They also employed an ensemble 

subspace discriminant analysis (ESDA) classifier. Their 
model was trained using the PlantVillage dataset and 
achieved an accuracy of 96.6% (ref. 7). 
 Jogekar and Tiwari8 proposed a deep convolutional 
neural network (DCNN) to classify banana diseases. They 
also proposed a genetic DCNN algorithm that could be 
used to minimize the loss of available data for some clas-
sification problems. They also developed a web applica-
tion that could be used to detect banana leaf disease with 
visual inspection by the users. They used logistic regres-
sion, support vector machine, Gaussian Naïve Bayes and 
LDA techniques for their DCNN model. The accuracy 
achieved by their model was more than 90% (ref. 8).  
Table 1 lists some recent works in this area9–15. 

Methodology 

Dataset 

The dataset used to train the CNN models was collated by 
the present authors from various sources such as Kaggle, 
PlantVillage, Mendeley Datasets, Google images, etc. 
Data were cleaned and pre-processed before being used 
to train the classifiers. The dataset consisted of five fruits 
and their leaves. Totally there were 9890 images which 
had been segmented into two parts for each fruit and leaf 
as train and test.  
 Figure 1 shows the structure of the dataset and the 
number of images in each class. 

Dataset augmentation 

The images from the dataset were processed using the 
ImageDataGenerator function, where different attributes 
such as rescaling, zoom_range, sheer_range and horizon-
tal_flip were applied to the training data. The images 
from the test dataset were only rescaled to 1./255, and no 
other filter was applied. 
 The datasets for test and train were generated by passing 
these images through flow_from directory, where class_mode 
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was taken as categorical and color_mode as rgb. All the 
images were resized to 500*500 before being provided as 
an input to the CNN. The batch_size for input images was 
taken as 16. 

Tools and libraries used 

We have used DataSpell, PyCharm and Google Colab for 
developing the classifiers. Python3 and its libraries Tensor- 
 
 

 
 

Figure 2. Control-flow diagram of the convolutional neural network 
(CNN) model. 

 

 
 

Figure 3. Classifiers’ structure till the last dense layer. 

Flow16, Keras17, Scikit-learn18, Pandas19, Numpy20, Mat-
plotlib21 and Seaborn were used for various tasks. The CNN 
models were trained on a laptop with Intel i7-9750H CPU 
and Nvidia GTX 1650 GPU with 16GB RAM. The models 
were trained in a CUDA-enabled environment using Data-
Spell IDE. All models for comparison were trained in 
Google Colab. 

Proposed model 

Here we propose a combination of 13 CNN models which 
have been trained using a self-collated dataset. The data-
set includes five of the most common fruits in India, viz. 
apple, grapes, guava, mango and orange. Three out of 
these 13 models were used to classify each input image.  
 The first CNN model, viz. validation_classifier, was used 
for the validation of the input image. It classifies an image 
into three classes – leaves, fruit and unknown. If the image 
is classified as a fruit, it is transferred to the fruit_ 
classifier; if classified as a leaf, it is transferred to the 
leaves_classifier, and if the image is classified as unknown, 
it gives a warning ‘Invalid input image’. The fruit_ 
classifier and leaves_classifier models classify the image 
into five classes. Based on the result from the fruit_ 
classifier or leaves_classifier, the image is provided to 
the appropriate CNN model for disease identification. 
This result is then provided to the user. Figure 2 shows 
the control flow structure of the proposed model. 

Implementation 

The CNN architecture helps farmers identify the diseases 
that might be affecting their fruit crops. Using an image 
of a leaf or fruit, the network can classify it as healthy or 
diseased and also identify the particular disease. 
 
 

 
 

Figure 4. Output image of the CNN model. 
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Figure 5. a, Training history of validation_classifier. b, Confusion matrix of validation_classifier. 
 

 
Table 2. Accuracy of all CNN models 

 
Model  

Training  
accuracy (%) 

Transfer  
accuracy (%) 

No. of  
epochs 

 

validation_classifier 95.42 97.02  9 
fruit_classifier 98.40 83.10 27 
leaves_classifier 96.70 95.89 15 
apple_fruit_classifier 91.34 82.38 19 
apple_leaves_classifier 98.27 95.10  6 
grape_fruit_classifier 92.02 86.67 25 
grape_leaves_classifier 99.75 98.64 15 
guava_fruit_classifier 90.61 81.72 30 
guava_leaves_classifier 93.50 84.52 24 
mango_fruit_classifier 91.20 81.39 21 
mango_leaves_classifier 90.42 90.00  8 
orange_fruit_classifier 94.17 86.67 18 
orange_leaves_classifier 93.97 82.40 28 
 

CNN architecture and training 

All the models have been individually trained using the 
whole or partial dataset. A common architecture has been 
used for all the models, with a few necessary tweaks. Fig-
ure 3 gives the structure of this CNN architecture without 
the final softmax layer. 
 The CNN architecture consists of 13 layers, of which 
five are convolution layers, five are pooling layers and 
three are fully connected layers. The first is a convolution 
layer with a kernel size of 3, ‘relu’ activation and unit as 
32. Its input shape is defined as 500*500*3. No padding 
has been applied to input images in any of the layers. 
This layer is then connected to a pooling layer which uses 
Max Pooling with a size of 2*2. The output of this pool-
ing layer is transferred to the next layer which is another 
convolution layer with the same parameters, except for 
the input_shape as the first layer and is further connected 
to an identical MaxPooling layer. The next two convolution 
layers also have the same kernel size and activation, 
however they have 64 units instead of 32 and are also 

connected to another exactly same pooling layer. The 
next is the last convolution layer of the CNN architecture 
having 128 units, and is also succeeded by a MaxPooling 
layer. After all these convolution and pooling layers, the 
output is flattened and provided to a fully connected layer 
with 128 units and ‘relu’ activation. The output of this 
layer is further provided to the next fully connected layer 
with ‘relu’ activation and 64 units. The last is also a fully 
connected layer with different units for each model and 
softmax activation, as all CNN models are multi-class 
classification models. The CNN models have been com-
piled using the optimizer ‘adam’, ‘categorical_cross- 
entropy’ as loss and metrics as ‘[“accuracy”]’. 
 Callbacks have been set for each model to stop them 
from overfitting. We have used Earlystoping and reduced 
learning rate to define the callbacks. Class weights have 
also been defined for each model to train them equally, 
even for classes with few images.  
 At least 15 epochs were applied to each model. For 
many CNNs, all epochs were not applied as training was 
stopped by callbacks to save the model from overfitting. 
Some of the models were also trained multiple times and 
with a higher number of epochs to increase their accuracy. 
The models were trained using transfer learning, where 
feature extraction was done on the training dataset, and 
validation was done using the test dataset. 
 A basic upload mechanism was also developed on 
Google Colab as well as DataSpell, where any image can 
be uploaded. This image is processed, classified, and the 
output is shown as an image with the disease name or 
healthy as the title. Figure 4 shows the output of an image 
provided to the CNN model. 

Results and discussion 

The proposed CNN structure could detect diseases in five 
fruits. The accuracy for each CNN model was above 
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Table 3. CNN architecture comparison table 

Parameters MobileNet InceptionV3 DenseNet121 grape_leaves_classifier 
 

Training accuracy (%) 63.35 81.00 97.23 99.75 
Transfer accuracy (%) 93.95 96.79 98.02 98.64 
No. of epochs 6 15 14 15 
Training loss 0.69 0.38 0.07 0.03 
Validation loss 0.40 0.12 0.05 0.02 
Average time taken for each epoch (sec) 845 2575 2680 1410 
Parameters 3,755,716 22,853,924 7,564,356 13,890,084 

 
 

 
 

Figure 6. a, The grape_leaves_classifier training data. b, MobileNet training data. c, InceptionV3 training data. d, DenseNet121 training data. 
 

 
 
90% for training or feature extraction and above 80% for 
the validation data. The loss score was also low for all the 
models. Figure 5 a and b show the training history plot 
and confusion matrix of the validation_classifier respec-
tively. 
 The accuracy of the validation_classifier was 95.42% 
for the training data and 97.02% for the validation data. 
Loss for both training and validation data had decreased 
from 0.56 and 0.26 to 0.12 and 0.13 respectively, during 
the nine epochs while the learning rate remained constant. 
 All the other models were similarly trained and had 
achieved good accuracy. Table 2 shows the accuracy of 
all the models. 

Comparison with pre-trained CNN architecture 

We have compared the grape_leave_classifier model with 
three pre-trained CNN models, viz. MobileNet22, Dense-
Net121 (ref. 23) and InceptionV3 (ref. 24). All the models 
were trained on the same dataset and the same number of 
epochs was applied (some models did not complete all 
the epochs as they were stopped by callbacks). Same 
callbacks were set while training all four models. Figure 
6 a–d shows the training graphs of all the four models. 
Table 3 shows a comparison of all the models. 
 Table 3 shows that the proposed CNN model gives the 
best accuracy for training and testing datasets. Though 
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DenseNet121 shows similar accuracy, it uses a complex 
architecture which makes training hard and more time-
consuming (it takes about 1270 sec more than the grape_ 
leaves_classifier per epoch). While MobileNet takes less 
time than the other models, it gives the least accuracy. In-
ceptionV3 has the largest number of parameters, but is un-
able to achieve higher accuracy. 
 Two other CNN architectures, i.e. ResNet50 and Effi-
cientB2 were also trained on this dataset but were not in-
cluded for comparison as their accuracy over epochs did 
not increase above 30%, even after multiple trials. 
 This comparison shows that the proposed CNN archi-
tecture is more suitable than other pre-trained architec-
tures and provides better accuracy while also being 
simple, which allows it to be trained without extensive 
computation. 

Conclusion and future scope 

This study presents a combination of CNN models which 
can be used to classify five fruits into different diseased 
or healthy classes. The models have achieved an accuracy 
of above 90% for each of the five fruits and leaves.  
 In future, an android app-based model can be develo-
ped that can be used by anyone to identify fruit diseases. 
This would help farmers in rural areas save many of their 
fruit crops, as it would provide them with an easier and 
faster method to identify diseases and take actions to con-
trol their spread to other plants, or even save the current 
plants if the disease is detected in the early stages. 
 This study can be further continued, and more images 
be added to each dataset to achieve higher accuracy. More 
diseased classes could be added to the currently available 
fruits or more fruits can be added to the dataset. This 
study could be enhanced using classes with different 
stages of a single disease which can be identified and its 
stage informed to the user. 
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